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Abstract 
Regarding to importance of modeling calibration, this study will be focused on probabilistic role of 
different strategies in calibration and verification steps. Tank lumped conceptual model was selected as 
a hydrological platform to investigate the effects of each optimization strategy on model performance. 
However, much considerable efforts are required to calibrate a large number of parameters in conceptual 
models to obtain better results. With development of artificial intelligence, three probabilistic Global 
Search Algorithms (GSAs) including Shuffled Complex Evolution (SCE), Genetic Algorithm (GA) and 
Rosenbrock Multi-Start Search (RBN) and also three Objective Functions (OFs) consisted of Nash-
Sutcliffe (NSE), Root Mean Square Error (RMSE) and mean absolute error (MAE) were employed for 
model calibration (comparing the performance of different GSAs versus OFs). The best set of 
parameters, which is derived from the calibration step, will be used as prediction coefficients for the 
model verification stage. Performance evaluation of the simulation results was undertaken using 
Coefficient of Correlation (r) and Descriptive Statistics. 
Results indicated that all of optimization strategies have a relative ability to retrieve optimal values of 
eighteen parameters of the Tank model. However, the best GSAs for daily runoff simulation are SCE 
(0.871) and GA (0.864), respectively, for calibration and verification phases. In case of the OFs result, 
NSE (0.763) and RMSE (0.834) are more performant for calibration and verification of the model. 
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Finally, the best strategy was selected by combining the results of GSAs and OFs models. Finally, 
SCE*MAE (0.906) and GA*RMSE (0.868) were selected as a top series. 
 
Keywords: Conceptual Modeling, Global Search Algorithms (GSAs), Objective Functions (OFs), 
Rainfall-Runoff Process, Tank Hydrological Model. 
 

1. Introduction 
Hydrological processes are spatiotemporally variable and collection of accurate data across such a range 
of scales is challenging and costly [1]. Minimization of field investigation efforts in hydrological studies 
is of considerable interest. Hydrological models are basically mathematical descriptions of the different 
components of the hydrologic cycle. They generally attempt to quantitatively explain the fate of rainfall 
by apportioning it into a component returned to the atmosphere due to evapotranspiration, a part that 
percolates into a deeper zone of the ground to recharge the ground water, and a portion that turns into 
runoff. They further make a prediction on the temporal distribution of the resulting runoff [2]. The 
current generations of rainfall-runoff models are classified into empirical, conceptual and physically 
based models. Models can also be classified based on the spatial scale, lumped and distributed models. 
The primary Tank model’s conception was originally suggested by Sugawara and Funiyuki from Japan. 
It is a popular model, which is known as lumped conceptual hydrological model and many researchers 
have employed this model mainly due to its ease-of-implementation and computational functionality 
that enable the modelers to reach acceptable prediction accuracy compared to other complex modeling 
frameworks [3]. Regardless of the model structure, the simulation success of rainfall-runoff models is 
considerably dependent on the appropriate selection of the model calibration method (parameter 
optimization). Automatic calibration procedures could be performed by applying a searching or an 
optimization algorithm with an objective function to fit historical data of rainfall-runoff records. In 
recent years, various types of Global Search Algorithms (GSAs) were applied in automated Tank model 
calibration. Hence, in this study we use three typical candidates, respectively, the SCE, the GA and the 
Rosenbrock Multi-Start Search (RBN) techniques [4, 5, 6]. 
 

2. Material and Methods 
The study area is Korganrood watershed (Hashtpar City), which is located in Guilan Province, northern 
Iran (Fig 1). This area represents humid and temperate climatic conditions according the Domarten 
climate index [7]. The statistical data used in this study were selected according to the Tank model’s 
input (Sugawara et al., 1984). Accordingly, evapotranspiration, precipitation and daily discharge data 
(recorded by the Ministry of Energy) were used at daily scale. The logarithmic transformation method 
(Log10 x+1) was applied to rescale and normalize data distribution [8]. This transformation would leads 
us to find the best mathematical fit between observed and expected data during simulation, but for a 
realistic interpretation, simulated results were de-transformed to their real scales. The Tank model 
assumes the watershed as a series of storage vessels and the data required for model calibration are just 
precipitation, evapotranspiration and observed runoff. So, we applied the Tank model as a hydrological 
lumped platform to simulate rainfall-runoff process at the watershed scale (Fig 2). in this regard, A 
summation of all the lateral water flows is equal to a calculated water discharge (QC), such as follows 
[9, 10]: 

 ......................................................................................... (2.13) 
 
optimization strategies (searching algorithms and objective functions) was undertaken using Pearson 
coefficient of correlation (r), and eight common descriptive statistics such as mean, median, minimum, 
maximum, standard deviation (SD), coefficient of variation (CV), skewness and kurtosis. Pearson 
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coefficient of correlation and also the objective functions are presented as following (equations 1 to 4) 
[12]. 

