
EPiC Series in Computing

Volume 58, 2019, Pages 55–64

Proceedings of 34th International Confer-
ence on Computers and Their Applications

Model Checking Approach for Deadlock Detection in an

Operating System Process-Resource Graph Using Dynamic

Model Generating and Computation Tree Logic

Specification

Thitivatr PatanasakPinyo

Faculty of Information and Communication Technology, Mahidol University
Salaya, Nakhon Pathom, 73170, Thailand

thitivatr.pat@mahidol.edu

Abstract

Deadlock between processes and resources is a serious problem in development of op-
erating system. Multiple methods were invented to deal with deadlock issue. Deadlock
detection is one method that allows a deadlock to take place then detects thereafter which
processes and resources have caused it. In traditional process-resource graph, we propose
an approach to detect a deadlock by implementing model checking technique and Computa-
tion Tree Logic (CTL) specification. In this paper, we modified traditional process-resource
graph such that the outcome graph satisfied valid model of Kripke structure, which over-
came limitations of traditional representation of process-resource graph and still preserved
every proposition, correctness, and property of the system. With the modified graph,
we designed a CTL specification that verified whether or not there existed a deadlock
caused by one or more pairs of process and resource. A Java application was developed
to implement the proposed approach such that it was capable of dynamically generating
a valid model for any process-resource graph input, dynamically generating CTL formula
for specification, and verifying the model with corresponding CTL formula.

1 Introduction

In a field of Operating Systems (OS), a deadlock is considered one major issue that highly
needed attention and solution because it can cause the whole computer system not to function
if remains unsolved [11]. In theorem, four ways of deadlock solutions have been mentioned,
which are: Ignore the deadlock, Detection and Recovery, Dynamic Avoidance, and Deadlock
Prevention. There is no judgement clearly stated that which solution is the most preferable by
OS designers. In this paper, we focus on the second strategy, which is Detection and Recovery,
which is to allow a deadlock to take place and then the OS tries to detect and resolve it. One
contemporary theory to handle this incident is to represent the system with process-resource
graph or resource allocation graph. A process-resource graph, G = (V,E), simulates a state
of the system at some specific time in the environment that there is only one resource of each

G. Lee and Y. Jin (eds.), CATA 2019 (EPiC Series in Computing, vol. 58), pp. 55–64

Model Checking Approach for Deadlock Detection in an Operating System ... PatanasakPinyo

type. An example is a computer system that has one magnetic disk, one SSD, one printer, and
one scanner. A process-resource graph contains a set of vertex and a set of edges like any other
graphs. Every vertex v ∈ V represents either a process or a resource. A process is an active
program or module that its instructions are currently loaded in the memory, partially or fully.
A process can be a foreground process like word processor, web application, music player or a
background process a.k.a. daemon. A resource is an actual hardware that a process needs to
use to complete a given task such as printer or optical storage. There are two types of edge
e ∈ E. The first type is an outgoing edge from process p to resource r. It represents a request
of r made by p. Since one resource can be needed by multiple processes at a time, it is possible
that there are several outgoing edges from several processes to a single resource. The second
type is an outgoing edge from resource r to process p. It represents that r is currently assigned
to p by OS. Since there is a constraint stated that one resource can be assigned to at most one
process at a time, there must not be more than one single outgoing edge from any resource.
Figure 1 shows an example of process-resource graph of a system at specific time. In Figure 1,
V has six vertices represented processes and resources in the system. There are three processes:
P0, P1, and P2. Along with them are three resources: R0, R1, and R2. Each resource can be
described according to its connected edges. R0 is requested by P0 and P2 while it is assigned
to P1. R1 is requested by P1 and it is assigned to no process. R2 is requested by P1 while it
is assigned to P2. Theoretically, a deadlock exists if and only if there is a cycle in the graph in
which processes and resources in the cycle have involved. It is obvious that a deadlock takes
place in the given system because we witness a cycle formed by P1, R2, P2, and R0. The cycle
represented an incident that P1 requests R2 while R2 is assigned to P2 whereas P2 has not been
able to release any resource yet because it still needs R0 to complete its task. Unfortunately,
R0 is assigned to P1 at the moment. Hence, this is a deadlock according to its definition [11].

