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Abstract

n2 × n2 Sudoku puzzles can be straightforwardly encoded as SAT problems. However,
solving such puzzles for large n requires a significant amount of optimization. We present
some ideas for reducing the number of clauses, for improving the encoding, and for the
selection of suitable SAT solvers.

1 Introduction

Sudoku puzzles are quite common these days. In a n2 × n2 Sudoku the aim is to assign the
numbers 1 to n2 to each of the n2×n2 cells arranged in n×n square blocks, in a way that every
number appears only once in each row, column and block. There are many ways of solving such
problems automatically. We are using the well-known technique of solving satisfiability (SAT)
problems. It is possible to encode the Sudoku problem with all constraints in Conjunctive
Normal Form (CNF)[1, 2], which is used as input format for most SAT solvers. [3, 4] has
shown how to solve Sudokus with n = 12 efficiently using a SAT solver with an optimized CNF
encoding. Other approaches using evolutionary algorithms (see e.g. [5, 6, 7, 8, 9]) or considering
Sudokus as constraint problems (see e.g. [10, 11]) turned out to be not nearly as fast as the
SAT approaches or were not even able to solve the Sudoku puzzles at all, and we are unaware
of any published system which was able to solve Sudokus for n > 12.

The aim of our work was to build a Sudoku solver for participating in a local competition
at the TUD where Sudoku puzzles with 3 ≤ n ≤ 15 had to be solved using SAT solvers. The
goal of the competition was to build a correct system, which should solve as many Sudokus as
fast as possible given a certain time-out per puzzle. This paper presents the architecture of our
solver and the decisions that were made during development.

2 Encoding Sudoku Problems as Formulas in CNF

Each cell of a n2 × n2 Sudoku puzzle can contain a number between 1 and n2. This can be
represented by a triple (x, y, v), where x denotes the column, y the row, and v the assigned
number. In a valid solution of a n2 × n2 puzzle, each cell, row, column, and block contains
exactly one element of [1, n2]. This can be encoded with two conditions. The first one is often
called definedness and can be encoded for cells in the formula

n2∧
x=1

n2∧
y=1

n2∨
v=1

(x, y, v).

The second condition is uniqueness. For cells we obtain

n2∧
x=1

n2∧
y=1

n2−1∧
v=1

n2∧
w=v+1

(¬(x, y, v) ∨ ¬(x, y, w)).
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Figure 1: A Naked Single leading to the unit clause (4, 6, 1).
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Figure 2: A Hidden Single leading to the unit clause (8, 2, 1).

Similar definedness and uniqueness conditions are to be specified for rows, columns, and blocks
(see [3]).

In a Sudoku puzzle some values are assigned to some cells initially. This can be used to
remove redundancies by reducing the definedness and uniqueness formulas. For example, if it
is known that the cell (x, y) is set to v, then any clause which contains (x, y, v) can be removed
and from every remaining clause the literal ¬(x, y, z) can be deleted. The reader is referred to
[3] for more details. In the case of 152 × 152 Sudokus used in our experiments these techniques
led to a reduction from more than 5× 109 clauses to about 106 clauses.

3 Improving the Encoding and Selecting the Solver

In order to further reduce the number of clauses we applied additional preprocessing steps,
which are described in the following subsection. Thereafter, the preprocessing techniques are
evaluated by various SAT solvers.

3.1 Preprocessing

Ideally, domain dependent preprocessing techniques should speed up a SAT solver significantly
without taking too much additional time. We have selected the following techniques.

Naked Single (NS) Using methods from Constraint Solving we record for each cell the
number of possible values. If there is only one possible value v left for a cell (x, y), then the
unit clause (x, y, v) is generated (see Figure 1).

Hidden Single (HS) If there is only one valid position left for a value in a row, column, or
block, then a corresponding unit clause is generated (see Figure 2).

Intersection Removal (IR) If all possible occurrences of a certain number can be pinpointed
to precisely two entities (an entity can be a row, column, or block), all other possible candidates
for that number can be removed from those entities. For example if all possible occurrences of
1 in a row are in one block, then 1 must occur in the block in this particular row and all other
possible occurrences of 1 in this block can be removed (see Figure 3).
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Figure 3: Intersection Removal: value 1 must occur in the top most row of the grey block.

Preprocessing SAT4J zchaff MiniSAT PrecoSAT clasp
time TO time TO time TO time TO time TO

none 7617 6 13784 27 5116 3 2843 0 2300 1
(NS) + (HS) 7053 6 11298 22 4391 3 2990 2 2050 1
(NS) + (HS) + (IR) 6130 5 9826 21 3543 3 2710 0 1653 1

Table 1: Performance gain of the preprocessing techniques; time in seconds,TO denotes time-
outs.

In the following subsection we will discuss various SAT solvers. The performance gain of
the domain dependent preprocessing techniques is shown in Table 1. Some simple puzzles were
already solved after these preprocessing steps.

