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Abstract 

Identification of earth pressures acting on in-service underground structures is 

critical for their health monitoring and performance prediction. Given that the extensive 

deployment of sensors on poorly performing structures to measure pressure incurs high 

costs and presents technical challenges, the inversion of these pressures from easily 

observed deformation data has become increasingly desirable. However, traditional 

pressure inversion methods require subjective assumptions about the complexity of the 

pressure, necessitating extensive engineering judgment that may not be confidently 

applied in practice. To address this challenge, this paper proposes a trans-dimensional 

Bayesian method for pressure inversion. This method simultaneously incorporates 

pressure complexity and quantities into the inversion by parameterizing a set of 

previously unknown parameters, where the number of parameters itself is unknown. A 

recorded case study is presented for illustration and verification. It is found that the 

proposed method yields good inversion results on the pressures on a diaphragm wall, 

whereas traditional methods lead to poor inversion results due to inadequate 

assumptions. These outcomes highlight the advancements of the proposed method. 

Lastly, deficiencies and future extensions are discussed in the conclusion. 

1 Introduction 

With the rapid development of infrastructure construction, a wide range of underground structures 

have been put into service. However, the in-service environment of these structures is exceedingly 

complex (Yin et al., 2020; Tian et al., 2022). Factors such as extensive human engineering activities 

and unforeseen changes in geotechnical conditions can significantly disturb these structures, often 

resulting in performance deterioration that far exceeds initial design expectations (Zhou et al., 2020; 

Gong et al., 2023). This issue is well-documented by numerous practical cases (Van Empel et al. 

2016; Bowers & Moss, 2018; Zhang et al., 2019); for instance, excessive deformations and serious 
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defects have been frequently observed in subway tunnel linings worldwide, particularly in cities 

characterized by soft soil conditions (Carpio et al., 2019; Tian et al., 2023a). Ensuring the operational 

safety of these infrastructures has emerged as a significant challenge for engineers. 

Earth pressure acts as a mediator in the complex interactions between underground structures and 

the surrounding strata, playing a crucial role in influencing structural performance. Accurately 

identifying the current earth pressures is essential for the health monitoring and performance 

prediction of these in-service structures (Liu et al., 2016; Tian et al., 2023a). However, embedding 

sensors to monitor the pressures in structures that have already been cast and buried presents 

significant technical challenges (Zhou et al., 2024). Furthermore, the cost of equipping all newly built 

underground structures with sensors is prohibitively expensive (Zhou et al., 2021). Consequently, the 

inversion of earth pressures from easily observable structural responses, say deformations, has 

emerged as a more desirable approach. 

Pressure inversion consists of two primary process, i) parametrization, i.e., use parameters to 

represent a priori unknown pressures; and ii) inference, i.e., deduce the values of these parameters 

from observed data to reconstruct the entire pressure distribution. A straightforward approach 

assumes earth pressures based on a predefined design mode, parameterizing the distributed pressures 

into specific parameters defined by the mode (e.g., q=(q1, q2, q3)T in Figure 1a), and then employing 

optimization methods to find solutions (values of q) that yield structural responses closely aligned 

with the observed data (Yan et al., 2019).  

 

However, due to the complex underground environment, earth pressures acting on in-service 

structures may distribute unevenly, often deviating significantly from the design mode. To address 

this, an interpolation technique has been proposed that parameterizes the unknown pressures using a 

set of unknown knots (e.g., q=(q1, …., qn)T in Figure 1b) (Gioda & Jurin, 1981). This interpolation 

approximates the unknown pressures, transforming the inversion of pressures into the inversion of the 

unknown knot parameters. 

While this technique abandons strict design mode assumptions, it introduces two significant issues 

by expanding the parameter space: ill-conditioning and non-uniqueness (Sanchez & Benaroya, 2014). 

