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Abstract 

The digital transformation in the Architecture, Engineering, and Construction (AEC) 

sector underscores the growing need for efficient data transmission, especially in 

computer vision tasks that depend on the transfer of large volumes of images. In this 

work, a novel method is introduced to enhance data transmission efficiency in an edge-

cloud coordinated architecture using Learned Image Compression (LIC). By integrating 

the LIC model with multiple downstream task models (Mask R-CNN and Faster R-CNN), 

the proposed framework aligns their respective latent features, resulting in a task-oriented 

LIC model that optimises compression for specific tasks. The approach increases the 

proportion of task-relevant information—referred to as information density—in the 

transmitted bitstream. Experimental results demonstrate that this method significantly 

reduces data transmission load while concentrating the transmitted bits on regions 

essential for downstream tasks, all without a notable decrease in task accuracy. 

1 Introduction 

1.1 Background 

The Architecture, Engineering, and Construction (AEC) industry is actively pursuing productivity 

improvements through advanced technologies such as robotics (Zhang et al., 2023), digital twins 

(Tuhaise et al., 2023), and extended reality (XR) (J. C. P. Cheng et al., 2020). These technologies 

provide opportunities for automating human-robot interaction, robotic-based construction, and 

infrastructure inspection. These technologies rely on fundamental processes like data collection, 

transmission, and processing. With advancements in Deep Learning (DL) and camera sensors, 

Computer Vision (CV) has gained significant attention in the AEC sector, raising the demand for 

extensive image data to support tasks such as image classification, object detection, and instance 
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segmentation (Xu et al., 2021). However, most current research focuses on enhancing task-specific 

accuracy through increasingly complex methods, with limited attention to evaluating the usability and 

real-time performance of CV algorithms from the perspectives of system architecture and data 

transmission. 
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Figure 1: The edge-cloud system in AEC (from the perspective of information flow) 

Due to the high computational demands of deep learning, equipping each edge device with powerful 

GPUs is inefficient and costly. Consequently, many studies propose an edge-cloud architecture as 

shown in Figure 1, where computationally intensive tasks are handled in the cloud-side server, while 

edge devices focus on data collection, data transmission, and information visualization (Alizadehsalehi 

et al., 2020; Cheng et al., 2020). For CV-related applications, on the edge side, captured images need 

to be compressed and encoded as bitstream for data transmission. On the cloud side, latent feature will 

be extracted from the reconstructed image by the encoder of pre-trained DL models and the task-related 

semantic information will be generated by the decoder of pre-trained DL models. This setup addresses 

the limited processing capacity of edge devices but highlights the requirements for data transmission 

and information extraction. 

Although there is research on data transmission in the AEC sector, it mainly focuses on hardware 

and communication layer protocols (Tuhaise et al., 2023), without addressing how to handle transmitted 

data and improve transmission efficiency. On the other hand, for information extraction in CV 

applications, more dense DL models are increasingly used in AEC, yet they are often deployed on 

powerful GPUs, neglecting the interaction between edge devices and the cloud-side server. Additionally, 

inspired by the research of Huang and Wu, high-level features extracted by encoders can be reused 

across multiple downstream tasks (Huang and Wu, 2024).  However, current AEC research mainly 

trains independent DL models for each task, leading to inefficient resource utilization and reduced real-

time performance. 

To address these limitations, this research focuses on two primary aspects: First, it aims to improve 

data transmission efficiency by enhancing the information density of transmitted image data within 

AEC domain. Specifically, Learned Image Compression (LIC) is introduced to prioritize task-relevant 

information rather than transmitting the entire image content. Second, a multi-task processing solution 

is proposed to integrate multiple downstream tasks within a unified framework, thereby maximizing 

computational reusability and improving efficiency. 
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1.2 Image Compression and Learned Imgae Compression 

  
Figure 2: Basic framework of image compression and learned image compression  

The basic format of data transmission is bitstream. For computer vision tasks, digital images are 

encoded into bitstreams and reconstructed by codecs, a process known as image compression. As shown 

in Figure 2, image compression generally consists of two main phases: encoding and decoding. The 

encoding process involves forward transform, quantization, and encoding, while the corresponding 

decoding process includes inverse encoding, inverse quantization, and image reconstruction. 

