
Crawling Based Data Collection and

Data Pre-processing

Alexander Morales and Jiang Guo
California State University, Los Angeles, USA

amora97@calstatela.edu, jguo@calstatela.edu

Abstract

This paper focuses on the design and architecture of an application that will

programmatically pre-process data. This application aims to extract and provide clean

airport terminal passenger throughput data within the United States. A different

application will then use this data to forecast passenger throughput models via a friendly

user experience webpage. The purpose of forecasting passenger throughput throughout

the U.S. airport terminals is to improve the Transportation Security Administration (TSA)

checkpoint operations. Such as increasing TSA personnel in security checkpoints when

the forecast expects a high volume of passengers during the holiday season. On the other

hand, decreasing the personnel workforce in other airport terminal checkpoints where

they do not forecast a high passenger throughput. TSA seeks to improve its personnel

scheduling using this forecasting model. In addition, the forecasting model will improve

passenger satisfaction with non-excessive wait times at security checkpoints and does not

jeopardize the safety of passengers with adequate security protocols.

1 Introduction

How can you provide a forecasting model of passenger throughput in each airport terminal within

the United States without direct access to the data? Fortunately, the Transportation Security

Administration, better known as “TSA” for frequent travelers, publishes passenger throughput data for

all U.S. airports on this electronic reading room webpage. The category of interest in this reading room

is the Airport category, and they upload new Portable Document Format (PDF) files weekly under the

Freedom Act. As shown in Figure 1, it would be laborious to manually download every file available

on the website and costly for third-party services to convert PDF files into Excel files. Currently, there

is no free service that provides file conversions at no cost, with no limitations on the number of files

that can be converted. Besides, what guarantees these converters won’t impute or delete data during the

conversion without notice? Why not build a convertor that will ensure that no data is corrupted?

 Contact author: Jiang Guo jguo@calstatela.edu

EPiC Series in Computing

Volume 91, 2023, Pages 76–85

Proceedings of 38th International Confer-
ence on Computers and Their Applications

A. Bandi, M. Hossain and Y. Jin (eds.), CATA2023 (EPiC Series in Computing, vol. 91), pp. 76–85

The proposal of an application that can be executed at any time and automatically download recently

uploaded to the reading room webpage. Once the files are downloaded to a local directory of the

application, it will attempt to extract the data from the file. The data will then be cleansed to ensure all

incomplete data is imputed or removed depending on the severity. The application will export an Excel

file that will provide the ability to cross-validate and visualize the pre-processing data results. Finally,

it will persist the clean data into a MySQL database table for the forecasting application to periodically

strengthen the forecasting models with new training data.

Figure 1. FOIA Electronic Reading Room

The requirements gathering phase in the software development lifecycle is the most critical aspect

of a project. The project’s features and capabilities need to be thoroughly discussed with stakeholders.

Crawling Based Data Collection and Data Pre-processing A. Morales and J. Guo

77

With clear communication of the project’s deliverables, the application design must meet every

stakeholder's criterion.

The deliverables are to provide the forecasting application with clean pre-processed airport terminal

data extracted from the PDF files. The application will utilize web scraping and data science libraries

to cleanse the airport terminal data from dirty data picked up during extraction. Then it will save the

data into a MySQL database table for the upstream forecasting application to consume the data to

improve the forecasting models.

The finalized requirements for the application were the following:

• Programmatically download and extract data from PDF files.

• Ensure missing data is imputed and dirty data is deleted from the dataset.

• Save cleansed data into the database and export data into an Excel file.

Data Analysis provides insight into the significance of the data columns the dataset will deliver to

the forecasting application’s models. Dirty data can be removed after the extraction providing the

upstream application to only deal with clean, relevant data using data cleansing techniques. Figure 2 is

an example of a PDF file from the Transportation Security Administration’s reading room webpage.

The file format will be the same for all files downloaded and read into the proposed application. It

contains a table that can be created through Microsoft Excel or any other spreadsheet application. The

data is written within the defined table, which contains merged cells in different columns. This can

cause implications when using open-source libraries to read files into an application. All airport-relevant

files found on the TSA reading room website are consistent with the table formatting.

With the table formatting implications identified during the data analysis. There will be specific

capabilities a library will need to have to identify merged cells in a table. Otherwise, this will lead to

missing data after the complete data extraction phase. There cannot be any missing data as the PDF

does not contain missing data. If any data was to be removed from the dataset due to missing data values.