3.2 Systematic SAT Solvers

Initially, we considered the SAT solvers SAT4J-2.2.0, zchaff-2007.3.12, MiniSAT-2.070721,
PrecoSAT-465r2-100514, and clasp-1.2.0-SAT09. All tests were made on a 3.0GHz Core2 Duo
with 2GB of memory running Ubuntu Linux. We used 251 Sudokus with 3 ≤ n ≤ 15 and
a time-out of 300 seconds (see [12] ). Table 1 shows that SAT4J, zchaff, and MiniSAT were
outperformed by PrecoSAT and clasp as they were too slow and generated too many time-outs.
But shall we prefer PrecoSAT over clasp?

3.3 Positioning of the Clauses

While trying to improve the generation times for the CNF files, we experimented with the order
in which clauses are generated. Using the same 251 Sudoku puzzles as before, some of the tested
orderings are shown in Table 2. The first ordering was the one used in the previous tests and
lists the clauses for all the cells first and, thereafter, the clauses for rows, columns, and blocks.
The second ordering uses the same idea but lists the uniqueness clauses first and, thereafter,
all definedness clauses. The third ordering lists all information of a cell and its occurrence in
row, column, and block as close as possible together.

Besides the standard parameter setting of clasp, we tested clasp with various heuristics,
where VSIDS outperformed the other ones. After testing the different orderings and heuristics
we selected clasp-VSIDS and the third clause ordering.

3.4 Stochastic SAT Solvers

We also considered the stochastic local search solvers WalkSAT [13] and UBCSAT [14].1 We
tested various heuristics and selected the best one for our Sudoku puzzles: RNovelty+ [15].

1The UBCSAT implementation differs from WalkSAT in that the statistics used in the RNovelty+ heuristics
are generated completely from scratch instead of incrementally. This seems to speed up the solver by a factor
of 2.
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Figure 4: Different parameter settings for the search with UBCSAT for Sudokus with n ≥ 7.

RNovelty+ has two major parameters: p and wp. Initially, the solver randomly assigns truth
values to the variables. Thereafter, the heuristic chooses randomly a clause and flips a variable
such that the number of satisfied clauses is maximized. If a variable is chosen for the second time,
then depending on the probability p (see [16] for details) it is either flipped back or the second
best variable is flipped. With walk probability wp there will be a random walk, i.e., a randomly
chosen variable is flipped. In addition, there may be restarts. Based on our experiments we
decided to avoid restarts as they seem to increase the runtime. We set the cut-off for restarts
to 107 flips, which we never reached in our tests. Figure 4 shows the performance of different
parameter settings for UBCSAT with RNovely+ as well as of clasp-VSIDS.

3.5 Comparison of clasp-VSIDS and UBCSAT

We had chosen clasp-VSIDS as the fastest systematic solver which could be used for all puzzle
sizes. UBCSAT was our fastest stochastic solver, but – somewhat surprisingly – was unable
to solve smaller puzzles given the time-out of 300 seconds (see Table 3). On the other hand,
UBCSAT solved puzzles for n > 6 much faster than clasp-VSIDS. For the subset consisting
of all puzzles with n > 6 clasp-VSIDS needed 1060 seconds whereas UBCSAT needed only 95
seconds.

4 The Final Solver Suite

Finally, we implemented our SAT based Sudoku solver in Java. We used the extended encoding
presented in Section 2. We applied the domain dependent preprocessing techniques discussed

input clauses PrecoSAT clasp clasp-VSIDS
time TO time TO time TO

1st ordering 2710 0 1653 1 1395 0
2nd ordering 2765 0 1688 0 1437 0
3rd ordering 2461 0 1581 0 1368 0

Table 2: Evaluation of different orderings of the input clauses; time in seconds, TO denotes
time-out.
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in Subsection 3.1. We decided to use two instead of only one SAT solver: clasp-VSIDS for
Sudokus with n ≤ 6, which was about 300 seconds faster than PrecoSAT for puzzles of that
size, and UBCSAT with RNovelty+ for n > 6.

To sum up, we started naively with SAT4J, some time-outs (of 300 seconds) and more than
2 hours on the mentioned benchmark of Sudoku puzzles, and ended up with a combination of
clasp-VSIDS and UBCSAT solving all puzzles in 400 seconds.

The final competition involved 251 previously unseen Sudoku puzzles with 3 ≤ n ≤ 15,
however the time-out was now set to 60 seconds. Within this limit we solved all but 5 puzzles,
where each unsolved puzzle was a 62 × 62 puzzle.

5 Conclusion and Future Work

We found the encoding of [3] quite appropriate for Sudoku puzzles. Preprocessing had a major
impact and should be investigated further. We would like to have a better understanding to
what extend the ordering of the input clauses influences the performance. Why is UBCSAT
slow on small puzzles, but can solve the larger ones so easily? We would also like to rank puzzles
according to their difficulty, but we don’t know how to measure the difficulty. We would also
be interested in puzzles with n > 15.
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