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Abstract

Certifying results by checking proofs and models is an essential feature of modern SAT
solving. While incremental solving with assumptions and core extraction is crucial for many
applications, support for incremental proof certificates remains lacking. We propose a proof
format and corresponding checkers for incremental SAT solving. We further extend it to
leverage resolution hints. Experiments on incremental SAT solving for Bounded Model
Checking and Satisfiability Modulo Theories demonstrate the feasibility of our approach,
further confirming that resolution hints substantially reduce checking time.

1 Introduction

Many automated reasoning tasks rely on propositional satisfiability (SAT) solvers, including
hardware model checking [14, 38], planning [24] Satisfiability Modulo Theories (SMT) [9, 36],
and theorem proving [39]. Moreover, most of the time, they use SAT in an incremental way by
adding and querying formulas incrementally with the same SAT solver instance. The benefit of
such an incremental approach [19,40] is that information gained in one query can be reused to
speed up subsequent ones. Reused information includes the result of simplification obtained
through preprocessing steps, learned clauses from the search procedure and other internal state
of the SAT solver such as variable scores used in the decision heuristics.

In our experiments we consider two such important applications. The first is bounded model
checking (BMC) [10], where the distance k from an initial state to the conjectured bad state
is increased one-by-one and the encoding of the reachability problem within k steps can reuse
the encoding of all k − 1 transitions of the previous k − 1 reachability problem. The second
application is (lazy) Satisfiability Modulo Theories [9, 36], where the SAT solver drives the
search process but delegates theory reasoning to dedicated decision procedures which provide
theory lemmas. In both cases incremental use of the SAT solver gives huge performance gains.

As SAT solvers are consistently improving [12] an important argument in favor of factoring
out SAT solving from an automated reasoning task is that is allows simply updating the SAT
solver to improve overall performance. This is also one of the motivations of the recently
proposed generic incremental interface Ipasir-Up [21], which not only allows coarse-grained
interaction with the SAT solver as in BMC but also fine-grained interaction as in SMT.
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On the other hand one of the biggest achievements in SAT solving in the last decade was to
provide certificates for the result of the SAT solver, which can be checked independently, even
with verified checkers, in order to guarantee that SAT solver results can be completely trusted.
For satisfiable queries a model (satisfying assignment) is such a certificate and for unsatisfiable
SAT queries, polynomially machine checkable proofs are generated by the SAT solver [27,28].

Since 2016, proofs have become mandatory in the main track of the international SAT
solver competition [4], and have been adopted in industrial usage of SAT [15, 34]. Moreover,
they have many applications in automated reasoning tasks itself, from core generation, over
lifting proofs to interpolation. SMT proof generation is a highly sought feature. Ongoing work
including [6, 7, 29, 35] aims to lift the trustworthiness achieved in SAT solving to SMT. There is
similar motivation behind recent certification approaches for model checking [41–44].

However, despite some recent work [30], which needs a second pass over the whole proof,
we argue that a principled approach to proof generation in incremental SAT solving is still
missing. In this paper we show what is needed to make clausal proof formats incremental, for
SAT and potentially other formalisms, describe checking algorithms and provide experimental
evidence that also for incremental solving we can produce and check proofs efficiently. A major
new feature is that proof checking is incremental too. This means we can check proofs online,
without the need to store and post-process them on disk, in contrast to [30].

On top of our preliminary study presented at the MBMV’24 workshop [22] we extend our
incremental proof framework to fine-grained interactions between the SAT solver and the user,
as it is common in SMT. We further introduce a second linear proof format with clause and
antecedent identifiers as resolution hints, which, as our experiments show, reduces checking
time substantially. Besides evaluating hard bounded model checking problems, we also provide
experimental results on generating and checking proofs for SMT on the SAT solver side. Finally,
we have extended MiniSat, Glucose and CryptoMiniSat to produce incremental proofs, in
order to show that our approach generalizes beyond CaDiCaL, which remains our main focus.