It would dimmish the application’s existence, as it needs to guarantee complete dataset delivery to the

upstream application without data loss. Therefore, if a reliable open-sourced library can identify merged

cells and organize the data into the proper column accordingly, it will be a contender for the application

to use.

The data analysis was concluded with multiple libraries being used to extract data from the PDF

files, such as tabula-py, camelot-py, and pdfplumber. Two of these libraries were promising at the

beginning of the data analysis phase. However, over time tabula-py and camelot-py became inconsistent

when extracting the data. This leads to overhead data manipulation to get the data into the proper

columns in the Excel file. At last, pdfplumber was the most reliant library to use when it came to data

extraction with merged cells. The only drawback was that the data had missing data values at random.

Crawling Based Data Collection and Data Pre-processing A. Morales and J. Guo

78

Figure 2. Initial data in PDF document

2 System Design

2.1 System Structure

Figure 3 shows a TSA personnel interacting with an application on a computer to visualize the

forecasting model's prediction of passenger throughput. The left of the diagram shows the different

components the data traversed through to be presentable to the user. Typically, these components used

for data pre-processing are not client-facing. However, these components do the heavy lifting by

providing clean data to enhance the forecasting models the user interacts with.

Crawling Based Data Collection and Data Pre-processing A. Morales and J. Guo

79

Figure 3. High level application architecture

2.2 Process Flowchart

With the high level of the application architecture drafted, you want to put together a process

flowchart on how your application will handle different scenarios based on the requirements given

initially. Figure 4 below shows the first version of the process flow chart. The end user must understand

your application process flow, so they know the big picture of how they’re getting their data. From an

engineering perspective, the process flow will allow you to visualize any design inconsistencies or

improvements that can eliminate unnecessary steps. This is key; unnecessary steps can impact the

performance of the application. A second version of the process flow chart was drafted to address issues

with the first draft. These changes did not affect the project deliverables but improved the reliability of

the application and utilized the infrastructure, such as the MySQL database, to store any metadata

related to the files.

 Figure 4. Application process flowchart version

Crawling Based Data Collection and Data Pre-processing A. Morales and J. Guo

80

3 Implementation

This section will guide you through the implementation of each component and the functionalities

they provide to the application. Screenshots containing code snippets will be included throughout this

section to clarify the application's implementation.

3.1 Database Operations

This class handles any communication between the application and MySQL database. It inherits a

class that contains the credentials and attempts to establish a connection to the database, as shown in

Figures 5 and 6 below. It provides a generic select method that allows any table within the connected

database to be queried based on the SQL statement given as an argument. Some proprietary methods

exist for inserting, searching, and updating records based on the database table. The purpose of this

class is to condense the database access logic from the application into a single class.

Figure 5. Code snippet of database connection class

Figure 6. Code snippet database operations class select method

Crawling Based Data Collection and Data Pre-processing A. Morales and J. Guo

81

3.2 WebScraper

When the executable is executed, an instance WebScraper will be instantiated and create an HTTP

GET request to the TSA’s reading room website. Once a response is received from the server hosting

the webpage on the internet. The response content is passed into the BeautifulSoup4 library with the

feature set to “html.parser”. Figure 7 below contains a code snippet of the HTML that the library will

receive in the response content. This was tedious during the development phase as the HTML file can

be very large, and tags tend to be nested within containers. After some analysis of which tags contain

the data that needs to be extracted, you will utilize the find method provided by the library. The “anchor”

HTML tag has the download link, as shown in the figure 7 below on line 4, set for the HTML attribute

“href.” The links will then be filtered out if they do not contain specific keywords that correlate the

links relevant to the airport throughput files. Finally, once the links are filtered, the domain will be

appended for the Downloader class to download the files.

Figure 7. TSA reading room webpage HTML code snippet

3.3 Downloader

The Downloader class allows the application to download PDF files using the URL constructed by

the WebScraper class discussed in the sub-section above. The class will call the endpoint using a get

request method. Based on the response status code, the class will update the file status with either failed

or success. If the file status is updated to success, the file is fetched. Now the class will download the

file in chunks of 8 KB. The method download_pdf_files is the only public method the main program

Crawling Based Data Collection and Data Pre-processing A. Morales and J. Guo

82

will call. Its responsibility is to iterate through the list provided by the main program and execute the

__downloader class method for each file’s URL. Also, it checks if the target folder passed in as an

argument exists. If not, it is creating the directory. Once the __downloader method completes execution,

it will return a dictionary containing the status of the file. This dictionary will be appended to a list that

will be returned to the main program.