Specifically, minor errors in observed data can lead to substantial biases in inversion results (ill-

conditioning), while vastly different pressures may yield similar structural responses (non-

uniqueness). (Liu et al., 2019) and (Liu et al., 2021) observed these phenomena and employed 

regularization techniques to address ill-conditioning, achieving satisfactory inversion results. 

Additionally, (Tian et al. 2023b) and (Tian et al., 2024a) introduced a Bayesian approach capable of 

quantifying uncertainties associated with non-uniqueness, thereby informing the strategic addition of 

observations to mitigate non-uniqueness. Despite these advancements, a notable limitation persists: 

the complexity of pressure distributions must still be predefined. As indicated in Figure 1(b), the 

 
Figure 1: Schematic illustrating the parameterization of earth pressures on in-service underground 

structures: (a) parameterization based on a predefined design model; (b) parameterization utilizing an 

interpolation technique; (c) parameterization for complex pressure distributions exhibiting abrupt changes 
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number and locations of knots are assumed prior to inversion. For example, the unknown knots are 

typically assumed to be evenly distributed across the structural domain. However, for complex 

pressure distributions, as exemplified in Figure 1(c), abrupt changes in pressures necessitate densely 

predefined unknown knots locally for improved inversion outcomes. These assumptions require 

considerable engineering judgement, which may not always be confidently applied in practice. 

 To address this problem, this paper introduces a trans-dimensional Bayesian inversion approach 

that jointly incorporates the complexity and specific values of a priori unknown earth pressures into 

the inversion process, eliminating the need for preconceived assumptions and engineering judgment 

regarding pressure distribution. Section 2 details this method, while Sections 3–4 presents a numerical 

case to discuss the superiority of the proposed method. Deficiencies and future extensions are 

discussed in the conclusion. 

2  THE TRANS-DIMENSIONAL BAYESIAN METHOD 

2.1 Parameterization 

Targeting the limitations of the methodologies previously discussed, an idea is proposed that why 

not integrates both pressure complexity and pressure values into the inversion process? To this end, a 

trans-dimensional parametrization method is introduced, as detailed below. As shown in Figure 2, z 

denotes a generalized coordinate on a structure, such as depth on a diaphragm wall or a polar angle on 

a shield tunnel ring. q(z) represents the a priori unknown distributed earth pressures acting on the 

underground structure across the its domain. The parameterization of the earth pressure still employs 

an interpolation method using a set of knots. However, this method now incorporates the number of 

knots (n), the locations of the knots (z, where z=(z1,…,zn)T), and the values at these knots (q, where 

q=(q1,…,qn)T) jointly into the inversion process. The interpolation is performed using the 

interpolation function presented in Equation (1): 

( ) ( )q z z= I q
                                      (1) 

 

As a result, the inversion of the a priori unknown earth pressures q(z) is transformed into the 

inversion of an unknown parameter set m, where m=(n,z,q), and I(z) is the interpolation operator 

related to n and z. A detailed derivation is presented in (Press, 2007). Regarding the unknown 

parameters, n is a discrete random variable taking values in N+; qi (i=1,…,n) is a continuous random 

variable defined over R; for mathematical convenience, zi (i=1,…,n) is considered a discrete random 

variable taking values at grid points that are evenly distributed across the entire structural domain 

 
Figure 2: Schematic illustrating the trans-dimensional parameterization method 
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(Figure 2). In practical applications, it is advisable to set the grid points as densely as possible, with 

subsequent case study potentially providing a reference for their specific configurations. 

2.2 The Bayesian framework 

The objective is the inference of the values of m given the observed structural deformations d. 

This inference is conducted within a Bayesian framework as represented by Equation (2): 

( ) ( ) ( )p p pm d d m m
,                            (2) 

where, p(m|d) is the posterior distribution, representing the statistical inference results of m given d; 

p(d|m) and p(m) represent the likelihood function and the prior distribution, respectively. 