Figure 1: Example of Process-Resource Graph.

Given a process-resource graph, G = (V,E), we know that both V and E are finite set.
Therefore, it could virtually be viewed, with additional modification, as finite state automata
or Kripke structure. A Kripke structure contains a set of states (vertices) and a set of transitions
(edges). Every Kripke structure can be verified whether or not it satisfies certain specification,
e.g., fairness property, by implementing model checking. A model checking is one technique
in formal methods that we use a mathematical process to verify property satisfaction of the
software system. Therefore, we raise an idea of substantially using model checking to verify
whether or not there exists a cycle in the graph rather than traditional complicated traverse-
based algorithm. However, we are not able to apply model checking on process-resource graph
directly because the graph itself is not a correct Kripke structure. To create a correct Kripke
structure, every state (vertex) in the structure must have at least one transition (outgoing edge).
This constraint contradicts with a traditional process-resource graph because it is possible to

56

Model Checking Approach for Deadlock Detection in an Operating System ... PatanasakPinyo

have a process p that requests no resource, i.e., p has no outgoing edge. Similarly, a resource
r that assigned to no process, i.e., r has no outgoing edge, can also exist. Figure 1 is also an
example of incorrect Kripke structure because R1 has no outgoing edge. Therefore, something
must be done to transform traditional process-resource graph to a correct Kripke structure
before verifying deadlock via model checking. In this paper, we proposed a method to modify a
process-resource graph to get a precise Kripke structure. We then illustrated how to generate a
model represented the structure as well as constructed a specification using Computation Tree
Logic (CTL) formula. Correctness of model, specification formula, and verification result was
also discussed.

The paper is organized as follows. Section 2 mentions related work. Section 3 gives an ex-
planation how we constructed our study, which consisted of designing the modification process,
designing a specification formula, and dynamically generating a program to verify the model.
Section 4 delivers a result as well as discussion. Finally, Section 5 summarizes our work.

2 Related Work

Tanenbaum and Bos [11] defined deadlock as “A set of processes is deadlocked if each process
in the set is waiting for an event that only another process in the set can cause” [Tanenbaum,
Andrew S and Bos, Herbert, “Modern Operating Systems”, Pearson (2015): 439, Pearson
Education Limited]. Leibfried [10] proposed an algorithm to detect potential deadlock by using
two matrices, one for adjacency matrix and another one for deadlocks matrix. Multiple matrix-
based solutions were invented to detect a deadlock in both single-core systems and parallel
systems [3, 8].

Model checking is a tool in formal methods that we use for checking some certain speci-
fication in a finite state model [1, 5]. With constraint that a set of states must be finite, we
can implement model checking to solve multiple finite state computer science problems such as
Tower of Hanoi or River Crossing [7]. By the way, the primary objective of model checking is
for verifying that whether or not a specification/proposition exists rather than testing. Those
specifications that always considered are fairness, liveness, and deadlock. Dijkstra [2] provided
a clear difference between testing and verifying as “Testing shows the presence, not the absence
of bugs” [Buxton, John N and Randell, Brian, Software Engineering Techniques: Report on
a Conference Sponsored by NATO Science Committee, NATO Science Committee, Scientific
Affairs Division, NATO, 1970]. However, existing articles [6, 12] were dealing with deadlock in
general finite state model of software rather than deadlock involved by processes and resources
in an operating system represented by a graph.

3 Methodology

For methodology, we divided into three subsections. The first subsection describes the way we
made a modification to the traditional process-resource graph such that the output satisfied
properties of Kripke structure. Next subsection explains how we dynamically created a model
of the graph, which consists of defining all states, transitions, and atomic propositions. The
created model was an input to a symbolic model verifier. The last subsection describes how we
generated a rigorous CTL formula to specify the model whether or not there existed a deadlock.

