
Kalpa Publications in Computing
Volume 3, 2017, Pages 106–122

RV-CuBES 2017. An International Workshop on
Competitions, Usability, Benchmarks, Evaluation,

and Standardisation for Runtime Verification Tools

ARTiMon Monitoring Tool

The Time Domains

Nicolas RAPIN

CEA LIST
Bote Courrier 174, Gif sur Yvette, F-91191 France

nicolas.rapin@cea.fr

Abstract

This work is related to our monitoring tool called ARTiMon for the online property
monitoring of discrete and continuous systems. This paper presents the syntax and the
semantics of the current input language of ARTiMon. Because this is not always well un-
derstood by users, and also because it grounds the ability of ARTiMon to check properties
online, in this tool paper a particular focus is accorded to the domain definition of time
functions used to interpret terms of the language.

1 Introduction

Property monitoring is a unified solution in order to detect failures at many stages of a system’s
life-cycle. It can be applied online or offline. An online monitor is supplied with some system
states at some times called time stamps. The online mode supposes the satisfaction of a real
time constraint: from the time it is supplied with a state the monitor should perform and ter-
minate an interpretation of the checked properties before the next state is supplied. An offline
monitor is not constrained by such imperative deadlines. In contrast, it requires a complete
trace to evaluate properties. It result that the offline analysis has many drawbacks depending
on the level considered. At the exploitation level it is not suitable to control a running system.
It can only deliver a post-mortem diagnostic. At the validation level, for example based on the
simulation of some system models, the simulation trace must be completed before the analysis
of properties starts. If the computation of a simulation trace is time consuming, the offline
approach may represent a huge waste of time, especially when the failures (pieces of traces that
validate hazard properties or violating expected invariants) occurs at the beginning of the trace.
In order to get around those drawbacks while proposing a rich specification language, our tool,
called ARTiMon (for Accurate Real Time Monitor), has been designed to evaluate online and
in real-time terms of a rich language derived from real-time logics. At the design level it can be
to used to check that simulation traces of systems models are conform to some properties. At
the deployment level it can be used as an embedded monitoring agent for online diagnostic [1]
or for controlling purposes. Whatever it is used for, ARTiMon notifies failures with the smallest
possible lag. Thus a simulation can be stopped early in order to correct a wrong model, or
the running system can be controlled to restore its conformity. Historically ARTiMon has been

G. Reger and K. Havelund (eds.), RV-CuBES 2017 (Kalpa Publications in Computing, vol. 3), pp. 106–122

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

developed for the online validation of Matlab/Simulink models with respect to real time proper-
ties. Its development started during the Eureka European project called SYSPEO. ARTiMon,
at least a version of it, remains available for the analysis of the simulations of Simulink models.
ARTiMon is directly embedded in Simulink models as a S-Function block.

In this paper, we present the current input language of ARTiMon (Version 0.9). Concern-
ing the formal semantics, ARTiMon interprets all terms of its input language as partial time
functions i.e. as functions whose domains are bounded intervals of a time domain which can be
discrete or continuous depending on the nature of the system. Notice that the interpretation
(or semantics) of a term is always defined with respect to a sequence of timed states, called a
trace, which formalizes a system execution. A trace being a static object the semantics is in-
deed defined in an offline style. This rises a tension with the online context: considering a trace
analyzed by an online monitor we must assume that the monitor has discovered this trace step
by step, or we should we say state by state. It wouldn’t be realistic to suppose that this online
monitor re-computes completely the semantics at each new state supplied, as if the current
trace prefix formed so far was a completely new fresh trace, especially because all those prefixes
are longer and longer. We can then assume that a realistic online monitor, at each arrival of
a new state, make a re-use of the semantics computed for the previous states. For short, to
compute the semantics for the next trace prefix the online monitor uses, or let us say extends,
the computation achieved for the current trace prefix. It results from this discussion that a
trace can be considered as a static object but also, from a dynamical point of view, as a tempo-
rary prefix of a further trace extension. Interpretations of terms inherit of this character. They
are partial time functions destined to be extended as and when the underlying trace is extended.

Deriving from those considerations, the online interpretation can be defined as the con-
catenation of partial, adjacent and local offline interpretations triggered by traces extensions.
Online interpretation must give the same result as the offline one. To ensure this, we have to
take care that an interpretation already performed with respect to a given trace σ, assigning
a value to a term at a given time, cannot be contradicted (on times of its domain) by the in-
terpretation for any trace σ′ extending σ. An interpretation ensuring this will be called sound
for σ. This interpretation should be also complete for σ, that is maximal with respect to all
sound interpretations. Completeness ensures that all partial interpretations are adjacent and
hence the continuity of their union. Those concerns explain why a large part of this paper is
devoted to the definition of the sound and complete domain of the time function representing
the interpretation (the semantics) of a term with respect to a trace as it is computed by the
ARTiMon tool. The paper is organized as follows. In Section 2 we recall basic definitions about
systems and traces. The Section 3 introduces the formal syntax of ARTiMon language. Section
4 details the semantics of this language. It begins with ground and atemporal terms and is
followed by a description of the semantics for temporal terms. The short Section 5 describes
how and when ARTiMon notifies failures. Section 6 gives some specification examples inspired
by industrial collaborations. The Section numbered 7 evokes some implementation aspects,
contributions in industrial projects and availability of the tool. Section 8 refers to some similar
tools and we conclude this paper in Section 9.

2 System Under Monitoring, Traces

A system under monitoring (SUM for short) is characterized by a finite set V of state variables
and by a time domain T which can be Z if the SUM is discrete or R if the SUM is continuous.

107

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

Each state variable has a type (like bool, int, float) which defines its range. The symbol ⊥
will be used for denoting the false value of the boolean range {⊥,>} but also for denoting a
special value called the undefined value for any other range. That is to say we assume that ⊥
is present in any range of any state variable. This overloading of the symbol ⊥ simplifies many
definitions, especially the definition of negative intervals (see below).

A timed state ν is a tuple (t, s) where t ∈ T is a time stamp and s a state (i.e. a map assigning
to each v ∈ V a value of its range denoted by s(v)). A trace of the SUM is any finite sequence σ of
timed states of the form ((t0, s0), . . . , (tn, sn)) being such that (t0, . . . , tn) is strictly increasing.
The domain of σ, noted |σ|, is [t0, tn]. A trace σ′ of the form ((t0, s0), . . . , (tn, sn), (tn+1, sn+1))
is called a trace extension of σ. We say that σ′ induces a domain extension with respect to |σ|,
it is the interval]tn, tn+1]. For short we have |σ′| = |σ| ∪]tn, tn+1]. It results that a given
non-empty trace can be seen as a whole or as an extension of a trace or even as the result of
successive extensions from the empty trace ∅.

As a running example, let us consider a SUM characterized by a boolean state variable b
and by a float state variable v. We will consider three timed states ν0 = (0, {b 7→ ⊥, v 7→ 1.25}),
ν1 = (2, {b 7→ >, v 7→ 1.25}) and ν2 = (3, {b 7→ ⊥, v 7→ 1.65}) and the traces σ2 = (ν0, ν1, ν2)
extending σ1 = (ν0, ν1) extending σ0 = (ν0) extending ∅. Notice that time stamps are not
necessarily regularly spaced.