 

(1) Prior distribution 

The prior distribution is further elaborated in Equation (3): 

( ) ( ) ( ) ( , )p p n p n p n=m z q z
.                     (3) 

A Poisson distribution (with parameter λ) is employed to specify the prior for the number of 

parameters, i.e., n ~ Poisson(λ). This prior effectively limits model complexity and aids in preventing 

overfitting (Denison et al., 1998). For clarity, let Ng denote the number of grid points across the 

structural domain. The prior for z given n is considered as placing n knots without replacement among 

the Ng points, with each point being selected with equal probability; The parameter q is assumed to 

follow a uniform distribution within the physically plausible range [qmin, qmax], with mathematical 

details presented in Equation (4). This strategy allows the observed data to exert a more pronounced 

influence on the posterior distribution. 
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(2) Likelihood function 

The likelihood function quantifies the fit between observed structural responses and those 

predicted by g(q(z)). In line with the Central Limit Theorem, the likelihood function is generally 

assumed to follow a zero-mean Gaussian distribution, as shown in Equation (5): 
T

2 /2 2

d d

1 [ ( ( ))] [ ( ( ))]
( ) exp{ }

(2 ) 2l

g q z g q z
p

 

− −
= −

d d
d m ,

               (5) 

where, σd is the expected standard deviation, measuring the dispersion between observed and 

predicted structural responses; g(q(z)), also referred to as the load-structure model, computes the 

structural responses under earth pressure q(z), determined by the parameter set m. Given the potential 

complexity of the distribution, the Finite Element Method (FEM) can be utilized to construct the 

forward model, detailed in Equation (6): 
1( ( )) ( ( ) ) ( ( ) )g q z g z z−= =I q K f I q

 ,            (6) 

where, the structure is discretized into a series of elements, with K representing the global stiffness 

matrix; f being a vector-valued function where f(I(z)q) denotes the equivalent global forces equivalent 
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to the distributed pressure I(z)q, adhering to the transformation rules of virtual work. For a detailed 

derivation of K and f regarding typical underground structures such as piles and tunnels, the reader is 

referred to (Tian et al., 2023b) and (Tian et al., 2024a). 

2.3 The Markov chain 

Directly substituting Equations (3)–(6) into Equation (2) to derive an analytical solution is 

impractical. Instead, the Markov Chain Monte Carlo (MCMC) method provides a numerical approach 

for sampling the posterior distribution. A trans-dimensional MCMC method is proposed by presented. 

Green (1995), which tackles the above-mentioned trans-dimensional problems by establishing the 

detailed balance condition for trans-dimensional parameters, as shown in Equation (7): 
* * * * *

c c c c c( ) ( ) ( ) ( ) ( ) ( )p Q p Q =m d m m m m m d m m m m J
 ,          (7) 

where, Q(.) is the proposal function, e.g., generating candidate parameters m* from the current state 

mc; α(.) represents the acceptance ratio; J is the Jacobian matrix for the diffeomorphism from mc to 

m*. This setup enables the design of a proposal function that facilitates transitions between different 

dimensions, leading to the derivation of the necessary acceptance ratio (Equation (8)) for constructing 

a trans-dimensional Markov chain: 
*

c c*

c * *

c

( ) ( )
( ) min{1, }

( ) ( )

p Q

p Q
 =

m d m m
m m J

m d m m
 .      (8) 

Equation (9) shows the expansion of the proposal function. Following the principles outlined by 

(Green, 1995), we have developed subsequent proposal functions for addressing the earth pressure 

inversion problem, based on the three components of Equation (9). Specifically, each iteration of the 

chain involves proposing three types of proposals—birth, death, and move—with equal probability. 

