
Separated Feature Learning for Music 

Composition Using Memory-Based Neural 

Networks 

Imad Rahal, Ryan Strelow, Jeremy Iverson, and Katherine Mendel 
College of Saint Benedict | Saint John's University, St. Joseph, MN, USA 

irahal@csbsju.edu 

Abstract 

Using algorithms to compose creative and pleasing music has been an ambitious 

research goal since the 1950s. This trend continues to this day with the help of widely 

accessible, highly sophisticated music research tools created by big companies, such as 

Google’s Magenta. Due to the sequential nature of musical pieces, Recurrent Neural 

Networks (RNNs), as well as advanced variants such as Long-Short Term Memory 

networks (LSTMs), have been successfully employed for this purpose. Music scores 

data is made up of features like duration, pitch, rhythm, chords, etc. As more music 

features are integrated into the composition process, the space of encodings required to 

represent possible feature combinations grows significantly, making the process 

computationally infeasible. This consideration becomes of huge significance in 

situations with polyphonic pieces, where additional features such as harmonies and 

multiple voices are present. With an emphasis on efficiency without sacrificing quality, 

this research aims to further demonstrate the effectiveness of LSTMs for automated 

music generation by learning from existing music scores data. More specifically, we 

show that training separated  models to learn individual music features and combining 

results to generate new music is, overall, superior to the common practice of learning 

resource-intensive complex models that simultaneously incorporate multiple desired 

features. 

1 Introduction 

Automated music creation attempts have long failed to stimulate emotions in large part due to lack 

of creativity and, in many cases, lack of even basic meaningful musical constructs, such as phrasing 

and motifs. To capture these constructs and contextualize their sequential nature and time-sensitive 

interdependencies, this research employs specialized artificial neural networks–namely, LSTMs [5], 

an advanced form of RNNs. 
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**kern symbolic music format has thousands of musical pieces meticulously encoded to represent 

music scores textually. This format is capable of representing nearly every nuance found within a 

music score, down to the direction the stem of a note is facing on a music sheet. A rich software 

toolkit called Humdrum allows us to extract musical features from **kern data. This, in turn, allows 

us to study the impact on training efficiency and quality of the music pieces generated by combining 

output from multiple simple models, each focused on a specific music feature, as opposed to 

employing a single complex model trained over multiple features simultaneously.  

1.1 Music Background  

The fundamental unit of music is the note, with it being composed of pitch and duration 

components. Pitch represents the frequency of the sound. Western music theory uses the chromatic 

scale made up of the following twelve pitch values (also known as semitones or half-steps): C# (or D

♭), D, D# (or E♭), E, F, F# (or G♭), G, G# (or A♭), A, A# (or B♭), and B. A sharp ( # ) of a pitch 

raises it by half a step while a flat (♭) lowers it by half. A note can also have no sound at all–often 

called a rest. The C major scale is one of the most commonly used concert scales. It contains no 

sharps or flats making it very convenient to use in music research. 

A note duration represents the time value a note is played for. The longest duration is a whole, 

with the remaining duration types commonly being even divisions, like a quarter or an eighth. A 

duration may be increased through the inclusion of dots, such as 50% for a single dot and 75% for a 

double dot. 

The sequential structure of music is key to its appeal. Just as in written language, well thought out 

order and structure are needed for meaning to be derived. A word on its own is solitary and lacks 

context; grouping of words follows grammatical rules to produce meaningful phrases and sentences. 

A sentence is then combined with others to convey a complete thought.  

Music is no different in being subjected to necessary structure to form cohesive quality pieces. 

Structures like motifs are found throughout a given composition and can be thought of as a short 

sequence of notes repeated throughout the piece. Similarly, phrases are comprised of multiple motifs. 

Sequences of interwoven motifs and phrases that comprise a melody are musically satisfying making 

them the core structure that defines a musical piece for many listeners.  

Music theory helps promote these structures, and research suggests humans expect the formation 

of these musical structures in order to engage in a given composition [1][6]. Consequently, the 

presence of these repeated structures, or lack thereof, carries high importance when attempting to 

elicit emotions. In order to complete a melody, the beginning of the sequence is usually held in mind 

while the rest is played–a task carried out by short-term memory; simultaneously, long-term memory 

maintains the global coherence of the music piece. The existence of both short- and long-term 

memory is vital for generating melodic and coherent music sequences, thus, motivating the use of 

LSTMs in this study. 

1.2 Related Works 

 Automated music composition using statistical, data science, or AI techniques is not new, with too 

many to include in this paper. [4] provides a comprehensive study of techniques employed for this 

purpose which, among others, include Markov models, rule/constraint/grammar-based approaches, 

reinforcement learning, and evolutionary algorithms [10]. 