Considering a trace as a whole (perspective adopted by the offline monitoring techniques),
we could say that property monitoring consists in evaluating some properties with regard to
the trace. Now considering a trace as the result of a sequence of trace extensions, we can give
a slightly different definition suitable for the online approach: property monitoring consists in
concatenating partial interpretations triggered by each trace extension. Of course, whatever
is the perspective chosen and its underlying interpretation technique, both must lead to the
same result. As it will be exposed, ARTiMon is strongly based on this second point of view.
That is why, as mentioned in the introduction, we need a rigorous definition of those partial
interpretations to preserve an equality with the offline interpretation. As it will be exposed this
relies on the notion of sound and complete time domains for the interpretation of a term.

3 Specification Language

The ground terms of our language are symbols of constants, represented by letter c, and state
variable symbols, represented by letter v. If one combines those ground terms using functions,
predicates, or build vectors from those terms, indeed he only generates additional state variables.
That’s why we call atemporal such terms. Formally we call atemporal the terms deriving from
this BNF grammar:

φ ::= c | v | gφ | (φ, . . . , φ)

The symbol g stands for a symbol of function. It may be ¬,∧,∨,→ to mention boolean
ones or ∗,+,−,÷, . . . to mention float ones. A term of the form gφ denotes the application of
function g to the term φ considered as an argument. This latter can be a vector of the form
(φ1, . . . , φn). Thus one can form for example the term ∧(φ1, φ2) which is the prenex form of
the usual boolean conjunction usually noted φ1 ∧ φ2. We opt for the prenex form as it extends
more naturally to functions whose arity is greater than 2. In an ARTiMon input file, a vector
is declared as follows: 〈vector alias〉[n] φ1 . . . φn. So n stands here for the dimension of the

108

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

vector. The Figure 1 of Section 7 gives an example with n = 2.

The language of ARTiMon extends those atemporal terms by introducing temporal opera-
tors. ARTiMon language is a subset of terms given by this BNF grammar (which extends the
previous one):

φ ::= c | v | gφ | (φ, . . . , φ) | A{f}j φ | ↑ φ | ↓ φ | φ Ui φ |

φ Sk φ | φ D@ φ | iL φ | cL φ | φ Cut φ | φ O φ | L φ | P φ

We said that ARTiMon language is a subset of terms defined by this grammar because terms
should be consistent regarding their type. For example the term ∧(>, 18.2) is not well-formed.
This typing issue is not treated here but what is a well formed term is rather intuitive and left
out here. Some of our temporal operators come along with an interval (in subscript) called
its scope whose purpose is to restrict the quantification (or the aggregation) of the operator.
Depending on the operator, the scope must satisfy some specific constraints. For example, the
scope i of the binary until operator, noted Ui, is imperatively a positive bounded interval i.e.
an interval whose bounds are positive bounded numbers. The scope k of the since operator,
noted Sk, must have a positive or null low bound and the upper bound can be either a standard
positive number or +∞.

A term of the form A{f}j is called an aggregation term. It has been presented in [9] when j
is bounded. Here we also accept that j.lb = −∞. This means that one is allowed to aggregates
values of a term from the beginning of its definition. In contrast with the languages of [8, 7]
where non boolean signals are also introduced but indeed reduced to atemporal boolean terms
using predicates, our aggregation operator allows the creation of non boolean terms that are
temporal. Notice that the well-known bounded eventually operator usually noted 3j can be
emulated using aggregation: 3jφ stands for A{disj}jφ. The dual globally operator is noted �i
and �iφ stands for ¬3i¬φ. ↑ and ↓ stands respectively for the rising and falling edge operators.
ARTiMon extends their application to non-boolean terms as it will be explained below. The
most non conventional operators are the Duration At operator noted D@, the incremental length
operator noted iL, the cumulative length operator noted cL, the last value operator noted L,
the previous value operator noted P and the over operator noted O. Their intuitive and formal
semantics are detailed below in Subsection 4.2.

4 Semantics

As in [9] the semantics of any term φ with respect to a trace σ is a time function noted (φ)σ
whose domain, being a bounded interval of T, is noted |(φ)σ|. Whatever are T and φ, the
function (φ)σ is always a finite union (concatenation) of constant functions whose domains
are adjacent intervals of T (two intervals are adjacent if their union is an interval and their
intersection is empty) covering |(φ)σ|.

4.1 Semantics of Ground and Atemporal Terms

Let us illustrate for our running example. Whatever is T, the domains |(v)σ2
| and |(b)σ2

|
are both equal to |σ2| = [0, 3]. The function (v)σ2

is the union of those constant functions:
[0, 3[→ {1.25}, [3, 3]→ {1.65} and (b)σ2 is the union of: [0, 2[→ {⊥}, [2, 3[→ {>}, [3, 3]→ {⊥}.

109

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

In the discrete semantics (i.e. T is Z), the interval [a, b[can also be written [a, b−1]. So, assum-
ing this semantics, we could also define (v)σ2

as the union of: [0, 2] → {1.25}, [3, 3] → {1.65}.
In the remainder of this paper we will focus more on the continuous semantics. So, unless said
otherwise one can assume that T = R.

It is quite straightforward that a finite concatenation of constant functions can be repre-
sented (and implemented) by a list of valued time intervals. Let us formalize this now. A time
interval is a tuple of the form (l, lb, ub, u) where lb, ub ∈ T ∪ {−∞,+∞} are the bounds of the
interval, and l, u ∈ {>,⊥} are boolean values defining the membership of bounds to the inter-
val: lb (resp. ub) belongs to the interval iff l = > (resp. u = >). For example (>, 1.51, 2.38,⊥)
states for the interval usually noted [1.51, 2.38[. If ub < lb the interval is considered as empty,
idem if the constraint (ub = lb) ∧ ¬(l ∧ u) is satisfied. We will use both notations, the usual
bracketed one and the tuple one. Non relevant parameters will be replaced by symbol −. Thus
(>, 0,−,−) denotes the interval containing 0 and potentially some greater time values. A valued
interval is simply a 5-tuple (l, lb, ub, u, c) such that (l, lb, ub, u) is a time interval and c a constant
of a given range. We may also use the notation c(l,lb,ub,u) to denote (l, lb, ub, u, c). Thus 1.25[0,3[

denotes (>, 0, 3,⊥, 1.25) itself representing the constant time function [0, 3[→ {1.25}. With re-
spect to our last example, the function (v)σ2

would be represented by the list: (1.25[0,3[,1.65[3,3]).

We call negative an interval whose value is ⊥. For a boolean term it denotes a time interval
on which it is false and for a non boolean term an interval on which it has no defined value. In
order to save memory, ARTiMon only stores positive intervals (those whose value is not ⊥) as
negative ones are defined by the complement in the domain. Thus (b)σ2

whose domain is [0, 3]
would be represented by the list (>[2,3[) instead of (⊥[0,2[,>[2,3[,⊥[3,3]).