This paper is structured as follows. The next section (Sect. 2) gives preliminaries and briefly
presents the IDRUP format. In Sect. 3 we introduce our linear proof format LIDRUP with
clause identifiers and hints before we briefly go over how to support fine-grained interactions.
Section 4 describes our checking algorithms and the implementation of our proof checkers. We
use a dedicated fuzzing approach discussed in Sect. 5 to develop and test proof production and
checking. The experimental set-up in Sect. 6 is followed by the experimental results in the
context of hard bounded model checking problems in Sect. 7 and SMT solving in Sect. 8.

2 Preliminaries

Given a set of variables V = {v1, v2, . . . , vn}, a propositional formula F over V in conjunctive
normal form (CNF) is a conjunction of clauses (F = C1 ∧ C2 ∧ · · · ∧ Cm), where a clause is a
disjunction of literals (Ci = l1 ∨ l2 ∨ · · · ∨ lki

) and a literal li is a Boolean variable (vi) or its
negation (v̄i). The set of literals is denoted L = {l1, l̄1, . . .}. When it is clear from the context,
we also interpret formulas as multi-sets of clauses and clauses as sets of literals.

We define a truth assignment to be a partial function assigning truth values true or false
to variables. Literal l = vj (resp. l = v̄j) is satisfied by a truth assignment if it assigns true
(resp. false) to vj . A clause is satisfied by it if at least one of its literals is satisfied by it. A
CNF formula is satisfied by a truth assignment if every clause of it is satisfied by it. If such a
satisfying truth assignment exists, the formula is called satisfiable, otherwise it is unsatisfiable.

An incremental SAT problem is a sequence of queries where each query (∆, A) consists of
a set of clauses ∆ and a set A of assumptions. A query poses the question whether the set of
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all clauses accumulated from all previous queries and the current set of clauses and current
assumptions are together satisfiable or not. More formally, an incremental SAT problem P is
⟨Q1, Q2, . . . , Qn⟩ where for each 1 ≤ i ≤ n, query Qi = (∆i, Ai) is satisfiable if and only if

(
∧i

j=1 ∆j) ∧Ai is a satisfiable formula. The following example demonstrates this formalization
and shows some further possible representations of incremental SAT problems.

Example 2.1 (Incremental SAT Problem P ). Consider clauses with V = {v1, v2, v3, v4}:

C1 = (v̄1 ∨ v3 ∨ v4), C3 = (v̄2 ∨ v̄3 ∨ v4), C5 = (v̄1 ∨ v2),
C2 = (v̄1 ∨ v3 ∨ v̄4), C4 = (v̄2 ∨ v̄3 ∨ v̄4), C6 = (v1 ∨ v̄2), C7 = (v1 ∨ v2).

Then the following three queries together form the incremental SAT problem P = ⟨Q1, Q2, Q3⟩:

Q1 = ({C1, C2, C3, C4}, {v1, v2}) 7→ C1 ∧ C2 ∧ C3 ∧ C4 ∧ v1 ∧ v2 satisfiable?
Q2 = ({C1, C2, C3, C4, C5, C6}, ∅) 7→ C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 satisfiable?
Q3 = ({C1, C2, C3, C4, C5, C6, C7}, ∅) 7→ C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 satisfiable?

The first query (Q1) uses assumptions and asks if there is a solution to C1 ∧ · · · ∧ C4 such that
both v1 and v2 are true. Since there is no such satisfying truth assignment, the answer to that
query is UNSATISFIABLE. The next query (Q2) asks if strengthening the clauses of Q1 with
C5 and C6, i.e. if C1 ∧ · · · ∧ C4 ∧ C5 ∧ C6 is satisfiable. Though Q1 was unsatisfiable and Q2

refines it with further clauses, the assumptions v1 and v2 of Q1 are not considered anymore in
Q2, hence the answer to Q2 is SATISFIABLE (consider the truth assignment {v̄1, v̄2, v3, v4}).