Traditional image compression algorithms, such as JPEG (Wallace, 1992), use handcrafted operators 

to remove redundant information (e.g., large uniform color areas), effectively reducing storage and 

transmission load with minimal quality loss of image according to human perception.  

Recently, with the rise of deep learning, LIC has emerged, transforming images into feature 

representations and removing redundancy through deep learning-based feature extractors, thereby 

supporting efficient downstream image reconstruction. Ballé et al. introduced the first end-to-end 

optimised model for image compression (Ballé et al., 2017). Later, Ballé et al. extended this work by 

incorporating a hyper-prior to better capture spatial dependencies in the latent representation (Ballé et 

al., 2018). Building on the success of auto-regressive priors in probabilistic generative models, Minnen 

et al. further improved the entropy model by adding an auto-regressive component (Minnen et al., 2018). 

Z. Cheng et al, enhanced the network architecture using residual blocks and integrated a simplified 

attention module, replacing the commonly used Single Gaussian Model (SGM) with a Gaussian 

Mixture Model (GMM) (Z. Cheng et al., 2020). To reduce the need for serial processing in 

autoregressive context models, Minnen and Singh proposed a channel-wise auto-regressive entropy 

model (Minnen & Singh, 2020).  

1.3 LIC-enhanced Machine Vision 

With advancements in computer vision, images captured by cameras are increasingly processed by 

Artificial Intelligence (AI) algorithms rather than being solely consumed by humans. Consequently, 

LIC has evolved in two directions: human-perception-oriented LIC and machine-vision-oriented LIC. 

Human-perception-oriented LIC focuses on transmitting data for reconstructing high-fidelity digital 

images while machine-vision-oriented LIC aims to convey task-relevant information. Figure 3 

illustrates the high-level JPEG AI framework referenced in the JPEG AI white paper, featuring three 

distinct pipelines. In this learning-based image coding framework, digital images serve as input, and 

the output bitstream can be processed in two ways: it can either be reconstructed through a standard 

pipeline for human visualization or it can be optimised for machine-vision-oriented LIC. This dual 

functionality demonstrates the framework's capability to meet both human and machine processing 

requirements. 
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Figure 3: JPEG AI learning-based image coding framework 

The concept of machine-vision-oriented LIC aligns well with the core principles of machine 

learning, where the objective is to extract essential features from raw data to create a latent 

representation for downstream decision-making or restoration tasks. This parallels the Minimum 

Description Length (MDL) principle in information theory, which seeks to find the most efficient model 

by minimizing the code length required to describe both the model and the data (Grünwald and Roos, 

2019). Thus, machine-vision-oriented LIC not only enhances compression efficiency by focusing on 

task-specific information but also reflects the broader objective of machine learning to extract and 

compress the most relevant features, creating synergies between visual analysis and data compression. 

The research of machine-vision-oriented LIC starts from Zhang et al.’s research, which they propose 

a research question of whether the bitstream of images and image features could be unified to serve 

both compression and retrieval simultaneously (Zhang et al., 2017). To address that, they proposed a 

content-based image retrieval system in which images are encoded once, and the encoded bitstream can 

be used for both image reconstruction and direct comparison for similar image retrieval. Several studies 

have focused on designing bitrate-efficient quantization for image compression while minimizing 

classification accuracy loss (Chamain et al., 2019; Liu et al., 2018). These joint rate–distortion–accuracy 

approaches aim to optimise quantization steps for JPEG and JPEG 2000 encoders to reduce both 

classification loss and bitrate. 