These steps enable transitions between different parameter dimensions, as indicated in Equation (10): 
* * * * * * * * * *

c c c c c c c c c c c cc
( )= ( , , , , ) ( , , ) ( , , , ) ( , , , , )Q Q n n Q n n Q n n Q n n=m m z q z q z q z z q q z q z
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 =

z q
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i) Birth step: randomly add a new knot zb randomly at a candidate point previously unoccupied; 

and assign a value qb to this new knot according to Equation (11); ii) Death step: the reverse step of 

Birth, namely randomly choose one existing knot randomly to delete (Equation 12); and iii) Move 

step: propose a Gaussian perturbation for the current values qc, following N (qc, Cm), where Cm is the 

covariance matrix for the proposal (Equation 13): 
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It is important to note that the birth step is the inverse of the death step. By incorporating 

Equations (9) –(13) into Equation (8), the acceptance ratios for birth, move, and death steps are 

derived as Equations (14)–(16): 
*

*
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max minc
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The Markov chain operates by selecting, with equal probability, to proceed with birth, death, or 

move processes at each step. For enhanced optimization of convergence speed, readers are directed to 

the adaptive reversible jump MCMC algorithm proposed by the authors (Tian et al., 2024b) which 

includes ready-to-use attached codes. 

3 CASE STUDY 

3.1 Background 

A case study introduced by (Tian et al., 2023b) is utilized to apply and verify the proposed 

method. Notably, in this case, the authors manually adding densely interpolated knots at locations 

prone to abrupt pressure changes. In this paper, we will demonstrate that our method is able to 

incorporate pressure complexity into the inversion process, eliminating the need for potentially 

subjective pre-assumptions. As shown in Figure 3(a), A diaphragm wall bent towards a pit due to the 

active earth pressures behind it. Engineers recorded the deformations of the wall, inclusive of 

potential measurement errors, as shown in Figure 3(b). Consequently, the objective herein is the 

inversion of earth pressures using the deformation data. 

 
Figure 3: The case study: (a) a diaphragm wall bent towards a pit; (b) deformation data. (Note: γ, φ, c, and 

m represent the unit weight, friction angle, cohesion, and foundation stiffness scaling factor of the soil, 

respectively; EI is the bending rigidity of the wall) 
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The structural domain extends from 0 to 20 m. A dense grid of points is established across this 

domain, with a spacing of 10 points per meter, resulting in Ng = 201. The interpolation method with 

parameter set m, m=(n, z, q) is employed for parameterization. The prior for n is defined as n ~ 

Poisson (31), where λ=31 is chosen somewhat arbitrarily, awaiting updates from observed data; The 

prior for z is specified as p(z|n)=1/C(Ng,n); The prior for q is set as q|n,z ~ Uniform(0, 400). This 

decision is based on the assumption that the soil cannot exert any traction, and that 400 kPa is a 

substantially large value for the active pressures in this case. The "beam on elastic foundation" model 

is utilized to construct the forward model g(.), with parameters shown in Figure 3. The standard error 

in deformation measurement, σd is set as 1 mm for the likelihood function. Consequently, the prior 

(Equation 4) and likelihood function (Equation 5) have been established. The adaptive reversible 

jump MCMC algorithm (Tian et al., 2024b) is then employed to estimate the posterior distribution. 

3.2 Results 

The established Markov chain progressed through 106 steps. The log likelihood (LL) of the chain, 

together with the parameter n, is presented in Figure 4. As shown in Figure 4 (a), LL rapidly 

converges from a very low initial value and stabilizes around –20. n jumps between 4 and 45 

throughout the chain, indicating the chain’s ability to sample parameters across various dimensions. 

Particularly in the second half of the chain, the behaviors of LL and n resemble white noise, 

suggesting convergence of the Markov chain. Consequently, samples from this second half were then 

used to estimate the posterior distribution of earth pressures. 