57

Model Checking Approach for Deadlock Detection in an Operating System ... PatanasakPinyo

3.1 Modification of Traditional Process-Resource Graph

As mentioning in Section 1, there is a conflict that a process-resource graph cannot directly be
treated as a finite state graph in Kripke structure because there is a possible case that a vertex
without any outgoing edge might exist. This incident is usually caused by either a process
does not request any resource or a resource is not assigned to any process in the system. This
conflict is needed to be solved such that, after modification, the result graph has zero vertex
with no outgoing edge.

To fix this issue, we removed every vertex that had no outgoing edge regardless of it was a
process or a resource. The reason we did because a vertex that has no outgoing edge cannot be
involved in any cycle. Hence, the removed process/resource could have never caused deadlock.
A serious consequence might occur when there is a vertex that has an outgoing edge to a
removed vertex. We overcame this issue by checking whether or not it has another outgoing
edge to another vertex that was not deleted. If it does, we do not need to do anything, otherwise,
we added a self directed edge to it. Although adding this kind of edge ruined the semantic of
process-resource graph because a process can only request a resource and a resource can be
assigned to only a process, this change led us to a qualified graph for Kripke structure since
every vertex had at least one outgoing edge. This correct Kripke structure creates many infinite
paths. We used the graph in Figure 1 as example. Before we started the process, we need to
check the correctness of process-resource graph to ensure it did not violate the constraint stated
that one resource can be assigned to at most one process at a time. We can check by constructing
a corresponding adjacency matrix A that corresponds to the process-resource graph G = (V,E).
The matrix A has m rows and n columns where m and n are numbers processes and resources
in the system. Pi ∈ V represents Process i. Rj ∈ V represents Resource j. Each element Aij

where 0 ≤ i < m and 0 ≤ j < n is assigned value according to the following function:

f(i, j) = Aij =

 0 (Pi, Rj) /∈ E ∧ (Rj , Pi) /∈ E
1 (Pi, Rj) ∈ E
2 (Rj , Pi) ∈ E

We applied the function with the example graph. The corresponding adjacency matrix, A,
was constructed and illustrated below:

A =

1 0 0
2 1 1
1 0 2


Once we had the matrix, we need to verify that every column contains only single 2, which

implies that one resource can be assigned to only one process. Applying this rule with A, all
three columns satisfied since first and third column had only one 2 at A10 and A22, respectively,
and the second column had no 2. Therefore, this instance of process-resource graph was correct
and ready to be modified.

For the part of modification, we saw that R1 is the only one vertex that does not have any
outgoing edge. We then removed R1 (Figure 2).

After removing R1, the result graph (Figure 2) satisfies to be a graph of Kripke structure.
Note that P1 previously had an outgoing edge to R1 but we did not add a self directed edge to
P1 because P1 has another outgoing edge to R2. The finite state structure depicted in Figure
2 can create many infinite paths, e.g., {P1, R2, P2, R0, P1, R2, P2, R0, P1, ...}

58

Model Checking Approach for Deadlock Detection in an Operating System ... PatanasakPinyo

Figure 2: Modified Graph.

3.2 Modeling the Graph

After we got the qualified graph, we started creating a model. There are three major components
of Kripke structure that need to be defined, which are set of states (S), set of transitions (T),
and set of atomic propositions (AP). We had already had S and T since we had the graph. S
was equal to a set of vertices. T was equal to a set of edges.

We defined one atomic proposition, state, state ∈ AP . A value of state is a label of the
state, e.g., (state = P2) in P2 or (state = R3) in R3. We then generated every transition in
term of proposition state as illustrated in Table 1. Hence, the part of generating a model of the
graph in Figure 1, which consisted of states, transitions, and atomic propositions was done.