 

 
Fig 1 Geographical location of the study area 
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Fig 2 Tank model structure [10] 

The process of the calibration demands a procedure to examine the runoff measured through a given set 
of parameter values and then to adjust the parameters, if required. Prior to calibration, 18 parameters 
were set to initial value. These parameters will be calibrated by GA, SCE and RBN Search Algorithms 
regarding three objective functions (MAE, RMSE and NSE) to automatically detect the best series of 
parameters that will produce the best fit between actual and simulated runoff [11] For finding the best 
configuration of the model, the Tank model will be calibrated through different collections of daily 
rainfall-runoff data and the learning mechanism in dependent of the type of search. Therefore, the 
adjusted value (for each series) at calibration step will be applied as prediction value at the verification 
step. Evaluation of the model performance (determining the differences between observed and predicted 
values) regarding  

Pearson Coefficient of Correlation (r): 

 ............................................................................................... (1) 

Mean Absolute Error (MAE): 

 ................................................................................................... (2) 

Root Mean Square Error (RMSE): 
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......................................................................................... (3) 

NSE-Sutcliffe (NSE): 

 .................................................................................. (4) 

 

3. Result and Discussion 
Agreement index values of the transformed data (0.708) (between rainfall and runoff records) in 
comparison with their original values (0.513), which would be good introduction for well rainfall-runoff 
modeling (hydrological series are capable to be modeled in perfect way). Calibration process was 
performed to achieve the best set of eighteen tank model’s parameters using the transformed data 
(Podger, 2005). This process consists of calibration and verification steps through which all parameters 
are firstly adjusted (optimized) and then assigned as prediction coefficients, respectively. Scatter plot 
results of simulated and observed plots are shown in Figure (3). Statement of the results was undertaken 
as the following steps.  

A) Case Scale: 
Accordingly, the best general agreement between observed and simulated runoff (regarding 

the coefficient of correlation) are provided as the following for calibration and verification steps, 
respectively (in descending format): 
Calibration step: SCE*MAE (0.906) > SCE*NSE (0.884) > GA*MAE (0.852) > SCE*RMSE (0.825) 
> GA*NSE (0.799) > GA*RMSE (0.764) > RNB*RMSE (0.681) > RNB*NSE (0.608) > RNB*MAE 
(0.514)  
Verification step: GA*RMSE (0.868) > GA*NSE (0.864) > GA*MAE (0.862) > SCE*NSE (0.852) > 
SCE*MAE (0.842) > SCE*RMSE (0.839) > RNB*RMSE (0.795) > RNB*NSE (0.781) > RNB*MAE 
(0.613). 
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A) Calibration (Blue) and B) Verification (Red) 

Fig 3 Scatter plots between observed and simulated runoff; 
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B) Group scale: 
In order to better understand the adopted strategies, the results of optimizers and objective 

functions could be compared as group wise. Hence, general agreement between observed and simulated 
runoff at group scale was calculated. The results for calibration and verification steps are derived as the 
following: 
SCE calibration group (average of all objective functions) is 0.871 
GA calibration group (average of all objective functions) is 0.805 
RNB calibration group (average of all objective functions) is 0.601 
 
NSE calibration group (average of all search algorithms) is 0.762 
MAE calibration group (average of all search algorithms) is 0.757 
RMSE calibration group (average of all search algorithms) is 0.756 
 
GA verification group (average of all objective functions) is 0.864 
SCE verification group (average of all objective functions) is 0.844 
RNB verification group (average of all objective functions) is 0.729 
 
RMSE verification group (average of all search algorithms) is 0.834 
NSE verification group (average of all search algorithms) is 0.832 
MAE verification group (average of all search algorithms) is 0.772 
 

4. Conclusion 
As the case-wise results (part 3.2 A, and scatter plots on Figure 3.3), the best and the weakest agreement 
indices respectively can be seen through the combination of SCE as a searching algorithm and MAE as 
an objective function (SCE*MAE 0.906) and RNB as a searching algorithm and MAE as an objective 
function (RNB*MAE 0.514) in calibration step. Also, the best and the weakest combinations of the 
verification step, respectively, were retrieved from GA as a searching algorithm and RMSE as an 
objective function (GA*RMSE 0.861) and RNB as a searching algorithm and MAE as an objective 
function (RNB*MAE 0.613). According to the group-wise results (part 3.2 B), the best and the weakest 
agreements are respectively related to the SCE calibration group (0.871) and RNB calibration group 
(0.601). The results for objective functions are NSE calibration group (0.763) and RMSE calibration 
group (0.756). In addition, the best and the weakest agreement results for verification groups are 
depicted respectively for GA (0.864) and RNB (0.729). The results for objective functions are RMSE 
calibration group (0.834) and MAE calibration group (0.772). 
The cross investigation of the top optimization strategies with descriptive statistics indicated that 
SCE*MAE has a great ability on kurtosis (-3%), skewness (-6%), median (+7%) and mean (+1%) 
modelling; moderate ability on maximum (-23%), standard deviation (-33%) and coefficient of 
variation (-34%) modelling; and inability on minimum (+1300%) modelling. GA*RMSE also has a 
great performance on median (+2%); moderate ability on mean (-11%), standard deviation (-39%), 
coefficient of variation (-32%), skewness (-28%); and inability on minimum (+50%), maximum (-56%) 
and kurtosis (-71%) modelling (irrespective of their total r2 agreement with observed values). A 
remarkable finding of this study is directly related to the dependency of the results in terms of ecological 
and climatological attributes of the study area. Therefore, conducting a complementary study using a 
wide range of watersheds and considering different attributes (as a hydrological unit) is critically 
suggested to promote the generalizability of the findings. Finally; according to the importance and 
necessity of each parameter’s role in modelling the process and also for better understanding of the 
model’s outputs, in future related researches, a sensitivity analysis method is suggested to apply for the 
total set of 18 parameters of the Tank hydrological model. 
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