Notice that defining intervals as tuples is convenient to define some intervals constructions
and notations. We will use pointed notation to denote intervals attributes. For example i.ub de-
notes the upper bound of the time interval i. The opposite of i, noted −i is (i.u,−i.ub,−i.lb, i.l).
Given the time value t and a time interval i, t ⊕ i denotes (i.l, t + i.lb, t + i.ub, i.u) i.e. i with
t as new origin or let us say i shifted of t. This operation extends from scalars to intervals i.e.
k ⊕ i denotes (k.l ∧ i.l, k.lb + i.lb, k.ub + i.ub, k.u ∧ i.u). Notations t 	 i and k 	 i abbreviate
respectively t ⊕ −i and k ⊕ −i. Given two time intervals i and k, we note i # k the set
{t | t ⊕ i ⊂ k}. Notice that i # k is (i.l → k.l, k.lb − i.lb, k.ub − i.ub, i.u → k.u) (where →
stands for the boolean implication, i.e. a→ b states for ¬a ∨ b). We define the partial order ≺
over intervals as follows: i ≺ j iff i ∩ j = ∅ and i.ub ≤ j.lb.

Time functions extend naturally to intervals: if (φ) is a time function and i an interval,
(φ)(i) = {(φ)(t) | t ∈ i}. For example (v)σ2

([1, 3]) = {1.25, 1.65}. Those values can be also
chronologically ordered. Suppose that the restriction of function (φ) to interval i is the con-
catenation of constant functions ci11 , . . . , c

in
n (where il ≺ il+1 for l ∈ [1, n − 1]) then (φ)seq(i)

denotes the sequence (c1, . . . , cn) . Thus (v)seqσ2
([1, 3]) = (1.25, 1.65).

Introduced above with an example, let us formalize the semantics of a given state vari-
able. The idea is the following: any timed state of the trace assigns a value to this state
variable and this assignment remains the same continuously until it is updated by a subsequent
timed state. Formally, given a state variable v and σ a trace of the form ((t0, s0), . . . , (tn, sn)),
|(v)σ| = |σ| = [t0, tn]. For t ∈ |(v)σ|, (v)σ(t) is the value given by the last timed-state occurring
before or at t. Formally, let t ∈ |(v)σ|, if there exists two successive timed states (ti, si) and

110

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

(ti+1, si+1) of σ such that ti ≤ t < ti+1 then we have (v)σ(t) = si(v) either necessarily we have
t = tn and then (v)σ(t) = sn(v).

Though straightforward, we would like to emphasize two properties of this semantic defi-
nition: it is sound and complete. Sound because if one considers a trace extension σ′ of σ it
is clear that the function (v)σ′ restricted to interval |(v)σ| is equal to (v)σ i.e. over |(v)σ| the
semantic function (v)σ′ agrees with (or does not contradict) (v)σ. One could also says that this
definition is such that a trace extension cannot induce a revision of previous values associated to
the state variable and only induces a prolongation of the previous semantic time function. The
definition is complete because its associated domain, being the domain of the trace, is maximal
for soundness. To insist, notice also that if one considers a time t′ /∈ |(v)σ| then assigning a
value for (v)σ(t′) would be the result of an arbitrary choice i.e. this value would not depend on σ.

From a computation point of view soundness and completeness have a nice consequence:
we deduce that (v)σ′ = (v)σ ∪ δ where δ is a time function over |σ′| \ |σ|. In other words, for
computing (v)σ′ we only have to compute δ and to merge this function with (v)σ to obtain
(v)σ′ . δ is rather trivial for a state variable. With notations of Section 2, if sn+1(v) = sn(v)
then δ is]tn, tn+1] → sn(v) else δ is the concatenation of the two constant time functions
]tn, tn+1] → sn(v), [tn+1, tn+1] → sn+1(v). The merging of two time functions like (v)σ and
δ is quite straightforward. For this let us use their representations based on valued intervals
lists. Let use suppose that (v)σ is represented by i0, . . . , iq and δ by j0, . . . , jr. If iq and
j0 are adjacent (iq.ub = j0.lb and iq.u = ¬j0.l) and carry the same values (iq.c = j0.c) then
(v)σ∪δ is represented by i0, . . . , (iq.l, iq.lb, j0.ub, j0.u, i.c) , j1, . . . , jr else by i0, . . . , iq, j0, . . . , jr.

What we just presented for ground terms applies identically to atemporal terms i.e. terms
deriving from the sub-grammar φ ::= c | v | gφ | (φ, . . . , φ). Those terms can be considered as
new state variables formed inside the language.

As it will be explained in Section 4.2, a fundamental aspect of our approach is to preserve
those two properties, soundness and completeness, for the semantic definitions of all terms of
our language in order to achieve semantics computation only over successive domain extensions.
This is what we discuss now.

4.2 Semantics of Temporal Terms

As mentioned above, we conceive the online interpretation of the semantics of terms as the
merging of partial interpretations corresponding to and triggered by all trace extensions result-
ing themselves from the acquisition of new timed states. For this, given a term φ the definitions
of |(φ)σ| (domain of (φ) w.r.t to the trace σ) and of (φ)σ(t) (value of (φ)σ at a given time t
of |(φ)σ|) must be designed such that they can be extended (toward the future) with no con-
tradiction. Formally those definitions must be sound and complete. Soundness means that
for any term φ, considering any pair of traces σ′, σ, where σ′ is an extension of σ, we have
(φ)σ′(t) = (φ)σ(t) for all t ∈ |(φ)σ|. Completeness consists in choosing the maximal domain
(with respect to intervals inclusion) compatible with soundness. Let us discuss this for each
kind of terms.

111

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

4.2.1 Atemporal Combinations of Temporal Terms.

We have |((φ1, . . . , φn))σ| =
⋂
i∈[1,n] |(φi)σ| and |(gφ)σ|= |(φ)σ|. Concerning the value definition

at time t we have: ((φ1, . . . , φn))σ(t) = ((φ1)σ(t), . . . , (φn)σ(t)) and (gφ)σ(t) = g((φ)σ(t)).

4.2.2 Cut and Over Terms.

In the term φ = φ1 Cut φ2 the sub-term term φ1 is assumed to be boolean. The type of such
a term is the type of φ2. It denotes the filtering of φ2 with respect to the validity of φ1. It is
undefined (or false) when φ1 is false else equal to φ2. More formally: (φ)σ(t) is equal to (φ2)σ(t)
if (φ1)σ(t) = > else (φ)σ(t) = ⊥. Concerning its domain: |(φ)σ| = |(φ1)σ| ∩ |(φ2)σ|. This term
is a generalization of the boolean conjunction.

Now let us consider an Over term φ = φ1 O φ2 where φ1 and φ2 are non boolean terms of
the same type. We have |(φ)σ| = |(φ1)σ| ∩ |(φ2)σ| ; (φ)σ(t) is equal to (φ1)σ(t) if (φ1)σ(t) 6= ⊥
else is equal to (φ2)σ(t). This term merges the semantics of φ1 and φ2 with a prevalence of φ1.