Transition Reason

P0 → R0 There is an outgoing edge from P0 to R0

P1 → R2 There is an outgoing edge from P1 to R2

P2 → R0 There is an outgoing edge from P2 to R0

R0 → P1 There is an outgoing edge from R0 to P1

R2 → P2 There is an outgoing edge from R2 to P2

Table 1: Transitions Defined by Atomic Proposition.

3.3 CTL Formula for Specification

The last step was to define a CTL formula for specification. A property, denoted as q, the
generated model must preserve was that: for every state Si, there must not exist a path
that state property (state = Si) holds infinitely often except that a state property
(state = Si) holds in every state of that path. If a deadlock exists, then there must be a
cycle in the graph and, at least, one vertex (state) in that cycle must keep showing up infinitely
often in one infinite path. However, we had a case that some vertex could have a self directed
edge during modification process, which causes a cycle of only itself. Since we do not count
this type of cycle as deadlock, we need to ignore it. That is the reason why the property must
exempt this incident. Therefore, a deadlock does not occur if and only if the model satisfies
the proposed property q.

Since there were five states in our generated model (P0, P1, P2, R0, and R2), a CTL formula
representing q in the model can be written as “!(EF(p0 & EX(!p0 & EF(p0))) | EF(p1
& EX(!p1 & EF(p1))) | EF(p2 & EX(!p2 & EF(p2))) | EF(r0 & EX(!r0 & EF(r0
))) | EF(r2 & EX(!r2 & EF(r2))))” where pi in the formula stands for a state property

59

Model Checking Approach for Deadlock Detection in an Operating System ... PatanasakPinyo

(state = Pi) and ri in the formula stands for a state property (state = Ri). In the formula,
semantic of F(x) is that there eventually exists a state that satisfies the property x in the path
and semantic of G(x) is every state in the path satisfies the property x. A semantic of X(x) is
that the very next state from the current state satisfies the property x. A semantic of E(y) is
that a state S |= E(y) ⇐⇒ there exists a path pt initiated at S and pt |= y.

4 Results and Discussion

To implement the proposed approach, a Java program that dynamically retrieves a process-
resource graph of any size, then generates a model, and finally verifies it for any deadlock
existence has been developed. The program retrieves a process-resource graph, represented by
adjacency matrix, as input. After the matrix was completely read, the program generates a
model by making a modification based on our design that was previously mentioned. Figure
3 shows the output model of example graph (Figure 1), which had a corresponding adjacency
matrix A as showed in Subsection 3.1. Please note that the model was generated using syntax
defined by NuSMV [4]. NuSMV is a model checking software application that supports speci-
fication using CTL formula. In this implementation, the program also called NuSMV to verify
the generated model as well.

Figure 3: Generated Model.

In the Figure 3, an atomic proposition state was defined along with all possible values, which
were five states in the model, in the VAR section. ASSIGN section defined all valid transitions
in term of proposition state. The last section, DEFINE, contained all state properties that were
used in CTL formula for specification. The CTL formula was also generated from the program
(Figure 4). The generated formula was exactly the same as CTL formula that representing
propoerty q in Subsection 3.3. The part of CTL formula was generated at the last section of
the model.

When the model was ready, the program called NuSMV to verify whether or not the model
satisfied the specification property (Figure 4). If it did, there was no deadlock, otherwise,

60

Model Checking Approach for Deadlock Detection in an Operating System ... PatanasakPinyo

Figure 4: CTL Formula for Specification.

NuSMV would present a counterexample reporting a state that the specification property did
not hold. Figure 5 shows the result of verification after calling NuSMV. Since our example
contained a deadlock, the result stated that the specification (Figure 4) was false.

Figure 5: Verification Result.

Figure 6 shows the counterexample that was detected. From the counterexample, we can
see that the property state = R2 held in more than one state in the path. Therefore, there
evidently was a deadlock and R2 was one state that involved.