The third query further constrains the clause set of Q2 by conjoining C7 to it and, just as
in Q2, no assumptions are considered here. Since C1 ∧ · · · ∧ C4 ∧ C5 ∧ C6 ∧ C7 is unsatisfiable,
the answer to Q3 is UNSATISFIABLE. Now the accumulated clause set became unsatisfiable,
independently from any assumptions, and thus no satisfiable queries are possible after Q3.

Fig. 1 shows how such an incremental SAT problem can be formulated to be solved by an
incremental SAT solver. The usual way is to define such problems step-by-step through the API
of SAT solvers (Fig. 1a). On the right side (Fig. 1b) the complete interaction between SAT
solver and user during solving P is described in the ICNF format(cf. [22] or Fig. 10).

Certifying the correctness of the answer of a SAT solver is a fundamental feature, expected to
be supported by every modern tool. When a problem is satisfiable, a satisfying truth assignment,
also called model, suffices as witness. When a formula is unsatisfiable, however, the solver
provides a formal proof which justifies the inconsistency of the given problem.

The most common clausal proof formats of SAT solvers capture contradictions found
during solving as RUP (Reverse Unit Propagation) [23,25] and RAT (Resolution Asymmetric
Tautologies) [26] inference steps. Each RUP proof step contains a clause which is either an
input clause or can be derived from previous clauses by a single RUP inference step as follows.
A clause C can be derived from a formula F with a RUP inference step if unit propagation on
the conjunction of F and the negation of C leads to a conflict.

Similarly, the RAT proof system allows the derivation of clauses by RAT inference steps,
where a clause C with literal l can be derived from a formula F with a RAT inference step if
every possible resolution with C on l in F derives a RUP resolvent clause.

Clauses derived from other clauses of a formula are redundant and can be deleted again
without changing the satisfiability of the problem. Including such deletion steps in RUP and
RAT proofs (called then DRUP and DRAT) can significantly speed up proof checking. Recent
proof formats, such as FRAT [2] and LRAT [17], further enhance proof checking by including
in each clause addition step some hints, a chain of antecedent clause identifiers.
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s.clause(-1, 3, 4);

s.clause(-1, 3,-4);

s.clause(-2,-3, 4);

s.clause (-2,-3,-4);

s.assume (1);

s.assume (2);

assert(s.solve () == 20);

assert(s.failed (1));

assert(s.failed (2));

s.clause(-1, 2);

s.clause( 1,-2);

assert(s.solve () == 10);

assert(s.val (1) < 0);

assert(s.val (2) < 0);

s.clause( 1, 2);

assert(s.solve () == 20);

(a) The incremental SAT problem P in C++.
The code follows the interface of CaDiCaL [11],
but the standard C API of incremental SAT
solvers (Ipasir [3]) has similar functionalities.

p icnf

i -1 3 4 0

i -1 3 -4 0

i -2 -3 4 0

i -2 -3 -4 0

q 1 2 0

s UNSATISFIABLE

f 1 2 0

i -1 2 0

i 1 -2 0

q 0

s SATISFIABLE

v -1 -2 -3 -4 0

i 1 2 0

q 0

s UNSATISFIABLE

f 0

(b) The incremental SAT problem P in
ICNF format, an extension of DIMACS
to capture incremental SAT queries in a sin-
gle file (cf. [22] or Fig. 10).

Figure 1: Two further representations of P , the incremental SAT problem of Example 2.1.

One challenge in certification of incremental SAT queries is how to certify with existing SAT
proof techniques when the set of clauses is satisfiable, but none of its solutions satisfies the
assumptions (i.e., when (

∧i
j=1 ∆j) ∧Ai is unsatisfiable, but (

∧i
j=1 ∆j) is satisfiable). Therefore

we proposed at the MBMV’24 workshop [22] the IDRUP proof format. It extends DRUP
by allowing to capture proofs of incremental SAT queries. In IDRUP each incremental query
can be explicitly certified: (i) SAT queries are proven by a given (partial) satisfying truth
assignment (ii) unsatisfiable queries are certified by deriving Āi. Note that Āi is the empty
clause if the query is unsatisfiable without or independent of any assumptions. The following
example illustrates how DRUP and IDRUP proofs look like for incremental SAT problems.