 The sequential structure of music requires the utilization of algorithms capable of detecting spatio-

temporal patterns in music pieces in order to learn to compose new ones. Not surprisingly, RNNs 

have been successfully employed for modeling similar dependencies and structures in a number of 

applications ranging from  text generation and question-answering to building chat bots and sentiment 

analysis [6]. Furthermore, the use of RNNs, as well as advanced variants like LSTMs, for music 
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generation has shown great promise [3][7][9]. However, we are not aware of any significant attempts 

to explore how various ways of incorporating music features into the learning process may impact 

performance as well as quality, which is the focus of this study. 

Moreover, much of the existing work in music composition makes use of MIDI (Musical 

Instrument Digital Interface) or even raw audio data. MIDI is neither a traditional audio format, nor 

does it represent actual music scores; instead, it describes how notes should be interpreted by a MIDI 

player. Because of this inherent limitation, many toolkits have been developed to extract music score 

data from MIDI files, allowing its use in scholarly research; however, such tools tend to be heuristic 

in nature and, thus, not always accurate [11]. Regardless, as presented in [2], we argue that music 

composition is about creating music not sound waves. Since musicians typically represent their music 

symbolically using music scores sheets, we strongly argue that formats like **kern are much better 

suited for this kind of research. **kern is text-based and very intuitive to read and edit. Furthermore, 

the textual nature of **kern coupled with the sequential structure of music helps us transform the task 

of music composition into a sequence manipulation problem. 

2  Proposed Approach 

Our proposed music generation process is made up of steps, starting with separating and 

preprocessing of music features of interest from **kern data. A number of models are then designed 

and trained to learn from the extracted feature data. Once the trained models perform satisfactorily, 

they are used to generate new music.  

2.1 **kern Data & Preprocessing  

**kern is a popular digital music format used to represent music scores textually, making it 

convenient to view and edit using simple text editors. It encodes vast amounts of information about 

the music piece in basic structures known as spines or columns. A spine contains information to 

encapsulate one voice in the musical piece–not necessarily limited to human voices and may, instead, 

represent any musical instrument’s part in the piece. Primarily, within each spine are music notes 

along with measure markers and other musical features found in music sheets. The plethora of 

commands developed as part of the Humdrum toolkit, designed specifically for music research, 

facilitates extraction and manipulation of desired information from **kern files. It also makes it easy 

to convert to other types of music formats including MIDI [8]. 

Due to their simplified structure, monophonic music pieces serve as the starting point for this 

research paving the way for future extensions to consider polyphonic pieces and deal with multiple 

voices, with chords allowed throughout each voice [11]. Our data corpus contains pieces being either 

German or Chinese folk music. The choice of genres was largely driven by factors such as data 

availability and similarities as well as differences between the two–both genres are folk yet quite 

distinct from each other; regardless, it should be explicitly noted that this should not limit the 

applicability of findings beyond the two genres.  

Our corpus consists of roughly 5k complete samples of music divided equally by genre. All 

samples have been converted (when needed) into the same C major scale and contain the  primary 

voice only, typically the soprano. Figure 1 (a) shows a sample **kern file highlighting the duration 

(b) and pitch (c) values to be extracted from each note.  

Extracted duration and pitch feature values for each genre are then used to generate three datasets: 

two comprised of only the pitch and duration feature values, respectively, and the third combining the 

extracted pitch and duration values to form complete notes. After further data processing, these 

datasets are used to train different models allowing us to compare the efficiency and quality of music 

generated from separated feature models as opposed to a single complex model. 
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 To create the separated duration feature model, duration values are first mapped to the range of 0 

and the number of unique duration values (we distinguish between dotted and non-dotted durations). 

This encoding gives a random yet unique integer “label” for each duration value. The same process is 

applied to pitch values to generate the separated pitch feature model; for illustrative purposes, a 

simplified version of the process is depicted in Figure 2 (a) (limited to 8 unique pitch values). 

To create the complete note dataset, the encoded pitch and duration values are simply combined to 

create note encoding labels. It should be clear that the resulting dictionary for possible note labels is 

significantly larger than the dictionaries used to represent the pitches and durations separately due to 

the combinatorial nature of this process. To illustrate this by example, prior to preprocessing, German 

folk samples in our corpus have 30 and 20 pitch and duration labels, respectively, which translates 

into 600 possible note combinations!  