With the success of LIC, interest in visual compression for machine vision has surged, focusing on 

maintaining machine task performance on compressed data. Le et al. introduced the first end-to-end 

learned system that optimises the rate-distortion trade-off, where the distortion term includes the 

training loss of a pre-trained neural network task (Le et al., 2021a). Le et al. introduced a content-

adaptive fine-tuning method applied during inference, which aims to optimise the latent representation 

to enhance compression efficiency for machine-based tasks (Le et al., 2021b). Wang et al. developed 

an inverted bottleneck structure for the encoder and explored ways to refine the network architecture, 

specifically to improve compression performance for machine vision applications (Wang et al., 2021). 

2 Method 

This article presents a unified machine vision framework enhanced by LIC and applies it to the real-

world scenario of construction site monitoring in the AEC domain. This chapter will introduce the 

proposed method from three aspects: overall structure, feature alignment, and training details. 
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2.1 Overall Structure 

As shown in Figure 4, the proposed architecture comprises a single LIC model along with two 

downstream task models tailored for object detection and instance segmentation. Serving as the 

bottleneck of the overall framework, the LIC model is divided into an Encoder and a Decoder. The 

Encoder, deployed on an edge device, is primarily responsible for mapping raw images into a high-

dimensional latent feature while effectively filtering out redundant information. It dynamically selects 

high-level features pertinent to the downstream tasks and encodes these features into a bitstream. In 

contrast, the Decoder operates in the cloud side alongside the downstream task models, focusing on 

reconstructing high-level features from the bitstream and subsequently regenerating the digital images. 

These reconstructed digital images are then input into the pre-trained models of the downstream tasks, 

enabling the extraction of essential high-level semantic features. For object detection tasks, the 

extracted semantic feature includes class labels and bounding boxes; for instance segmentation tasks, it 

encompasses class labels and segmentation masks. 

  
 

Figure 4: Overall framework of LIC-enhanced multi-task machine vision 

2.2 Detail of LIC Model 

 
Figure 5: Detail of LIC model 

Figure 5 illustrates the fundamental architecture of the proposed LIC model, which primarily draws 

from the hyper-prior model presented by Ballé et al. (Ballé et al., 2018). This model is a dual-branch 

Variational AutoEncoder (VAE), designed to efficiently encode and compress image data while 

leveraging a hyperprior to enhance the modelling of latent representations. Q, EC and ED denote the 
quantization, entropy coding and entropy decoding, respectively. 
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The ga–gs branch is the main branch of the model, focusing on transforming the input image into its 

latent representation through encoding and then reconstructing it during decoding. The main branch is 

responsible for the actual compression and reconstruction of the image, ensuring that the salient details 

necessary for downstream tasks are preserved. 

The ha–hs is the hyperprior of the model. It acts as an auxiliary model that captures the statistical 

dependencies among the latent representations generated by the encoder. By modelling these 

dependencies, the hyperprior enhances the efficiency of entropy coding, allowing for more compact 

representations of the image data. It essentially predicts the probability distribution of the latent 

variables, which is crucial for effective lossless compression. This hierarchical approach improves 

reconstruction quality by reducing the overall bitrate while maintaining or enhancing image fidelity. 

The hyperprior and the main branch optimise the image compression process by enabling efficient 

representation and reconstruction of images. The hyperprior enhances the overall model's capacity to 

predict and encode data, while the main branch ensures that the essential features of the image are 

effectively captured and transmitted. 

Notably, the model depicted in Figure 5 is deployed in a distributed manner, with the encoder 

implemented on the edge device and the decoder on the cloud side. The encoder comprises components 

such as Q, EC, the Gaussian Entropy Model, along with the ha and ga modules, while the decoder 

includes Q, EC, the Gaussian Entropy Model, and the hs and gs modules, executing on the cloud side. 