Example 2.2 (cont. of Example 2.1). Fig. 1a demonstrates how to solve problem P using
an incremental SAT solver. To verify the correctness of the answer to a query, it generates
a clausal proof derivation (for example by listing the derived RUP clauses). However, for
existing proof formats (and SAT solvers) it remains unclear how the proof should look when the
accumulated clauses are satisfiable, but not under a given set of assumptions. As illustrated in
Fig. 2a, one option is to derive a conflict as if assumptions would have been original input unit
clauses. This however intermixes several conflicts in one proof, making it challenging to certify.
Another option (see Fig. 2b) is to derive the empty clause only when the clauses on their own
are contradictory. This however has the risk that the produced proof will contain no conflict at
all, for example when every query of the problem is only unsatisfiable due to assumptions. A
third option is our IDRUP proof format (see Fig. 2c) which provides explicit certification for
every query, i.e., both satisfiable and unsatisfiable queries. It keeps track of clause derivation
and deletion steps done by the solver (‘l’, ‘d’ and ‘w’ lines), as well as the returned answer (‘s’
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4 -2 -1 0

-2 -1 0

0

1 0

0

(a) A possible non-incremental
DRUP proof produced while
solving problem P . Each unsat-
isfiable query induces a deriva-
tion of the empty clause, as if
assumptions of the query would
have been added as unit clauses.

-4 -2 -1 0

-2 -1 0

d -4 -2 -1 0

2 0

-1 0

0

(b) Another possible DRUP
proof of problem P . Here the
empty clause is derived only
when the clauses of the query,
independently from the assump-
tions, are unsatisfiable.

p idrup

i -1 3 4 0

i -1 3 -4 0

i -2 -3 4 0

i -2 -3 -4 0

q 1 2 0

l -4 -2 -1 0

l -2 -1 0

d -4 -2 -1 0

s UNSATISFIABLE

u 2 1 0

i -1 2 0

i 1 -2 0

q 0

s SATISFIABLE

m -1 -2 -3 -4 0

i 1 2 0

q 0

l 2 0

l -1 0

l 0

s UNSATISFIABLE

u 0

(c) Proof of P in IDRUP format.
Every query and its answer are
explicitly stated and certified.

p lidrup

i 1 -1 3 4 0

i 2 -1 3 -4 0

i 3 -2 -3 4 0

i 4 -2 -3 -4 0

q 1 2 0

l 5 -4 -2 -1 0 2 4 0

l 6 -2 -1 0 5 1 3 0

d 5 0

s UNSATISFIABLE

u 2 1 0 6 0

i 8 -1 2 0

i 9 1 -2 0

q 0

s SATISFIABLE

m -1 -2 -3 -4 0

i 10 1 2 0

q 0

l 11 2 0 8 10 0

l 12 -1 0 11 6 0

l 13 0 12 11 9 0

s UNSATISFIABLE

u 0 13 0

(d) Same proof in LIDRUP,
which also supports clause identi-
fiers and derivation hints.

Figure 2: Certificates for the incremental SAT problem of Ex. 2.1. On the left we show possible
but inadequate DRUP proofs generated for such a problem. These short-comings are addressed
by our new formats, with examples in the middle (IDRUP) and on the right (LIDRUP).

lines) and any further queried information, such as models (‘m’ lines) and unsatisfiable cores (‘u’
lines). For more details on IDRUP see [22] or Fig. 11.