Now that we have the preprocessed data for all three models, the last step is to extract shorter 

sequences comprising the final datasets employed for training. Depending on the network used, the 

models will learn to predict the next pitch/duration/note/etc. label for an input sequence of labels; to 

facilitate this, we opted to break down each music piece into subsequences using a sliding window of 

 

 

 
 Figure 2. (a) Mapping of Pitches (b) Generating Subsequences. 

 
 Figure 1. (a) Sample **kern Data File: (b) 

Durations (in bold) and (c) Pitches (underlined). 
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fixed length to allow the models to look back at a brief “history” of pitch/duration/note labels 

provided in the input sequence. A sliding window of length 100 was experimentally determined as a 

good middle ground to balance the desire for coherence and the average length of pieces in the 

dataset. To generate subsequences of length 100, the sliding window shifts by a single label at a time. 

Since we are doing supervised learning, we append a class label value to each subsequence, which is 

simply the actual next label in the piece. The same process (depicted in Figure 2 (b) for a smaller 

sliding window of size 10) is used to generate input data for the separated pitch, separated duration, 

and combined note models. The 5k complete music pieces in our corpus generated a total of 147,147 

Chinese folk and 276,438 German folk sequences of length 100.  

2.2 Network Design  

 Traditional neural network learning assumes inputs to be largely independent of each other. This 

makes them inadequate when the training data exhibits spatio-temporal interdependencies where 

decisions made earlier are expected to factor into future ones. RNNs were first introduced to address 

this specific issue. They have the same basic structure of a feedforward neural network with the 

addition of a feedback loop connected to their past decisions to serve as a form of memory. However, 

RNNs are subject to vanishing and exploding gradients making it hard to “remember” previous 

decisions especially as the gap between the relevant information and the point where it is needed 

becomes larger [5]. 

 LSTMs are capable of more accurately learning long-term dependencies. They contain information 

stored in gated cells, very similar to how computer memory works. The decision on what to keep and 

when to read and write are controlled via specialized gates. These gates are similar in function to 

normal neurons in a neural network and work by determining the best action based on signals 

received. Like other weights in the network, gate weights are adjusted during the learning process to 

allow LSTMs to learn when specific information needs to be remembered from past events, when 

newly gained information needs to be stored, or when information can be forgotten altogether due to 

irrelevance. 

 There is no definite rule of thumb for how many hidden layers and how many neurons per layer 

should be used in implementing a network; very often a trial-and-error approach is adequate. We 

experimentally settled on the following 7-layer network design to facilitate multivariate classification 

with the exact number of outputs depending on the number of possible labels: 

• an input layer containing 100 nodes (equal to the length of the input sequences),  

• five hidden layers (more on this later), and   

• an output layer containing as many nodes as there are possible label values to predict 

(uses a softmax activation function giving each output node a probability out of 1) 

The hidden layers include two LSTM layers, each followed by a dropout layer to help prevent 

overfitting by ignoring randomly selected neurons during training, and hence reduces the sensitivity to 

the specific weights of individual neurons. This helps prevent the output from sounding identical to 

one or more of the original pieces. A dropout rate of 10% was used as a good compromise between 

retaining model accuracy and preventing overfitting. 

2.3 Music Generation Process 

 As discussed earlier, datasets containing sequences of length 100 are used to train the networks. For 

a given input sequence, the networks output a list of probabilities, one for each possible label; the 

label with the highest value is then chosen as the predicted next label.  
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Music generation is initiated by feeding an existing random seed sequence to a trained model and 

appending the output label of the model to the end of the input sequence. In order to maintain the 

same sequence length (of 100, in our case), a label from the beginning of the sequence is then 

removed to create a new input sequence for the next iteration to “compose” the next part of the 

sequence, and so on, until complete music pieces are formed, one label at a time.  

Figure 3 shows a random pitch sequence being fed into the network as input. The network then 

generates a probability distribution as output, describing the likelihood of each possible pitch label 

being next. In this simplified example, there are eight possible pitch labels shown; we would choose 

label ee, as it has a 50% chance of occurring next. This label is appended to the input sequence from 

the previous iteration and the pitch that is at the front of the sequence is then removed to create a new 

input sequence for the next iteration. The process continues until sequences of the desired size are 

created. 

3 System Design and Experimentation 

3.1 Network Training  

Three networks are needed for each genre under consideration: one combined note network and 

two separated pitch and duration feature networks. Results from the separated networks are combined 

to create complete music notes. Thus, a total of six music generation networks are needed to allow us 

to consider German and Chinese folk music samples at hand.  

To expedite and improve the training process, data sequences containing infrequent labels are 

ignored–recall we produced over 147k Chinese folk and 276k German folk sequences. This results in 

  
Figure 4. Training Data. 

Figure 3. Music Generation. 