 

 

 

 
Figure 4: The established Markov chain: (a) the log likelihood (LL) along the chain; (b) n along the chain 
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Figure 5: Inversion results: (a) the posterior distribution of earth pressures; (b) the posterior distribution of 
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The inversion results are presented in Figure 5. Figure 5(a) illustrates the posterior distribution of 

earth pressures, where lighter colors signify higher probabilities, and darker colors indicate lower 

probabilities. The true pressures, also displayed in this figure, are predominantly confined within 

zones of high probability, which underscores the effectiveness of the proposed method. In addition, 

the posterior mean (PM) is a representative solution of the posterior distribution. It is evident that the 

PM aligns closely with the actual pressures, achieving an RMSE of 11.64 kPa, thus reaffirming the 

method's efficacy. Additionally, the standard deviation (Std) serves as an index to quantify the 

uncertainty of these results, with further details to be explored in subsequent discussions. As 

demonstrated in Figure 5(b), the initial prior distribution for n centered at 31, subsequently updated to 

center around 19, suggests that the method can automatically infer the complexity of pressures based 

on observed deformation data. This advancement will be discussed in detail in the next section. 

4 Discussion 

4.1 Advancement of the proposed method 

This section will illustrate the essentiality of incorporating pressure complexity into inversion 

processes. It is important to reemphasize that in the discussed case study, (Tian et al. 2023b) pre-

assumed pressure complexity by manually adding densely interpolated knots at locations prone to 

abrupt pressure changes. However, in engineering practice, pressure is unknown a priori, and 

engineers have limited information about where to insert such knots. Alternatively, one might 

consider a method of distributing knots evenly, and progressively densifying them as demonstrated in 

Figures. 6(a)–(c). With a sufficient density of knots, there may no longer be a need to presuppose 

pressure complexity. This strategy could potentially serve as an alternative to the method proposed 

herein. To validate its efficacy, comparative tests with the proposed method are conducted as follows. 

 

 
Figure 6: Parameters settings and results for the fixed-dimensional Bayesian method: (a) 4 parameters; (b) 

15 parameters (c) 30 parameters; (d-f) corresponding results for 4, 15, and 30 parameters, respectively. 
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Additional experiments were carried out. As illustrated in Figures. 6(a)–(c), earth pressures were 

parameterized into a set of evenly distributed interpolated knots. The objective was the inversion of 

fixed parameters q, where q=(q1,…,qn)T with n=4, 15, and 30, for the three additional cases, 

respectively. These experiments utilized the fixed Bayesian method as introduced by (Tian et al., 

2023b). The results are presented in Figures. 7(d)–(e), and are compared with the outcomes obtained 

using the proposed method (Figure. 5).  

As indicated in Figure. 6(d), when the number of parameters is fixed at 4, the inversion results are 

poor, with RMSE being 20.18 kPa; When n increases to 15, the inversion results improve with RMSE 

being 11.37 kPa; However, increasing n to 30 results in poorer outcomes, with RMSE increasing to 

16.69 kPa. The underlying mechanism can be explained by the fact that with a small number of 

parameters, the pre-assumed pressure complexity is insufficient to capture the real distributed 

pressures. As the number of parameters increases, the method’s ability to approximate actual pressure 

distributions improves. However, when there are too many parameters, the available deformation data 

may not be informative enough to infer such a large number of unknowns, leading to increased 

uncertainty and deteriorated results. This is also evident in the index, Std, which grows from 13.60 to 

48.42, to 56.83, illustrating an increase in the uncertainties associated with the inversion results across 

the three experiments. Although an RMSE suggests that the fixed-dimensional method with 15 

parameters marginally outperforms the proposed method (Figure 5), in engineering practice, there are 

no "true" pressures available to fine-tune these parameters. Unlike the fixed-dimensional approach, 

the proposed method does not require an assumption of the pressure complexity, underscoring its 

advancement and applicability. 

4.2 Limitations and future extensions 

It is worth noting that this paper primarily illustrates the application of the proposed method to 

diaphragm walls. As highlighted in the Introduction, the potential extension of this method to tunnels 

or pipelines is of particular interest due to the pronounced structural deterioration. However, such an 

extension may encounter substantial technical challenges. Specifically, the inversion process 

necessitates numerous iterations of the trans-dimensional chain on the mechanical model, g(.). In this 

illustrative example, g(.) is simplified as a linear-elastic model for the diaphragm wall. However, 

when attempting to extend this method to tunnels or pipelines, the structural behavior may exhibit 

highly nonlinear characteristics, especially in the large deformation stage. Accordingly, the total 

number of iterations required to solve the nonlinear mechanical model via multiple Markov chain 

iterations may introduce an extensive computational burden. As expected, when extending to 

nonlinear cases, the time required will multiply with the increase in iterations needed to solve the 

nonlinear mechanical model. 