For downstream tasks, this study focuses on two classic CV applications: object detection and 

instance segmentation. For the object detection task, the Faster R-CNN model is selected, while the 

Mask R-CNN model is chosen for instance segmentation. Both models utilise the Feature Pyramid 

Network (FPN) with a ResNet-50 backbone. 

Table 1 presents the parameter counts for the various models within this architecture. Notably, the 

LIC model exhibits a relatively smaller model size compared to the downstream task models. 

Furthermore, from the perspective of model deployment, the distribution of the computational load is 

facilitated by the separation of the LIC encoder and decoder across different devices, allowing for an 

efficient allocation of processing resources. 

Margin LIC Encoder LIC Decoder Mask R-CNN  Faster R-CNN  

Total params 6,604,337 9,237,565 43,982,622 41,356,561 

FLOPs (G) 9.13 9.26 14.180  12.058 

Table 1: Comparison of model sizes between LIC encoder, LIC decoder, and downstream task models 

2.3 Latent Feature Alignment 

In deep learning models, the carrier of information is the latent feature. The primary task of human-

perception-oriented LIC is to ensure that the latent feature contains more information relevant to human 

perception, such as colour and texture. However, machine-vision-oriented LIC differs in that the latent 

feature it reconstructs should be more relevant to downstream tasks, often forming a subset of the 

information related to human perception. In light of this, this paper proposes a Latent Feature Alignment 

method, allowing the LIC model to selectively retain information pertinent to downstream tasks in an 

end-to-end manner, thereby improving compression efficiency without significantly impacting task 

accuracy. 
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Figure 6: Feature pyramid network used for Faster R-CNN and Mask R-CNN 

To adapt LIC model for generating a decoded image suitable for machine perception, three steps are 

employed.  

⚫ First, feature extraction is performed on the original image using the FPN of a pre-trained 

task model, selecting several latent features—P2, P3, P4, P5, and P6—as 𝑓, as illustrated 

in the figure.  

⚫ Next, the LIC model is combined with the FPN, and the LIC model is trained while 

keeping the FPN frozen. In the same way, several latent features extracted by the FPN 

are denoted as 𝑓.  

⚫ Finally, the perceptual loss, defined as the difference between 𝑓 and 𝑓, is used as an 

additional term in the loss function, and the LIC model is trained through 

backpropagation. 

Through this end-to-end training setup, the information transmitted by the LIC model is aligned 

with the information extracted by the FPN relevant to downstream tasks, allowing the LIC model to 

prioritize the transmission of task-relevant information instead of the complete set of information 

present in the image. 

2.4 Training Detail 

The training data utilised in this study is derived from the publicly available dataset, which is divided 

into a training set (19,404 images), a validation set (4,000 images), and a testing set (18,264 images) 

(Xuehui et al., 2021). This dataset encompasses a total of 13 object classes, amounting to 116,380 labels. 

For the purposes of this research, a subset of the overall dataset was randomly sampled, with the 

distribution of the data illustrated in Table 2.  

Notably, the original dataset exhibits a significant long-tail distribution issue, which can adversely 

affect the recognition accuracy of classes with fewer instances. Consequently, this study focuses 

exclusively on four object classes, each having a label count greater than 500, to ensure sufficient 

representation and improve recognition performance. 

Category Worker Excavator Static crane Truck 

Train 12103 1431 1124 740 

Val 586 116 75 55 

Table 2: Distribution of instances across different types 
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The neural network constructed in this study has two primary optimization objectives: to reduce the 

bit rate (the amount of data transmitted) and to minimize the distortion (the loss of quality or accuracy). 

However, there generally exists a trade-off between these two objectives. To address this, the loss 

function was developed following the standard format of rate-distortion cost commonly used in the LIC 

domain, as illustrated in Equation (1). 

𝐿 = 𝑅 + 𝜆𝐷 (1) 

where 𝜆 is a Lagrange multiplier that controls the trade-off between rate 𝑅 and distortion 𝐷. By 

adjusting 𝜆, one can prioritize minimizing either the rate or the distortion depending on the specific 

requirements of the application. 