3 Supporting Clause Identifiers and Antecedent Hints

Our IDRUP proof format and checker, first proposed at the MBMV’24 workshop [22], has the
goal to establish a certification standard for incremental use cases of SAT solvers. However, the
original version comes with limitations in terms of flexibility and particularly scalability. We
address these scalability shortcomings by extending our framework to LIDRUP, which supports
clause identifiers and antecedent hints. This reduces proof checking time substantially, similarly
to LRAT vs. DRAT in non-incremental certification [32,33].

We first describe the (i) proof steps in our LIDRUP proof format informally, then give
precise but abstract (ii) formal semantics, before presenting (iii) concrete syntax. Readers
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familiar with the standard proof formats of non-incremental SAT solvers maybe can skip to
Example 3.1 which allows to grasp the main features of IDRUP and LIDRUP compared to
DRUP. The list of possible LIDRUP proof steps is as follows:

• Input clauses (‘i’): An input clause addition step has a unique clause identifier (ID)
followed by its literals, encoded as in the DIMACS format (i.e., as integers). The clause IDs
are not required to be in order and input clauses can occur during solving too (cf. Sect. 8).

• Queries (‘q’): A query step indicates that the solver is asked to solve the accumulated
formula, consisting of all clauses before this line (possibly weakened and restored as
discussed below), under the additionally given (possibly empty) set of assumption literals.

• Learned clauses (‘l’): This step introduces a unique clause ID for followed by the
literals of a clause that has been derived by the solver (e.g. during conflict analysis [31] or
preprocessing [13]). For LIDRUP in contrast to IDRUP the antecedent clause IDs have
be to added as hints too (sufficient to derive the learned clause by resolution).

• Deleted clauses (‘d’): This step indicates that a set of clauses (given by their IDs) is
completely eliminated from the formula and can be ignored in subsequent proof steps.

• Weakened clauses (‘w’): This step indicates that a set of clauses (given by their IDs) is
temporarily removed (i.e. weakened [20]) from the formula and can therefore be ignored
when checking subsequent proof steps. These clauses may be reintroduced (i.e. restored [20])
later in the proof. Thus their removal must be distinguished from deleted clauses.

• Restored clauses (‘r’): This step indicates that a set of clauses (given by their IDs)
have been reinserted (i.e., restored [20]) into the formula because some of the solver’s
previous weakening steps need to be reversed.

• Status (‘s’): This step explicitly states the SAT solver’s answer to the previous query
(i.e., the last ‘q’ line), it can be SATISFIABLE, UNSATISFIABLE or UNKNOWN. The
UNKNOWN answer indicates that the solver was terminated before reaching a conclusion.

• Models (‘m’): This step gives the model produced by the SAT solver after receiving a
SATISFIABLE answer. The model is supposed to satisfy all input clauses given before
this step, including weakened and also input clauses added by a propagator (cf. Sect. 8).

• Unsatisfiable cores (‘u’): After an UNSATISFIABLE answer, this step lists all failed
assumptions of the last query, i.e., the solver claims that these literals form an unsatisfiable
core (the input clauses are unsatisfiable if these literals are assumed). Again as for learned
clauses, LIDRUP requires in contrast to IDRUP to also specify the antecedent clause
IDs as hints (sufficient to derive the clause consisting of the negation of the core literals).

Note that in non-incremental SAT problems it is guaranteed that none of the previously weakened
clauses will be restored, so in the proofs of these problems there was no need to distinguish
between drop and weaken steps, nor between learned and restored clauses. For a more formal
treatment of incremental solving see [20,30].