Notice that those two operators are indeed instances of the rule gφ. For example the term
φ1 Cut φ2 could be also presented under the form Cut(φ1, φ2). Here they are included explicitly
in the language as they are not standard mathematical functions.

4.2.3 Rising/Falling Edge Terms.

Assuming T = R let us consider the rising edge operator ↑ ψ with ψ boolean. To shorten
notations let k = |(ψ)σ|. Intuitively such a term is true at time t if ψ becomes true at t. From
this intuitive definition one can derive several non equivalent formal semantics. With some of
them the operator ↑ is idempotent i.e. (↑ (↑ ψ))σ = (↑ ψ))σ holds but with others not. For
example this operational semantics is idempotent: for each interval >i of the representation of
(ψ)σ one adds an interval >[i.lb,i.lb] to (↑ ψ)σ. In this case we have |(↑ ψ)σ| = (k.l, k.lb, k.ub,⊥).
The bound k.ub is excluded because the value of (↑ ψ)σ at time k.ub depends of the values of
(ψ)σ after k.ub that are not yet defined with respect to σ. Another semantics, not idempotent,
is the following: (↑ ψ)σ = > if there exists an ε ∈ T, ε > 0, such that (ψ) value is ⊥ on [t− ε, t[
and > on]t, t+ε]. In this case we have |(↑ ψ)σ| = (⊥, k.lb, k.ub,⊥) because if t is the low bound
k.lb then [t − ε, t[is not defined and if is the upper bound k.ub then]t, t + ε] is not defined.
ARTiMon language, which is not really stabilized with regard to this question, will certainly, in
its final version, propose several distinguished versions of this operator with different semantics.

ARTiMon could also propose alternative rising/falling edge operators setting a default ini-
tial value for its sub-term. For example the term ↑⊥ ψ which assumes that ψ is initially false.
This setting may have an impact on the domain. For example, with the second formalization
(non idempotent), we would have |(↑⊥ ψ)σ| = (>, k.lb, k.ub,⊥) since ψ is supposed to be false
on [k.lb− ε, k.lb[.

ARTiMon also supports terms of the form ↑ ψ where ψ is not boolean. In this case, if ψ
changes from value c to c′ at time t then (↑ ψ)(t) = c′ i.e. the list for (↑ ψ) will contain c′[t,t]. So
the operator ↑ could be named the new value operator and it has a defined value only when the
value of its sub-term changes. Notice that at the same time t, the dual falling term ↓ ψ takes
the abandoned value: (↓ ψ)(t) = c. Elsewhere (i.e. at any time where the sub-term remains
constant) the value of such terms is ⊥ (which stands for the undefined value). The alternative

112

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

operator noted ↑c ψ specifies a default initial value for ψ and thus enables to have a rising edge
occurrence at the low bound of |(ψ)σ|. We don’t give some more details for the falling edge
term ↓ ψ which is dual (it is true when ψ falls from true to false value).

Now let us consider briefly the case T = Z. For this case the semantics definition we propose
is the following: (↑ ψ) is true at t ∈ T if ψ is false at t− 1 and true at t. In this case we have
|(φ)σ| = (k.l, k.lb+1, k.ub, k.u). The alternative operator ↑⊥ satisfies: (↑⊥ ψ) is true at |(ψ)σ|.lb
if (ψ)σ is also true at this time, and (↑⊥ ψ) is true at another time t if (φ)σ is false at t− 1 and
true at t. Thus we have |(↑⊥ ψ)σ| = |(ψ)σ|.

4.2.4 Aggregation with a Bounded Scope.

This term has been studied in [9]. The term φ we consider here is of the form Ai{f}ψ. Intu-
itively at time t the value of the term φ = Ai{f}ψ is the aggregation w.r.t to the aggregation
function f of the chronological sequence of values taken by ψ over t ⊕ i. This latter sequence
is formalized by (ψ)seq(t ⊕ i). Considering f the extension of f to a sequence of values as
introduced in [9] we have: (A{f}i ψ)σ(t) = f((ψ)seqσ (t ⊕ i)). Concerning |(φ)σ|, soundness
imposes that t ⊕ i does not exceed (neither in the past or in the future) |(ψ)σ|. Otherwise
it would be like an attempt to aggregate undefined values. From completeness principle we
deduce that any time t being such that (t⊕ i) ⊆ |(ψ)σ| should belong to |(φ)σ|. It results that
|(φ)σ| = {t ∈ T | (t ⊕ i) ⊆ |(ψ)σ|}. With our notations this interval is exactly denoted by
i # |(ψ)σ|. As shown in [9] in order to compute (Ai{f}ψ)σ from (ψ)σ we iterate chronologi-
cally on intervals of (ψ)σ and for each we perform an operation called its backward propagation.
More precisely if ck is a valued interval belonging to the representation of (ψ)σ we aggregate
(k 	 i) ∩ |(φ)σ| with the value c into the list representing (φ)σ. With respect to our running
example, considering the term 3]0,1]b (which stands for A{disj}]0,1]b), we have |(3]0,1]b)σ2

| =

]0, 1] # [0, 3] = [0, 2]. Since function (b)σ2 is represented by (>[2,3[) we only aggregate, using
the aggregation function disj, the interval (>[2,3[]0, 1]) ∩ |(3]0,1]b)σ2 | = >[1,3[∩ [0, 2] = >[1,2]

to the (empty) list representing (3]0,1]b)σ2
. It results that (3]0,1]b)σ2

is represented by the list

containing only one interval (>[1,2]) with domain [0, 2].

Notice that time shifting can be emulated using aggregation. This can be done with a term
φ of the form A[ub,ub]{:=} ψ, where := stands for the overwrite aggregation (:= (e, a) returns e
whatever is the aggregate a). This shifts (ψ) of −ub in time since (φ)(t) = :=((ψ)seq(t⊕[ub, ub]))
= := ((ψ)(t + ub)) = (ψ)(t + ub). Typically it can be used to compare a term with its own
value considered with a constant shift in time.

4.2.5 Aggregation with an Unbounded Scope.

Here we deal with a term φ of the form A(⊥,−∞,ub,u){f} ψ. As being not yet published let
us introduce the intuitive semantics of this operator. Leaving aside the contribution of the
parameter u, at time t the value of the term φ = A(⊥,−∞,ub,u){f} ψ is the aggregation w.r.t
to f of the chronological sequence of values taken by (ψ)σ before t + ub (on its own domain).
The parameter u specifies if the value of (ψ)σ at time t+ ub is considered or not for the aggre-
gation. More formally it is the aggregation w.r.t to f of the chronological sequence of values
taken by (ψ)σ over (t⊕ (⊥,−∞, ub, u)) ∩ |(ψ)σ|. So (φ)σ, regarding our soundness constraint,
is defined at time t if we have (t⊕ (⊥,−∞, ub, u)) ∩ |(ψ)σ| 6= ∅ and if(t⊕ (⊥,−∞, ub, u)) does
not exceed |(ψ)σ| in the future i.e. (t⊕ (⊥,−∞, ub, u)) ⊂ (⊥,−∞, |(ψ)σ|.ub, |(ψ)σ|.u). Thus we

113

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

have |(φ)σ| = (|(ψ)σ|.l ∧ u, |(ψ)σ|.lb− ub, |(ψ)σ|.ub− ub, u→ |(ψ)σ|.u).