𝑅 = − log 𝑝(𝑧̃) − log 𝑝(𝑦̃|𝑧̃) (2) 

𝑅  represents the number of bits required to represent the compressed data, which is typically 

expressed in bits per symbol or bits per pixel in image compression contexts. It is calculated based on 

information theory principles, particularly using concepts from Shannon's entropy. 

𝐷 = 𝑑(𝑓, 𝑓) =
1

5
∑ MSE(𝑃𝑖(𝑥), 𝑃𝑖(𝑥′))

6

𝑖=2

(3) 

In LIC, 𝐷 typically reflects the difference between the original and the reconstructed digital image. 

In this paper, the perceptual loss 𝐷 measures the Mean Squared Error (MSE) between latent features 

extracted from the pretrained FPN as shown in Figure 6.  

3 Results 

To evaluate the effectiveness of the proposed method, this paper discusses the results from both 

qualitative and quantitative perspectives. 

3.1 Qualitative Result 

Figure 7 contrasts the original image and the image reconstructed by the traditional LIC model, 

Faster-R-CNN-enhanced LIC model and Mask-R-CNN-enhanced LIC model, while Figure 8 contrasts 

the task output based on the reconstructed image. 

The traditional LIC model effectively reconstructs some details of the original image but also 

introduces some artifacts. However, these artifacts have little impact on the accuracy of downstream 

tasks.  

On the contrary, the proposed machine-vision-oriented LIC model focuses specifically on regions 

relevant to downstream tasks during the image compression and reconstruction process, achieving high 

data reconstruction quality in those regions, which in turn results in certain accuracy for downstream 

tasks. For irrelevant regions, fewer bits are allocated, leading to lower image reconstruction quality. 
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Figure 7: Example of reconstructed images 

 
Figure 8: Example of task output based on reconstructed images 

Figure 9 illustrates the comparison of bit allocation across various regions in images reconstructed 

by the traditional LIC model and the Faster-R-CNN-enhanced LIC model. The results demonstrate a 

clear trend where the Faster-R-CNN-enhanced model concentrates a higher proportion of bits in regions 

crucial for downstream tasks, while allocating fewer bits to less relevant areas. This suggests that the 

proposed model effectively boosts the density of task-relevant information in the bitstream, thereby 

enhancing information efficiency. 
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Figure 9: Example of reconstructed images and corresponding bitmaps during image compression 

3.2 Quantitative Result 

The quantitative assessment of the proposed approach primarily centers on the trade-off between 

compression efficiency and the accuracy of downstream tasks. The selected evaluation metrics include 

the following: 

For image compression, the key performance indicator is bits per pixel (bpp), which indicates the 

average transmission load of the image. Higher bpp indicates lower compression ratio. 

bpp =
File Size(in bits)

Number of Pixels
(4) 

For object detection, the primary metric for evaluation is: 

mAP =
1

𝑁
∑ ∫ 𝑃𝑖(𝑅)𝑑𝑅

1

0

𝑁

𝑖=1

=
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

(5) 

where 𝑁 is the number of object classes; 𝑃𝑖(𝑅) is the precision as a function of recall for class 𝑖; 

∫ 𝑃𝑖(𝑅)𝑑𝑅
1

0
 represents the area under the precision-recall curve for class 𝑖 , which gives the 𝐴𝑃 for that 

class. 

For instance segmentation, the main metrics for evaluation are: 

mAP =
1

𝑁
∑ (

1

|𝑇|
∑ ∫ 𝑃𝑖

𝑡(𝑅)𝑑𝑅
1

0𝑡∈𝑇

)

𝑁

𝑖=1

=
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

(6) 

where 𝑁 is the Number of object classes; 𝑇 is set of IoU thresholds, typically ranging from 0.5 to 

0.95 with a step of 0.05; 𝑃𝑖
𝑡(𝑅)𝑑𝑅 represents the precision at recall 𝑅 for class 𝑖 at threshold 𝑡. 