 

 
Figure 7: Expected extensions to tunnels and pipelines to assist in structural health monitoring. 
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Despite these challenges, such an extension remains highly attractive. As illustrated in Figure 7, 

utilizing a laser scanner to acquire deformation data (d) on these structures facilitates the inversion of 

earth pressures (q(z)) with the proposed method. Upon identifying the critical factors—specifically, 

earth pressure—influencing structural performance, g(.) can be “driven” once again. This enables the 

execution of a real-time simulation, D=g(q(z)), to develop a mechanical digital twin model for these 

in-service and poorly performing structures. Such a model aids in structural health monitoring by 

providing comprehensive simulation outputs, including stress and damage profiles, which warrants 

further research in the future. 

5 Conclusions 

A trans-dimensional Bayesian load inversion method is proposed to infer earth pressures on in-

service underground structures using easily observable deformation data. The distinctive feature of 

this method, compared to state-of-the-art approaches, is its trans-dimensional framework, which 

facilitates the incorporation of load complexity into the inversion process. 

A case study is presented to illustrate its advancements and potential: traditional methods require a 

pre-assumption of pressure complexity, and inadequate assumptions can lead to poor inversion results 

that fail to identify true pressures. In contrast, the proposed method adaptively infers both the 

complexity and quantity of pressures, achieving satisfactory inversion outcomes without reliance on 

subjective assumptions. 

This paper demonstrates the proposed method on a diaphragm wall as an example. Expanding this 

approach to tunnels and pipelines is of great interest and could lead to mechanical digital twins for 

these structures. Due to length constraints, a more detailed exploration, rigorous validation, and 

discussion of uncertainty will be presented in future publications. 

Acknowledgement 

The authors acknowledge the supports from Natural Science Foundation of China (Grant No. 

72404233) and Guangdong Basic and Applied Basic Research Foundation (2025A1515010190). 

References 

Bowers, K., & Moss, N. (2018). Investigation and reconstruction of a London Underground 

tunnel, UK. Proceedings of The Institution of Civil Engineers-Civil Engineering, 171(1): 43-48. 

Carpio, F., Peña, F., & Galván, A. (2019). Recommended deformation limits for the structural 

design of segmental tunnels built in soft soil. Tunnelling and Underground Space Technology, 90, 

264-276. 

Denison, D. G. T., Mallick, B. K., & Smith, A. F. M. (1998). Automatic Bayesian curve fitting. 

Journal of the Royal Statistical Society, 60(2), 333-350. 

Gioda, G., & Jurina, L. (1981). Numerical identification of soil‐structure interaction pressures. 

International Journal for Numerical and Analytical Methods in Geomechanics, 5(1), 33-56. 

Gong, Q., Hui, X., & Tian, Z. (2023). Risk section classification of tunnel settlement based on 

land-use development simulation and uncertainty analysis. International journal of transportation 

science and technology, 12(3), 716-728. 

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model 

determination. Biometrika, 82(4), 711-732. 

Trans-Dimensional Statistical Inversion Z. Tian and X. Yin

967



Liu, Q., Liu, H., Huang, X., Pan, Y., Luo, C., & Sang, H. (2019). Inverse analysis approach to 

identify the loads on the external TBM shield surface and its application. Rock Mechanics and Rock 

Engineering, 52, 3241-3260. 

Liu, H., Liu, Q., Liu, B., Tang, X., Ma, H., Pan, Y., & Fish, J. (2021). An efficient and robust 

method for structural distributed load identification based on mesh superposition approach. 