Separated Feature Learning for Music Composition Using NNs Rahal, Strelow, Iverson, and Mendel

46



smaller datasets that exclude outliers and, more importantly, help distribute the remaining samples per 

label more evenly. For Chinese folk music, we settled on removing 183 rare occurring notes, resulting 

in 113 predominant note labels (or 38%). This was chosen experimentally as it performed better than 

higher or lower percentages in the network training process. To be able to create a similar number of 

possible notes via the separated pitch and duration networks, only samples with matching pitch and 

duration labels were retained. A similar process was applied to German folk music; Figure 4 shows 

the final makeup of the  resulting datasets used in this work. 

All programs were developed using Google’s Tensorflow and executed on a cluster node with the 

following specifications: Xeon E5-2600 v4 CPU, 20 cores, 32 GB RAM, 12 TB SSD storage. 

Networks were trained for 30 epochs; GPU acceleration was not used. 

To decide on the complexity of the hidden layers, we observed how the number of nodes affected 

music quality and training time. For each network, we doubled the number of nodes in the hidden 

layers starting from 32 all the way to 256 nodes per layer. Figure 5 shows the resulting accuracy and 

training time for each network as a function of the number of nodes in their hidden layers. Accuracy 

here is defined as the percentage of next labels predicted correctly, averaged over all executions. It is 

important to highlight the significance of these results given the number of possible labels to choose 

from; for example, by randomly assigning labels, the accuracy for the Chinese note network would be 

roughly 0.88%, or 1 out of 113 possible labels as shown in Figure 4–the same applies to all the 

networks. Consequently, all networks, regardless of complexity, are way better than pure random 

decisions.    

For both genres, we observed the note networks continued to improve in accuracy with added 

complexity, but the same advances cannot be seen in the pitch and duration networks. This is 

especially the case for the duration networks for both German and Chinese, where more complex 

network structure resulted in minimal accuracy gains, if any. We ended up settling on the following: 

Chinese note network with 256 nodes, Chinese pitch network with 128 nodes, Chinese duration 

network with 32 nodes, German note network with 256 nodes, German pitch network with 128 nodes, 

and German duration network with 32 nodes. Final note and pitch networks were chosen as they were 

the best performers. Because the duration networks performed relatively the same regardless of 

complexity, the simplest networks were used. The chosen designs are highlighted in Figure 5. 

3.2 Objective Evaluation  

Along with assessing the ability to create music pieces adhering to different genres, our evaluation 

aims to highlight differences in efficiency and quality of music generated from complete note 

networks vs. separated feature networks. To this end, we created a new binary classification model 

 
Figure 5. Network Design–Column headers show nodes per 

layer; values show accuracy @ time (sec) per 100k samples.   
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trained to classify German and Chinese folk music. The design for this simple network contains an 

input layer with as many nodes as the desired length of the generated music pieces, two hidden layers, 

and an output layer with a single node activated by a binary sigmoid function to output a value close 

to 0 for German and to 1 for Chinese.   

The evaluation classifier was trained on a set of 100k sequences randomly chosen from the 

original over 147k Chinese folk and 276k German folk real music sequences (refer to section 2.1), 

evenly divided between the two genres; all remaining sequences in the original set were used for 

validation. It is important to highlight that the original data contains labels ignored earlier during the 

music generation process. This discrepancy is by design to illustrate applicability of results to “real-

world” situations.  

Figure 6 contains accuracy and confidence results of the trained classifier on the validation set. 

Confidence here is derived from the 0-1 prediction scale the classifier outputs. Recall that if the 

network outputs a value in the range 0-0.5, it would be German, and 0.5-1 would be Chinese. 

Confidence simply records how close we are to 0 for German predictions and to 1 for Chinese ones. 

Confidence as a whole is computed as the average over all samples used for validation.  

To gauge the ability to create music in a specific genre that will satisfy this evaluation classifier, 

500 sequences were generated by the trained note network with another 500 sequences created by 

combining output from the separated pitch and duration networks. The 1k samples for each genre 

were run through the classifier; the average accuracy and confidence along with the training time 

needed per 100k samples are reported in Figure 7. Time for separated networks is shown as a range 

depending on the execution mode–full parallel vs. sequential execution. 

From Figure 7, we can see slight difference in confidence and accuracy values resulting from the 

approach used to generate music. Considering the Chinese folk results, the separated training of the 

pitch and duration networks actually shows increased confidence and accuracy. Moving to the 

German folk results, the separated training was close to meeting the confidence and accuracy of those 

of the note network. However, a more interesting takeaway from these results is the significantly less 

time required to generate the music using separated networks! 