4 PDF Data Extractor

This class exposes only a single public class method called extract_text. This method will be

executed within main.py once the PDF file path is validated that it exists within the file system locally

using the utility function Figure 8. The file path is then passed as an argument in the method. First, the

method will create an empty instance of a data frame, which will accumulate all the data extracted from

each page in the file. With the help of the pdfplumber library, the file is opened using the file_path

argument. A check for an optional argument debugger_page_count is used for debugging purposes only.

This is to limit the number of pages to be processed. If the debugger is not enabled, it will create a visual

progress bar in the command line to display the progress of the data extraction. As it iterates through

each page of the PDF, it will pass each page into a protected class method called __page_cleanser that

will process each page individually. Each page will get its data extracted separately and append its

extracted data into the empty data frame page_pdf. Data is concatenated to final_df before iterating to

the next page (see Figure 9).

Figure 8. PDF locator utility function

Figure 9. PDFDataExtractor class extract_text method code snippet

Crawling Based Data Collection and Data Pre-processing A. Morales and J. Guo

83

4.1 Future Work

The future work for this application would be configuring the application to run on a server with a

scheduler to run weekly to download newly uploaded data. On the other hand, it would be beneficial to

retrofit the application to run on AWS lambda functions and utilize AWS EventBridge to schedule the

lambdas to run once every week. This would be the most cost-effective solution. It is achievable as the

system components are not coupled. Hence, the main program logic would be removed, and each

component could be executed in separate lambda functions.

Acknowledgment

This research was performed under an appointment to the U.S. Department of Homeland Security

(DHS) Science & Technology (S&T) Directorate Office of University Programs Summer Research

Team Program for Minority Serving Institutions, administered by the Oak Ridge Institute for Science

and Education (ORISE) through an interagency agreement between the U.S. Department of Energy

(DOE) and DHS. ORISE is managed by ORAU under DOE contract number DE-SC0014664. All

opinions expressed in this paper are the author’s and do not necessarily reflect the policies and views

of DHS, DOE or ORAU/ORISE.

References

[1] AWS. What is an IDE? Retrieved from https://aws.amazon.com/what-is/ide/

[2] Chojecki Przemek. (2019). Data science in 7 easy steps. Retrieved from

https://towardsdatascience.com/data-science-in-7-easy-steps-ca80d063f175

[3] Daisy. Is excel enough for data analysis? Retrieved from

https://datasciencenerd.com/is-excel-enough-for-data-analysis/

[4] Gazoni Eric, C. C. (2022). Openpyxl - A python library to read/write excel 2010

xlsx/xlsm files. Retrieved from https://openpyxl.readthedocs.io/en/stable/

[5] Jet Brains. Scientific tools. Retrieved from

https://www.jetbrains.com/pycharm/features/scientific_tools.html

[6] Mozilla Developer Network. (2022). HTML: HyperText markup language. Retrieved from

https://developer.mozilla.org/en-US/docs/Web/HTML

[7] Oracle Corporation. (2022a). Chapter 1 introduction to MySQL connector/python. Retrieved from

https://dev.mysql.com/doc/connector-python/en/connector-pythonintroduction.html

[8] Oracle Corporation. (2022b). What is MySQL? Retrieved from

https://dev.mysql.com/doc/refman/5.7/en/what-is-mysql.html

[9] Pandas package overview. (2022). Retrieved from

https://pandas.pydata.org/docs/getting_started/overview.html

[10] Python Software Foundation. Creation of virtual environments. Retrieved from

Crawling Based Data Collection and Data Pre-processing A. Morales and J. Guo

84

https://docs.python.org/3/library/venv.html

[11] Reitz Kenneth. (2022). Requests: HTTP for humans. Retrieved from

https://requests.readthedocs.io/en/latest/

[12] Richardson Leonard. (2022). Beautiful soup documentation. Retrieved from

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[13] Singer-Vine Jeremy. (2022). Pdfplumber. Retrieved from

https://pypi.org/project/pdfplumber/

[14] Team Nuggets. (2018). Why data scientists love python. Retrieved from

https://www.cbtnuggets.com/blog/technology/data/why-data-scientists-love-python

Crawling Based Data Collection and Data Pre-processing A. Morales and J. Guo

85