We did one more case with an ideally bigger operating system that comes with large numbers
of processes and resources to double check the accuracy. For this time, we had 5000 processes
(P0 to P4999) and 100 resources (R0 to R99). All edges in this graph were randomly generated.
Since it is not possible to illustrate both a graph and an adjacency matrix, we rather briefly
describe it as follows: R82 was assigned to P30 while P30 was requesting R72. However, R72 was
currently assigned to P22, who was requesting R82. After we executed the program with this
case, it successfully returned the cycle between these processes and resources (R82, P30, R72,
P22, R82) as showed in Figure 7.

Hence, the correctness of both model and CTL formula for specification of deadlock in
process-resource graph that dynamically generated by our proposed approach have been showed.
Since a complexity of solving a problem via model checking technique was proved to be O(n)
[1], using a technique of model checking to solve any finite state problem like deadlock detec-
tion in process-resource graph is effective [9] and avoids implementing a complex matrix-based
algorithm that is vulnerable from coding bugs, high consumption of computer resources, and
lack of code reusability. Only essential part that we have to bear in mind is that both model
and CTL formula we generate must be completely rigorous.

5 Conclusion

We proposed an alternative way to detect a deadlock in traditional process-resource graph in
the field of Operating Systems by using model checking, which is a technique to verify whether
or not a model satisfies a certain property. We provides a solution to modify a traditional
process-resource graph to a correct Kripke structure graph and generated a model to represent
it. We also generated a CTL formula as specification formula. After using NuSMV to verify
the model with specification formula, it returned precise detection of deadlock. If deadlock

61

Model Checking Approach for Deadlock Detection in an Operating System ... PatanasakPinyo

Figure 6: Execution Sequence as Counterexample.

Figure 7: Partial Execution Sequence as Counterexample.

existed in the system, it reported a sequence of processes and resources that were involved.
The proposed approach was effective, rigorous, and less complicated than other matrix-based

62

Model Checking Approach for Deadlock Detection in an Operating System ... PatanasakPinyo

algorithms.

6 Acknowledgements

This research project was partially supported by Faculty of Information and Communication
Technology, Mahidol University.

63

Model Checking Approach for Deadlock Detection in an Operating System ... PatanasakPinyo

References

[1] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

[2] John N Buxton and Brian Randell. Software Engineering Techniques: Report on a Conference
Sponsored by the NATO Science Committee. NATO Science Committee; available from Scientific
Affairs Division, NATO, 1970.

[3] K Mani Chandy, Jayadev Misra, and Laura M Haas. Distributed deadlock detection. ACM
Transactions on Computer Systems (TOCS), 1(2):144–156, 1983.

[4] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. Nusmv: a new sym-
bolic model checker. International Journal on Software Tools for Technology Transfer, 2(4):410–
425, 2000.

[5] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press, 1999.

[6] Ivaylo Dobrikov, Michael Leuschel, and Daniel Plagge. Ltl model checking under fairness in
prob. In International Conference on Software Engineering and Formal Methods, pages 204–211.
Springer, 2016.

[7] Saeed Doostali. An efficient solution for model checking abstract state machine using bogor. arXiv
preprint arXiv:1404.2155, 2014.

[8] Dror G Feitelson. Deadlock detection without wait-for graphs. Parallel computing, 17(12):1377–
1383, 1991.

[9] Jon Kleinberg and Eva Tardos. Algorithm Design. Pearson Education India, 2006.

[10] TF Leibfried. A deadlock detection and recovery algorithm using the formalism of a directed graph
matrix. ACM SIGOPS Operating Systems Review, 23(2):45–55, 1989.

[11] Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. Pearson, Pearson Education
Limited, Edinburgh Gate, Harlow, Essex, England, 4 edition, 2015.

[12] David M Williams, Joeri De Ruiter, and Wan Fokkink. Model checking under fairness in prob and
its application to fair exchange protocols. In International Colloquium on Theoretical Aspects of
Computing, pages 168–182. Springer, 2012.

64

	Introduction
	Related Work
	Methodology
	Modification of Traditional Process-Resource Graph
	Modeling the Graph
	CTL Formula for Specification

	Results and Discussion
	Conclusion
	Acknowledgements