The term A(⊥,−∞,ub,u){disj} ψ, with ψ boolean, which could be also noted 3(⊥,−∞,ub,u)φ
emulates a before term. It holds at a time t if ψ holds somewhere before t+ ub (or at t+ ub if
u is >).

4.2.6 Cumulative and Incremental Length Terms.

Due to our soundness principle, our approach is not compatible with unbounded future op-
erators. Accepting them would lead us to speculate on undefined future values and this is
not sound. Imagine a term of the form φ = A{f}(i.l,i.lb,+∞,⊥)ψ. Its value at time t would
depend on values of ψ over t ⊕ (i.l, i.lb,+∞,⊥) which necessarily exceeds |(ψ)|, this latter
being bounded. Another way to highlight this impossibility is to compute the domain respect-
ing soundness. Since by induction |(ψ)| is bounded (or ∅) then |(φ)| would remain ∅ since
(i.l, i.lb,+∞,⊥) # |(ψ)| = ∅. For a similar reason we cannot have an operator which would
denote how long its sub-term will remain constant (or true) because implicitly such an operator
would be an unbounded future operator. Instead we propose two alternative operators, the
cumulative length and the incremental length. The intuitive idea of the cumulative length,
whose associated term is of the form cL ψ is to provide, when (ψ) remains constant with value
c, the pair (c, l) where l is the delay elapsed from the time when (ψ) started to have value
c. Notice we have |(cL ψ)| = (|(ψ)|.l, |(ψ)|.lb, |(ψ)|.ub,>) because the length of an interval is
defined whatever its upper bound is included or not. More technically the pair (c, l) is defined
each time a constant function composing (ψ) is extended. More formally considering (ψ)σ and
(ψ)σ′ where σ′ is a trace extension of σ, if there exists ci in the representation of (ψ)σ and ci

′

in the representation of (ψ)σ′ such that i ⊂ i′ then we have (cL ψ)(i′.ub) = (c, i′.ub− i.lb). At
any other time of t ∈ |(cL ψ)| the function has no defined value i.e. we have (cL ψ)(t) = ⊥. In
the same context the term (iL ψ)(i′.ub) gives the size of the interval extension, hence we would
have (iL ψ)(i′.ub) = (c, i′.ub− i.ub).

Let us illustrate with our running example. First let us investigate how the function (v)
evolves as and when timed states become available for the monitor. This amounts to study
(v)σ0

, (v)σ1
, (v)σ2

. We have (v)σ0
= (1.25[0,0]), (v)σ1

= (1.25[0,2]) and (v)σ2
= (1.25[0,3[,

1.65[3,3]). One can see that the domain of the constant function 1.25 as been extended two
times, from [0, 0] to [0, 2] and from [0, 2] to [0, 3[. (cL v) value is ⊥ over [0, 3] except at times 2
and 3 which are the upper bounds of the two extensions and we have: (cL v)σ2

(2) = (1.25, 2),
(cL v)σ2

(3) = (1.25, 3). Similarly (iL v)σ2
value is ⊥ over [0, 3] except at times 2 and 3 and we

have: (iL v)σ2
(2) = (1.25, 2), (iL v)σ2

(3) = (1.25, 1).

Notice that (iL ψ) is a pair. One can apply the multiplication forming the term ∗(iL ψ).
This term has the dimension of an integral (time ∗ value). Applied to our running example we
obtain ∗(iL v)σ2

(2) = ∗(1.25, 2) = 2.5 and ∗(iL v)σ2
(3) = ∗(1.25, 1) = 1.25. Now we can sum

the past values of this term forming the term: A{sum}]−∞,0](∗(iL v)). For example at time
3 we have (A{sum}]−∞,0](∗(iL v)))σ2

(3) = 2.5 + 1.25 = 3.75 which the integral of the ground
term v over [0, 3] with respect to σ2.

4.2.7 Duration At Term.

Here we consider a term φ = φ1 D@ φ2 where φ2 is assumed to be a boolean event. This latter
assumption means that (φ2)σ has the form of a Dirac function: it is false everywhere except at

114

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

some punctual times. In other words any positive interval of its interval representation is of the
form [t, t]. For example φ2 can be a rising edge term. We have |(φ)σ| = |(φ1)σ| ∩ |(φ2)σ|. This
term returns an amount of elapsed time. This amount is only defined when the event φ2 occurs
and if φ1 is true or has a defined value. Then suppose φ2 occurs at time t i.e. (φ2)σ(t) = > and
suppose that (φ1)σ(t) = c where c is not ⊥. It follows that {t′ ∈ T | t′ ≤ t and (φ1)σ(t) = c} is
a non-empty interval of the form (−, tmin, t,>). Then (φ)σ(t) = t − tmin. Intuitively it is the
amount of time for which φ1 has remained constant (or true) before φ2 occurs. That’s why this
term should be understood as the duration of steadiness of φ1 when event φ2 rises.

4.2.8 Until Term.

Here we consider a term φ = φ1 Ui φ2 such that i.lb and i.ub are in R+ and 0 /∈ i. Classically, the
definition of (φ)σ(t) is the following: (φ1 Ui φ2)σ(t) = > iff there exists t′ ∈ (t⊕i) being such that
(φ2)σ(t′) = > and (φ1)σ(t′′) = > for any t′′ ∈ [t, t′[. A weak variant, not discussed here, could
only require that t′′ ∈]t, t′[. For the domain definition one can be inspired by the argumentation
developed for aggregation: for (φ)σ being sound at t first we must have (t⊕i) ⊂ |(φ2)σ| ; secondly
from requirement (φ1)σ(t′′) = > for any t′′ ∈ [t, t′[we deduce that (t⊕ (>, 0, i.ub,⊥)) ⊂ |(φ1)σ|
must hold. It results that |(φ)σ| = (i# |(φ2)σ|) ∩ ((>, 0, i.ub,⊥)# |(φ1)σ|).

Let us study the computation of this term. For this let us suppose that (φ1 Ui φ2)σ(t) = >
for a given time t. This means there exists a time t′ ∈ t⊕ i and u1 a positive interval of (φ1)σ
such that [t, t′[⊂ u1 and also a positive interval u2 of (φ2)σ such that t′ ∈ u2. Introducing
u′1 = u1 ∪ {u1.ub} = (u1.l, u1.lb, u1.ub,>), the condition [t, t′[⊂ u1 is equivalent to [t, t′] ⊂ u′1.
So t′ ∈ u′1 ∩ u2. Thus u′1 ∩ u2 is not empty. We can conclude that u1 of (φ1)σ and u2 of (φ2)σ
can contribute to a positive interval of (φ1 Ui φ2)σ only if (u1 ∪ {u1.ub}) ∩ u2 6= ∅. Suppose
this is the case, let us call K this intersection. Then (φ1 Ui φ2)σ has a truth value at time t
due to u1 and u2 if t ∈ u1 and (t⊕ i)∩K 6= ∅. That is to say t ∈ u1 ∩ (K 	 i). So u1 ∩ (K 	 i)
is the contribution for (φ1 Ui φ2)σ due to u1 and u2 if K = u′1 ∩ u2 is not empty.