In other words, while the separated networks for features did not always exceed the average 

accuracy and confidence values of the note network, they produced very comparable results but with 

significantly less training time. Time savings anywhere between 23.63% and 44.92% can be observed 

in the case of Chinese folk music, and 40.15%-56.83% for German folk music, depending on whether 

the separated networks were trained purely sequentially or completely in parallel. 

 
Figure 7. Evaluation on Music Generated by Genre using Complete 

Note vs. Separated Pitch & Duration Networks. 

 
Figure 6. Evaluation on Real Music. 
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3.3 Subjective Evaluation  

Our assessment of the quality of the generated music pieces so far has relied mostly on “objective” 

measures. Generally speaking, however, the very nature of art, music included, makes it a creative 

task, that is almost impossible to assess purely objectively. This paves the way for a more 

“subjective” evaluation to assess how listeners “feel” about the generated music pieces.  

To this end, we created a survey in which listeners were asked to listen to a dozen randomly 

chosen 30-second generated music samples–6 per genre evenly split between the two compared ways 

of generating music: 3 complete note, 3 separated feature Chinese folk and the same for German folk. 

Survey participants were also asked to rate their music background by selecting one of the following 

levels of expertise that describes them best 

(1) No experience or formal education (such as school or college courses) 

(2) Limited experience and/or formal education 

(3) Extensive experience and/or formal education 

(4) Degree or career in music  

The survey presented participants with two original samples of music from the two genres for 

reference, one Chinese folk and one German folk. Survey participants were asked to listen to these 

samples as many times as desired to get a good understanding of the characteristics of each genre. The 

two samples were also made accessible throughout the survey for replay. The survey then presented 

the 12 generated samples, one at a time in no specific order, and asked participants to categorize each 

as Chinese or German folk, along with the confidence of their choice. A total of 52 participants took 

this survey with two eliminated due to being incomplete; the remaining 50 participants are distributed 

as shown in Figure 8.  

Survey results are shown in Figure 9. Although samples used in the survey were randomly chosen 

from our generated corpus, those generated using separated feature models using our proposed 

approach were consistently more likely to be identified correctly by survey participants, with 

improvements ranging approximately from 6% to 10%, depending on which participants are included. 

The leftmost third part of the chart shows results from all survey participants: the first two bars show 

results using all 6 samples per approach while the second two bars exclude the sample that confused 

the largest number of participants (i.e., drop sample with lowest accuracy score); the resulting (rather 

significant) increase in accuracy illustrates that results were being penalized largely by a few “bad” 

generated music samples. 

We also wanted to better understand how level of expertise impacted the survey results. Hence, 

the middle third part of the chart ignores results from participants with expertise level (1); similarly, 

the rightmost third part of the chart includes only results from participants in the top two levels. As 

expected, participants with more background in music were more likely to correctly classify the test 

samples. Although results improved with expertise, we note that improvements resulting from using 

the proposed separated feature approach as opposed to the combined approach did not change much 

regardless of level of expertise (roughly, 6% using all 6 samples and 10% after the lowest sample is 

dropped).  

 
Figure 8. Distribution of Survey 

Participants by Music Background. 
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A simple explanation for the increase in quality using the proposed separated feature approach 

could be attributed to the fact that, when generating music by learning features separately before 

combining results, we are more likely to generate a larger set of possible combinations compared to 

the combined features approach (which is limited to existing combinations). This, of course, remains 

open for further exploration. 

4 Conclusion and Future Work 

Researchers are still only scratching the surface of what is possible with the use of computers in 

areas traditionally reserved for purely artistic creation, such as music composition. This research 

demonstrates the potential benefits of feature separation in music composition from music scores data. 

Although the idea is simple, experimental results show that music generation by combining results 

from multiple simple models requires significantly less training time whilst maintaining quality steady 

(if not improving it) compared to using a single more complex model. These results are further 

supported by a survey clearly highlighting that participants are significantly more likely to correctly 

identify music generated using the proposed separated features approach, which dramatically 

increases our confidence in this direction. Further analysis to understand the reasoning behind this 

increase in quality is currently ongoing. 

These advantages may seem novel when creating simple melodies, but the true potential lies in 

polyphonic music, where complexity and overall time efficiency increase drastically along with the 

number of musical features. Consequently, we plan to extend this work beyond two features 

especially for polyphonic music data.  

We also plan to explore the use of genetic algorithms to evolve the generated music over time thus 

improving quality. This requires us to devise suitable fitness functions to determine what solutions are 

deemed “good”. The challenge here, however, is that in music, “good” is subjective and highly 

dependent on context. We must also consider how to capture creativity in fitness functions. 

 
Figure 9. Survey Results. 
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