Category 
JPEG LIC Faster-R-CNN-

enhanced LIC 

Mask-R-CNN-

enhanced LIC 

bpp 3.0281 0.133 0.078 0.108 

MSE --- 0.00116 0.00394 0.00291 

mAP (object detection) 51.354 48.512 44.817 48.179 

mAP (instance segmentation) 36.495 37.026 35.910 32.954 
Table 3: Comparison of bpp for LIC and mAPs for downstream task 
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Task Instance type JPEG LIC Faster-R-CNN-

enhanced LIC 

Mask-R-CNN-

enhanced LIC 

object detection 

Worker 52.157 50.995 47.071 45.481 

Excavator 65.875 65.724 61.961 58.231 

Static crane 48.995 46.78 43.608 37.046 

Truck 56.813 54.924 49.452 47.352 

instance 

segmentation 

Worker 44.528 43.481 39.398 36.509 

Excavator 41.557 41.207 39.773 37.643 

Static crane 26.148 26.079 22.283 20.803 

Truck 43.388 42.757 40.765 38.086 

Table 4: Comparison of 𝑨𝑷 for different instance types 

Table 3 presents a comparison of four methods—JPEG, LIC, Faster-R-CNN-enhanced LIC, and 

Mask-R-CNN-enhanced LIC—in terms of image compression efficiency and downstream task 

accuracy. The results indicate that the proposed method significantly improves data transmission 

efficiency compared to the original image, albeit with a minor reduction in task performance. When 

compared to traditional LIC models, the proposed approach substantially reduces the transmission load 

while maintaining similar levels of accuracy for downstream tasks, highlighting its effectiveness in 

increasing the density of task-relevant information in the bitstream. Table 4 further examines the 

detection accuracy of the four label types outlined in Table 2, reinforcing the findings and supporting 

the same conclusions.  

When combined with the conclusions drawn from Figure 7, these results suggest that the proposed 

method reduces the overall data transmission load while increasing the proportion of relevant 

information (information density) in the transmitted data, with minimal impact on the accuracy of 

downstream tasks. 

Moreover, the table compares the accuracy of semantic segmentation using Mask-R-CNN on 

images reconstructed by the Faster-R-CNN-enhanced LIC and the accuracy of object detection using 

Faster-R-CNN on images reconstructed by the Mask-R-CNN-enhanced LIC. The accuracy difference 

between these tasks is relatively small, indicating that the latent features extracted by the FPNs in 

different task models exhibit a notable degree of generalizability across different downstream tasks. 

This finding suggests the potential to further improve the reusability of modules within the proposed 

multi-task processing framework. Future work could focus on exploring strategies to further enhance 

this reusability to optimise calculation efficiency across multiple tasks. 

4 Colclusion 

The AEC sector is experiencing a transformation towards automation and intelligence. With rapid 

advancements in computer vision-based intelligent sensing, issues such as efficient data transmission 

and large-scale data storage have become increasingly important. However, current research on data 

transmission tends to focus either on optimizing existing hardware or on developing frameworks, with 

limited attention given to improving the information density of transmitted data. 

To address this gap, this paper introduces two perspectives: LIC and machine vision. LIC offers a 

research pathway for effective data compression using end-to-end methods, while the machine vision 

perspective integrates data transmission and multiple downstream computer vision tasks within a 

unified framework.  

Building upon these perspectives, this paper proposes a machine-vision-oriented LIC model that 

unifies LIC and machine-vision models through latent feature alignment. The proposed approach was 
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validated using a construction site monitoring dataset, and the results demonstrate that the model 

focuses transmission on task-relevant areas, allocating fewer resources to irrelevant image regions. 

Consequently, the method achieves a substantial improvement in data transmission efficiency without 

significantly compromising downstream task accuracy. 
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