4.2.9 Since Term.

The scope of a Since term can be bounded or not. A bounded Since term is any term φ of the
form φ1 Si φ2 where the scope i is such that i.lb and i.ub are in R+ and 0 /∈ i. Such terms are the
past symmetrical of Until terms: (φ1 Si φ2)σ(t) = > iff there exists t′ ∈ (t	 i) being such that
(φ2)σ(t′) = > and (φ1)σ(t′′) = > for any t′′ ∈]′t, t]. Notice that ARTiMon also proposes a weak
variant WSi requiring only t′′ ∈]′t, t[which is convenient to express consistent properties that
would turn to antilogies if expressed with the Si operator. Typically the expression granted →
(¬ granted WSi valid ident), specifying that an access is granted (assumed to be an event, for
example ↑ access) at most once for a valid identification occurring within −i before, would be
an antilogy using the Si operator. The domain for Si is derived as for the Until operator. An
unbounded Since is a term φ = φ1 S(l,lb,∞,⊥) φ2 where i.lb ∈ R+ and such that 0 /∈ (l, lb,∞,⊥).
Intuitively this term is true at time t if there exists a time t′ before t− lb where φ2 is true and
if φ1 has remained true since t′. Formally we have: (φ1 S(l,lb,∞,⊥) φ2)σ(t) = > iff there exists
t′ ∈ (t 	 (l, lb,∞,⊥)) such that (φ2)σ(t′) = > and (φ1)σ(t′′) = > for any t′′ ∈]t′, t]. Again the
weak version requires only t′′ ∈]t′, t[. Now let us determine the domain. Soundness at time
t requires soundness of t′. With regard to the definition we must have t′ ∈ |(φ2)σ| and also
]t′, t] ⊆ |(φ1)σ|. This latter constraint is equivalent to [t′, t] ∈ (>, |(φ1)σ|.lb, |(φ1)σ|.ub, |(φ1)σ|.u).
We deduce that we must have t′ ∈ |(φ2)σ| ∩ (>, |(φ1)σ|.lb, |(φ1)σ|.ub, |(φ1)σ|.u). To shorten
notations let us call K this latter intersection which represents the sound interval for t′. Now

115

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

our term is sound at time t if obviously t ∈ |(φ1)σ| and if t	(l, lb,∞,⊥) is sound with regards to
t′ soundness. This amounts to have those two conditions satisfied: (1) (t	(l, lb,∞,⊥))∩K 6= ∅
(one walking backward from t can reach at least one sound time t′ in the scope) and (2)
(t	 (l, lb,∞,⊥)) does not exceed K in the future (one walking backward from t can reach only
sound times t′ in the scope). Hence |(φ)| = (K.l ∧ l,K.lb+ lb,K.ub+ lb, l→ K.u) ∩ |(φ1)σ|.

4.2.10 Last Value Term.

A last value φ term is of the form L ψ where ψ is not boolean. Intuitively (φ)σ(t) is the last
defined value of (ψ)σ i.e. (φ)σ(t) = c if there exists t′ ≤ t such that (ψ)σ(t′) = c and for
all t′′ ∈]t′, t] we have (ψ)σ(t′′) ∈ {c,⊥}. Concerning its domain we have |(φ)σ| = |(ψ)σ|. To
compute (φ)σ is suffices to copy (ψ)σ, to restore negative intervals by complementation, and
finally to replace any pair of adjacent valued intervals of the form ci,⊥ik+1 by the single interval
ci∪ik+1 .

4.2.11 Previous Value Term.

Despite it may appear counter-intuitive and less natural than in discrete time, we propose a
previous value term which is also defined for the continuous semantics even with variable step
traces. This term is of the form φ = Pψ. Its semantics is more easy to describe using inter-
val based representations. It consists simply in shifting the constant values in the list and to
remove the first interval. Thus if (ψ)σ = (ci00 , . . . , c

in
n) then (Pψ)σ = (ci10 , . . . , c

in
n−1). Suppose

for example that t ∈ i1 then (Pψ)σ(t) = c0 while at the same time (ψ)σ(t) = c1. So (Pψ)σ(t)
refers to the previous value of ψ since, at time t, c0 is indeed the previous value taken by ψ
relatively to its actual value c1. Domain is preserved: |(φ)σ| = |(ψ)σ|.

Such term is convenient to compare the value of a term with its own previous value. For
example < (Pψ,ψ) is true if ψ is increasing.

5 Online Notification

Each time the trace is extended, ARTiMon propagates this extension to the semantic functions
of all terms which are computed over their own domain extension. In particular this is done for
hazards (set of terms that should remain false). If an hazard term becomes true on its domain
extension, ARTiMon rises a notification for this fact immediately.

6 Specification Examples

Notice that in examples given below, contrarily to the convention adopted in [9] we use the
symbol ⊥ instead of ∅ in the definitions of the aggregation functions. Though we should
use prenex notations to be strictly compliant with our BNF grammar of Section 3, for read-
ability we may use (and even mix both) standard and prenex notations. For example the
product of a and b may be noted a ∗ b or in its equivalent prenex from ∗(a, b). Notice that
a term of the form ÷(A[−60,0]{min max} freq) is well formed because the aggregation func-
tion min max aggregates a value x into a pair (m,M) as follows: min max(x,⊥) = (x, x),
min max(x, (m,M)) = (min(x,m),max(x,M))). So at a time t the aggregation term
A[−60,0]{min max} freq is either undefined (equal to ⊥) or a pair (m,M) where m (resp. M)
is the min (resp. max) value of the frequency state variable freq over the interval t⊕ [−60, 0].

116

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

Hence the value of our term at t is either undefined (assuming ÷(⊥) = ⊥) or ÷(m,M) which
is simply, using standard notations, the ratio m÷M . In the examples below final requirement
may be decomposed using intermediate named terms.