The state of a LIDRUP proof can be captured on an abstract level by a triplet (σ,A,P), where
σ is a partial function N → P(L) mapping clause identifiers to sets of literals (i.e., representing
clauses), A ⊂ N is the set of IDs of active clauses and P ⊂ N is the set of clause IDs of the
passive clauses. Initially the domain of σ, and the sets A and P are all empty. Then, given a
LIDRUP proof, the following function describes how a step S updates the state of the proof.
Note that in Sect. 4 we will provide further details on how to validate if a proof step is correct,
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<lidrup > = { <comment > "\n" } <header > "\n" { <line > "\n" }

<comment > = "c " <any -character -but -new -line >

<header > = "p lidrup"

<line > = <comment > | <input > | <query > | <lemma > | <delete > |

<weaken > | <restore > | <status > | <model > | <core >

<input > = "i " <id> { " " <literal > } " 0"

<query > = "q" { " " <literal > } " 0"

<lemma > = "l " <id> { " " <literal > } " 0" { " " <id> } " 0"

<delete > = "d" { " " <id> } " 0"

<weaken > = "w" { " " <id> } " 0"

<restore > = "r" { " " <id> } " 0"

<status > = "s SATISFIABLE" | "s UNSATISFIABLE" | "s UNKNOWN"

<model > = "m" { " " <literal > } " 0"

<core > = "u" { " " <literal > } " 0" { " " <id> } " 0"

<id> = <pos >

<literal > = <pos > | <neg >

<pos > = "1" | "2" | ... | <INT_MAX >

<neg > = "-" <pos >

Figure 3: Syntax of the LIDRUP proof format. Choices are separated by vertical bars, while
application of the Kleene’s star operator to denote finite abitrary repetition is marked with curly
braces. Compared to the IDRUP format LIDRUP requires clause identifiers for input and
lemma lines and hints in form of antecedent clause identifier lists for lemmas and unsatisfiable
core lines. For deleting, weakening and restore lines the IDRUP format only expects a single
clause given explicitly by its literals instead of clause identifiers. Thus IDRUP lines uniformly
only consist of literals except for comments, the header and status lines.

while here we only show how a correct step changes the state of the proof.

(σ′,A′,P ′) =



(σ ∪{id 7→ C},A ∪{id},P) if S is ‘i’ line with id ∈ N, clause C

(σ ∪{id 7→ C},A ∪{id},P) if S is ‘l’ line with id ∈ N, clause C

(σ \ I, A \ I, P) if S is ‘d’ line with I ⊂ N clause IDs

(σ, A \ I, P ∪ I) if S is ‘w’ line with I ⊂ N clause IDs

(σ, A ∪ I, P \ I) if S is ‘r’ line with I ⊂ N clause IDs

(σ, A, P) otherwise.

where σ′ = σ \ I means that for all n ∈ I: σ′(n) is undefined, with other values unchanged.
An important difference compared to the semantics of IDRUP proofs is that since each

clause has a unique identifier, there is no need to consider multi-sets of clauses any more. The
clause IDs also allow to delete, restore or weaken multiple clauses in a single step. Further, as
we will see it in Sect. 4, they also simplify the implementation details of proof checking.

Regarding syntax, LIDRUP builds on IDRUP as LRAT extends DRAT. Our proposed
LIDRUP format is indeed very similar to IDRUP, with only a few very important differences:
(i) a unique identifier for each clause is explicitly introduced, (ii) learned clauses and cores are
annotated with clause identifier antecedent chain hints of resolution steps and (iii) batched
restore, delete and weaken steps. The syntax of the LIDRUP format is depicted in Fig. 3. Note
that the proof header does not require the specification of the number of clauses nor variables
because we are considering incremental problems where this is usually not known in advance.
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CaDiCaL
cvc5-

ipasirup

Lidrup-Check

SAT

interactions

LIDRUP
proof

SMT
problem

Success
or Error

CaMiCaL CaDiCaL

Lidrup-Check

SAT

interactions

ICNF
LIDRUP
proof

AIGER
problem

Success
or Error

Figure 4: Workflow of proof generation in two of our experiments.

Example 3.1. Continuing our running example, Fig. 2d depicts how a certificate for the
incremental problem P looks in the LIDRUP proof format. In that example the number of
steps is the same as in IDRUP, but this time every new (input or derived) clause starts with an
identifier. Further, each clause addition step has a second component providing resolution hints,
i.e., identifiers of the antecedent clauses. Clause deletion, weakening, and restore steps (‘d’, ‘w’
and ‘r’) can also use these clause identifiers, thereby batching multiple steps into one.