Mechanical Systems and Signal Processing, 151, 107383. 

Liu, X., Bai, Y., Yuan, Y., & Mang, H. A. (2016). Experimental investigation of the ultimate 

bearing capacity of continuously jointed segmental tunnel linings. Structure and Infrastructure 

Engineering, 12(10), 1364-1379. 

Press, W. H. (2007). Numerical Recipes: The Art of Scientific Computing (3rd ed.). Cambridge 

University Press. 

Sanchez, J., & Benaroya, H. (2014). Review of force reconstruction techniques. Journal of Sound 

and Vibration, 333(14), 2999-3018.  

Tian, Z., Gong, Q., Di, H., Zhao, Y., & Zhou, S. (2022). What causes the excessive metro tunnel 

settlement in soft deposits: learned from a detailed case with factor decomposition. Bulletin of 

Engineering Geology and the Environment, 81(5), 212. 

Tian, Z., Xu, P., Gong, Q., Zhao, Y., & Zhou, S. (2023a). Health-degree model for stagger-joint-

assembled shield tunnel linings based on diametral deformation in soft-soil areas. Journal of 

Performance of Constructed Facilities, 37(3), 04023019. 

Tian, Z., Zhou, S., Lee, A., Zhao, Y., & Gong, Q. (2023b). A Bayesian-based approach for 

inversion of earth pressures on in-service underground structures. Acta Geotechnica, 19(4), 1911-

1928. 

Tian, Z., Zhou, S., Lee, A., Shan, Y., & Detmann, B. (2024a). How to identify earth pressures on 

in-service tunnel linings: Insights from Bayesian inversion to address non-uniqueness. Transportation 

Geotechnics, 48, 101344. 

Tian, Z., Lee, A., & Zhou, S. (2024b). Adaptive tempered reversible jump algorithm for Bayesian 

curve fitting. Inverse Problems, 40(4), 045024. 

Van Empel, W. H. N. C., Sip, J. W., & Haring, F. P. (2006). Design of repair measures of a 

damaged shield driven tunnel. Tunnelling and Underground Space Technology, 21(3), 338-339. 

Yan, Q., Zhang, W., Zhang, C., Chen, H., Dai, Y., & Zhou, H. (2019). Back analysis of water and 

earth loads on shield tunnel and structure ultimate limit state assessment: a case study. Arabian 

Journal for Science and Engineering, 44, 4839-4853. 

Yin, X., Liu, H., Chen, Y., Wang, Y., & Al-Hussein, M. (2020). A BIM-based framework for 

operation and maintenance of utility tunnels. Tunnelling and Underground Space Technology, 97, 

103252. 

Zhang, D. M., Liu, Z. S., Wang, R. L., & Zhang, D. M. (2019). Influence of grouting on 

rehabilitation of an over-deformed operating shield tunnel lining in soft clay. Acta Geotechnica, 

14(4), 1227-1247. 

Zhou, S., Jin, Y., Tian, Z., Zou, C., Zhao, H., & Miao, Z. (2024). Exploring the feasibility of 

prestressed anchor cables as an alternative to temporary support in the excavation of super-large-span 

tunnel. Railway Engineering Science, 32, 344-360. 

Zhou, S., Tian, Z., Di, H., Guo, P., & Fu, L. (2020). Investigation of a loess-mudstone landslide 

and the induced structural damage in a high-speed railway tunnel. Bulletin of Engineering Geology 

and the Environment, 79, 2201-2212. 

Zhou, Z., Chen, Z., He, C., & Kou, H. (2021). Investigation on the evolution characteristics and 

transfer mechanism of surrounding rock pressure for a hard-rock tunnel under high geo-stress: case 

study on the Erlang Mountain Tunnel, China. Bulletin of Engineering Geology and the Environment, 

80(11), 8339-8361. 

 

Trans-Dimensional Statistical Inversion Z. Tian and X. Yin

968