Jogger Heart Frequency. The heart frequency freq should be under 55 bpm if the jogger
has not made any effort (pedometer pedo remains false for the last 300 time units). After a rest
of 60 time units the heart frequency should have decrease of 30%.

req1 = (�[−300,0](¬ pedo))→ (freq ≤ 55).

req2 = (↑ (�[−60,0](¬ pedo)))→ ((÷(A[−60,0]{min max} freq)) < 0.7)

Mold Temperature (Inspired from BEinCPPS European Project in collaboration with
Pernoud S.A.) The temperature temp of the mold should not exceed more than 5% of its
average value considered over the last 10 time units.

area = A[−10,0]{sum}(∗ iL(temp))

average = area÷ 10

requirement = temp ≤ (1.05 ∗ average)

PID Controller Performance. When the instruction r is steady (variation lower then
%1) for 40 time units the gap between the measure y and r must be lower than 0.05.

r steady = (÷(A[−40,0]{max min} r)) < 1.01

requirement = r steady → (abs(r − y) < 0.05)

Consumption per Cycle (Inspired from a collaboration with Sherpa Eng.) The integral
of the consumption cons (float) per cycle (identifier being an integer) should remain under 10.
In this example we use the aggregation function sum reset satisfying: sum reset(a,⊥) = a,
sum reset(a, b) = a + b if a 6= MAX FLOAT , sum reset(MAX FLOAT, b) = 0. With this
function, aggregating the maximum float value to a sum reset it to zero. With this trick we
can reset the computed integral each time a cycle ends (and a new one starts). The atemporal
function max float conv used converts a boolean signal to a sum reset signal. It satisfies:
max float conv(>) = MAX FLOAT , max float conv(⊥) = ⊥.

cycle ends = ↑ cycle

reseter = max float conv(cycle ends)

cons within cycle = (¬ cycle ends) Cut cons

reseter over elemtary surface = reseter O (∗(LI cons within cycle))

integral per cycle = A{sum reset}]−∞,0[reseter over elemtary surface

requirement = integral per cycle ≤ 10

Online Adder 1. Its boolean output adding shall be true if and only if its inputs values
x1 and x2 are constant for at least 3 time units. If adding holds then its output val shall be
equal to x1 + x2. For the steadiness of inputs we use the cumulative length operator.

117

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

x1 constant = (cL x1) ≥ 3

x2 constant = (cL x2) ≥ 3

add req = (x1 constant ∧ x2 constant)↔ adding

sum req = adding → ((x1 + x2) == val)

requirement = add req ∧ sum req

Notice that since functions are represented by lists of positive intervals, one can overload the
application of some boolean operators to non boolean terms. The value of a positive interval is
then considered as an interval carrying the value >. For example, an (almost) equivalent term
for (cL x) ≥ 3 is �[−3,0]x. Indeed those two terms are not strictly equivalent since cL is not
affected by bounds closure contrarily to �i (for example, for a given time t, the interval [t−3, t[
of (x) induces the validity of (cL x) ≥ 3 at t while �[−3,0]x is not valid at t).

Here is an equivalent variant of the Adder specification, with less terms, hence more efficient
to compute, based on the reuse of the pair (x1, x2):

x1 x2 vec = (x1, x2)

add req = ((cL x1 x2 vec) ≥ 3)↔ adding

sum req = adding → (+ x1 x2 vec == val)

requirement = add req ∧ sum req

Online Adder 2. On event request (coming from a client) if at this moment its input
values x1 and x2 are constant for at least 3 time units, its output value val should be equal to
x1 + x2.

requirement = (((x1, x2) D@ request) ≥ 3) → (val == +(x1, x2))

With respect to all those examples, obtaining an hazard to monitor with ARTiMon consists
basically in adding the negation to the expression called requirement which is, for each example,
an invariant i.e. an expression that should remains constantly true if the SUM executes correctly.

7 Implementation, Usage, Contributions in Industrial
Projects, Distribution

ARTiMon (acronym for Accurate Real Time Monitor) is implemented in C language and con-
sists in three libraries. The first is dedicated to the handling of time and ensures that all
arithmetic operations achieved on time values are correct. This justifies the A for Accurate,
starting the name ARTiMon. Notice that such a library is necessary to ensure the conformity
of the implementation of ARTiMon to its theoretical foundations partially presented here. For
example we could not have use the double type of the standard C language as the operation
+, necessary for example to compute t ⊕ i, applied on doubles, is not commutative neither
associative and even more is absorbing when one operand is drastically smaller compared to
the other. A second library is used to handle and extend the user part of the language which
consists in the set of atemporal functions (like g in the BNF rule g φ) and aggregation functions

118

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

(like f in the rule A{f}iφ). The third and core library is in charge of computing online the
semantics of terms and of notifying the satisfaction of terms representing hazards.

An input specification file for ARTiMon is simply a text file respecting a syntax. The Figure
1 below is a screeshot of such an input file (using the overload of globally instead of the cL
operator). It corresponds to the Adder example given above. It is divided in four sections,
separated by the symbol ∗. In the first one, one declares the boolean states variables (one per
line) and in the second the non boolean state variables (one per line). In the third section
one declares intermediate expressions with an alias. This alias is used as a reference to the ex-
pression in further declarations. The last and fourth section is dedicated to hazards which are
terms that should remain false. ARTiMon provides a simple API to initialize some parameters
and to charge the specification file, to refresh the state variables values and the current time.
The state variables values are stored in an array (called state variable array in the remainder)
handled in memory by ARTiMon. Refreshing a state variable just overwrites its value in this
state variable array at an index associated to this variable. Only a call to the time refresh
function is interpreted by ARTiMon as the availability of a new timed state. The value of
its time-stamp is the value passed to this refresh time function. The associated system state
is given by the current values stored in the state variable array. Thus, if a state variable is
updated several times before the current time is updated, only the last update of this variable
is taken into account (others are considered as non relevant). This new timed state extend the
trace and then, as explained in previous sections, one can extends the semantic time functions
associated to all terms. That’s why a call to the refresh time function triggers the computation
of the extensions of the semantic time functions of all terms. If an hazard expression becomes
true on its own extension ARTiMon notifies this fact (by switching a flag, by dumping intervals
in a report file, etc). Subsequently this also triggers the garbage collection mechanism, not
discussed here, which ensures that the memory of ARTiMon remains bounded. The idea is to
remove (or more exactly to recycle in order to avoid re-allocation) inductively, starting from
hazard expressions, the intervals allocated for sub-terms that cannot contribute any more to
validate any hazard over any of its extensions. The whole ARTiMon monitoring process we
just described is formalized in pseudo-code by the Algorithm 1 below. The file artimon.conf
which is read first, contains some parameters like the start time (time-stamps are considered
only if are greater than this start time), the path of the property file, the garbage collection
activation option, the name of the report file (if used), the verbosity level for the verdict file.
Notice that ARTiMon is passive. One has to to call the API to refresh state variables and
current time when it is relevant. For example, when ARTiMon is embedded as an S-function
in a Simulink model, the wrapper calls those update functions only when a so-called main step
(cf Simulink Terminology) occurs. In other applications ARTiMon refresh functions are called
regularly using a timer of the processor. As an FMU component they are called when the
orchestrator passes the control to this component.