There is recent interest in the context of incremental SAT reasoning to precisely describe
more fine-grained interactions between the user and the SAT solver during SAT solving. Target
applications are for instance lazy SMT [36], or Satisfiability Modulo Symmetries [45].

In this regard, the recently proposed Ipasir-Up interface [21] notifies users about internal
assignments done by the SAT solver. At the same time, it allows users to add new constraints to
the problem, while the solver is solving the query (is within the CDCL loop). Hence, use cases
of the Ipasir-Up interface heavily rely on the incremental reasoning features of the underlying
SAT solver and so producing certificates of them is essential but challenging.

However, our new proof formats LIDRUP and the new version of IDRUP in this paper
easily allow to capture not just the solver reasoning steps, but user interactions as well, including
Ipasir-Up use cases. The only additional requirement is that in such use cases input clauses
are allowed to be added between the query (‘q’) and answer status lines (‘s’). As a consequence
the proof contains all clauses added by the external propagator during solving too.

Repeating input and external clauses in the certificate allows proof checkers to validate that
the problem solved by the solver is indeed the same problem that the user intended to solve, i.e.,
the interactions between the solver and the user are correct. However, this feature can quickly
become cumbersome in applications where the interaction is relatively simple but potentially
introduces an enormous amount of constraints. For this reason, we have defined LIDRUP so
that it can be checked even in the absence of the corresponding ICNF interaction file.

4 Checking Proofs with Clause Identifiers and Hints

Our LIDRUP proof checker Lidrup-Check1 started as a fork of the Idrup-Check2 proof
checker for IDRUP [22]. It uses hints of antecedent clause identifiers as in the LRAT proof
format [17], as supported by CaDiCaL [33], for faster checking of derived lemmas and cores.

Both Idrup-Check and Lidrup-Check provide as a new feature a weaker mode where only
the proof file is checked as on the left of Fig. 4. The control-flow described as an automaton of
this proof-only and single-file mode is shown in Fig. 5. It also serves as a simple view on how

1https://github.com/arminbiere/lidrup-check
2https://github.com/arminbiere/idrup-check
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PROOF_HEADER

PROOF_INPUT

 p lidrup

 i | l | d | r | w

PROOF_CHECK

 q  s UNKNOWN 

end-of-checking

  $    

 i | l | d | r | w 

PROOF_MODEL

 s SATISFIABLE 

PROOF_CORE

 s UNSATISFIABLE 

 m  u 

Figure 5: This automaton describes the control-flow of Lidrup-Check (and Idrup-Check if ‘p
lidrup’ is replaced by ‘p idrup’) in single-file mode (left workflow in Fig. 4). After the header,
input clauses in ‘i’ lines are added, and optionally simplified to lemmas from ‘l’ lines, which are
checked and added too. These clauses can be deleted, weakened and restored according to the
‘d’, ‘w’ and ‘r’ lines. A new incremental query is started with a ‘q’ line followed by again reading
input clauses, lemmas, deleting, weakening and restoring them. An ‘s’ status line ends this part
which corresponds to the SAT solver running a CDCL loop interleaved with inprocessing and
potential interaction with a user propagator. For instance ‘i’ lines read in ‘PROOF CHECK’ allow
to capture theory lemmas provided by an SMT solver. One query is concluded by a model in an
‘m’ line in the satisfiable case and by an unsatisfiable core of failed assumptions (of the query) in
a ‘u’ line. Early termination or hitting a limit is modelled by an unknown status line.

incremental proof checking actually works. Note, that this mode requires the user to trust (or
check independently) that the interactions recorded in the proof match those actually occurring.