An Xtext/Eclipse based editor is currently under development to enable user friendly ex-
pressions like proposed by the STIMULUS tool of ARGOSIM [10]. The idea here is to provide
one or more expansions for the syntax of each operator in such a way that expressions look
like natural language expressions. For example an expansion for φ → ψ could be if φ then
ψ. Predicate > would be expanded into exceeds. The term �i φ would be expanded into
φ remains true over i. Combining all those expansions one could form an expression like: if
(temperature exceeds threshold) remains true over [−3, 0] then alarm. An integration of
the ARTiMon approach to the UML/SysML Papyrus Modeling Tool [6] is also under devel-

119

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

Figure 1: The Adder property monitoring file: Adder.prop.

opment. Some wrappers have been developed in order to adapt ARTiMon to many contexts.
We developed a wrapper to embed ARTiMon in Simulink models as S-Function blocks in or-
der to couple the monitoring of properties with the simulation process. ARTiMon computes
the semantics prolongation only when a main step occurs (cf Simulink terminology). Thus we
avoid the problem of handling rollbacks. The development of this tool has been started for the
SYSPEO project [11] and has been continued through collaborations with Sherpa Engineering
which is a massive user of the MATLAB/Simulink environment for its business. An ARTiMon
wrapper for the FMU standard as also been developed and used to analyze simulations of nu-
clear plant components in interaction with the ALICE simulator from CORYS and with some
FMU exports stemming from the Scade tool from Esterel Technologies. This latter work has
been supported by the French BGLE project called CONNEXION [3]. For the case study with
Pernoud S.A. mentioned in Section 6 ARTiMon is running on a Beable Bone Black on which a
temperature captor is plugged in order to measure the mold temperature.

The licensing for the ARTiMon tool is not yet precisely defined. Until now it has been
mostly used in the context of R&D collaborative projects. The author can transmit any license
request to the CEA LIST institute which is has the ability to deliver licenses.

8 Similar Tools

To our knowledge most of property monitoring tools handle either a discrete or a continuous
semantics but not both. Among continuous ones the most close tool to ARTiMon is certainly
AMT [8] which is also based on the interval based representation of continuous functions having
a bounded variability. In contrast with ARTiMon, AMT handles their computation offline. For
discrete systems the tool LOLA [4] is able to monitor systems online with respect to a language
enabling the expression of temporal logic properties and interesting statistical measures. The
tool Temporal Rover [5] proposes a language combining linear temporal logic and real time
temporal logic for the online monitoring of discrete systems. Let us also mention the recent
commercial tool STIMULUS of ARGOSIM [10] which is able to compile some temporal assertion

120

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

Algorithm 1 ARTiMon Monitoring Process/Thread

1: Parsing of the artimon.conf file
2: Parsing of the properties file // we call H be the set of hazards declared
3: while (true) do
4: while No New Time Stamp do
5: State Variables Updates
6: end while
7: Computation of the Prolongation of the Semantic Time Functions of All Terms
8: for φ ∈ H do
9: if φ is true on its Prolongation then

10: Notification of φ Surgery (socket message, flag positioning, file generation, . . .)
11: end if
12: end for
13: Garbage Collector
14: end while

into C observers and proposes a user friendly interface to express property based specifications.
The tool LARVA [2] is suited for the monitoring of JAVA code execution.

9 Conclusion

In this tool paper we presented the current input language of ARTiMon and its semantics.
This language aims the specification of rich and complex properties about traces of real-time
running systems. We focused on the fact that fundamentally the semantics of any term is a
time function. Aiming an online computation of this semantics we attached us to determine
the domain of such a time function under the online perspective. This perspective consists in
considering that a system under monitoring is not supposed to stop, and as a consequence that
any finite trace of such a system is intended to be extended. From this idea we deduced that the
interpretation of a term with respect to a given trace, defined as a time function, is also a partial
function intended to be extended regarding its domain, as and when the trace is itself extended.
In this paper we presented how this perspective induces a sound and complete bounded domain
for the interpretation of each kind of terms. Details on the operational computation have not
been presented exhaustively, especially for operators having an unbounded scope. Some variants
for some operators have been discussed or just evoked, showing that ARTiMon language could
evolve in the future. Especially some variants about until and since operators could be more
developed. All those details of computation, variants of some operators, and complexity in time
and space, should be delivered in further publications. We also left aside a detailed presentation
of the garbage collection mechanism used by ARTiMon to ensure that the memory of a monitor
remains bounded in time. This question, addressed in [9] for the aggregation term should be
also developed in forthcoming publications for the whole terms.

References

[1] Michel Batteux, Philippe Dague, Nicolas Rapin, and Philippe Fiani. Diagnosability study of
technological systems. In Kishan Mehrotra, Chilukuri Mohan, Jae Oh, Pramod Varshney, and
Moonis Ali, editors, Modern Approaches in Applied Intelligence, volume 6703 of Lecture Notes in

121

ARTiMon Monitoring Tool | The Time Domains. Nicolas RAPIN

Computer Science, pages 186–198. Springer Berlin / Heidelberg, 2011. 10.1007/978-3-642-21822-
4 20.

[2] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Larva — safer monitoring of real-time
java programs (tool paper). In Proceedings of the 2009 Seventh IEEE International Conference on
Software Engineering and Formal Methods, SEFM ’09, pages 33–37, Washington, DC, USA, 2009.
IEEE Computer Society.

[3] French BGLE Project CONNEXION. https://www.cluster-connexion.fr/.

[4] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner,
Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. Lola: Runtime monitoring of synchronous
systems. In 12th International Symposium on Temporal Representation and Reasoning (TIME’05),
pages 166–174. IEEE Computer Society Press, June 2005.

[5] Doron Drusinsky. The temporal rover and the atg rover. In Klaus Havelund, John Penix,
and Willem Visser, editors, SPIN Model Checking and Software Verification: 7th International
SPIN Workshop, Stanford, CA, USA, August 30 - September 1, 2000. Proceedings, pages 323–330.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[6] PAPYRUS UML/SysML Modeler. https://eclipse.org/papyrus.

[7] Dejan Nickovic. Checking Timed and Hybrid Properties: Theory and Applications. PhD thesis,
University Joseph Fourier, 2008.

[8] Dejan Nickovic and Oded Maler. Amt: A property-based monitoring tool for analog systems.
In Jean-François Raskin and P. S. Thiagarajan, editors, Formal Modeling and Analysis of Timed
Systems: 5th International Conference, FORMATS 2007, Salzburg, Austria, October 3-5, 2007.
Proceedings, pages 304–319. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[9] Nicolas Rapin. Reactive property monitoring of hybrid systems with aggregation. In Yliès Fal-
cone and César Sánchez, editors, Runtime Verification: 16th International Conference, RV 2016,
Madrid, Spain, September 23–30, 2016, Proceedings, pages 447–453. Springer International Pub-
lishing, Cham, 2016.

[10] STIMULUS. http://argosim.com/product-overview.

[11] European Eureka Project SYSPEO. http://www.eurekanetwork.org/project/id/3796.

122

	Introduction
	System Under Monitoring, Traces
	Specification Language
	Semantics
	Semantics of Ground and Atemporal Terms
	Semantics of Temporal Terms
	Atemporal Combinations of Temporal Terms.
	Cut and Over Terms.
	Rising/Falling Edge Terms.
	Aggregation with a Bounded Scope.
	Aggregation with an Unbounded Scope.
	Cumulative and Incremental Length Terms.
	Duration At Term.
	Until Term.
	Since Term.
	Last Value Term.
	Previous Value Term.

	Online Notification
	Specification Examples
	Implementation, Usage, Contributions in Industrial Projects, Distribution
	Similar Tools
	Conclusion