In general it is recommended that the checker is given both the ICNF interaction file and
the proof file (either IDRUP for Idrup-Check or LIDRUP for Lidrup-Check) as on the
right of Fig. 4. This makes the control-flow of the checking algorithm much more complex, as it
is also supposed to work in an online-mode (as in our experiments through pipes), and we refer
to Fig. 6 for more details. One might notice, that the automaton of the proof-only single-file
mode of Fig. 5 just omits the interaction states from Fig. 6 which read the ICNF file.

Finally, note that LIDRUP requires clause identifiers for input clauses, while we currently
do not require that for ICNF as currently SAT solvers do not provide that information (the
internal clause identifier) to the user. Therefore we suggest to extend the common Ipasir API
along this line, which is also necessary in order to support more advanced usages of a proof
tracing SAT solver anyhow (such as in-memory interpolation).

As a consequence we actually allow LIDRUP proofs to introduce clause identifiers in an
arbitrary order (in contrast to LRAT) and treat them in essence symbolically. This is facilitated
by both storing the active and inactive (weakened) clauses in separate hash tables indexed by
the clause identifier. For online checking this is guaranteed not to lead to cyclic proofs. We
consider proof trimming as future work, which will then require an additional acyclicity check.

5 Fuzzing and Generating Incremental Proofs

To validate functionality of our IDRUP and LIDRUP implementations in the considered SAT
solvers (CaDiCaL, MiniSat, Glucose and CryptoMiniSat), we developed two simple new
custom fuzzers Idrup-Fuzz and Lidrup-Fuzz (available in the checker repositories). Adding
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INTERACTION_HEADER

PROOF_HEADER

 p icnf

INTERACTION_INPUT

 p lidrup

reading from ICNF interaction file reading from LIDRUP proof file

end-of-checking

  $    

PROOF_INPUT

 i 

PROOF_QUERY

 q  i 

 l | d | r | w  l | d | r | w

PROOF_CHECK

 q  l | d | r | w 

INTERACTION_PROPAGATE

 i 

INTERACTION_SATISFIABLE?

 s SATISFIABLE 

INTERACTION_UNSATISFIABLE?

 s UNSATISFIABLE 

INTERACTION_UNKNOWN

 s UNKNOWN  i 

INTERACTION_SATISFIED!

 s SATISFIABLE 

INTERACTION_UNSATISFIED!

 s UNSATISFIABLE 

s UNKNOWN

PROOF_CORE

 f | u 

PROOF_MODEL

 v | m 

 m  u 

Figure 6: This is the control-flow of Lidrup-Check when parsing and checking in parallel a
linear incremental LIDRUP proof and the ICNF interaction file as in the right workflow of
Fig. 4. The oval boxes denote states in which the checker reads from the LIDRUP proof file
alternating with rectangular states in which the checker reads from the ICNF file. The labels of
the states (redundantly) are prefixed with ‘INTERACTION ’ and ‘PROOF ’ accordingly. For the
edges we only show single-letter tags from Fig. 3 omitting literals and identifiers (but do include
the status for ‘s’ lines). Consecutive lines read from the two files with the same tag, i.e., ‘i’,
‘q’, ‘m’ and ‘u’, are checked to have the same literals. An incremental query starts with the
(large orange) ‘q’ edge leaving the ‘INTERACTION ’ state and ends with one of the edges labelled
with (a large green) ‘m’ or ‘u’. The former concludes a satisfiable query with a model, which
is checked to satisfy all input clauses. The latter concludes an unsatisfiable query and gives
the list of failing assumptions, i.e., the unsatisfiable core, which is a subset of the assumptions
given as argument to the query and also checked do be derivable. On the interaction side we
also allow (partial) models through ‘v’ value lines and (partial) unsatisfiable cores through
failed assumption ‘f’ lines. Those values and literals are then checked to form a subset of the
corresponding ‘m’ and ‘u’ lines and are not required to match them precisely. The checker run
is successful if the end-of-file indicator ‘$’ is read in the ‘INTERACTION INPUT” and thus all of
the (claimed) interactions in the ICNF file are checked. The self-loops around ‘PROOF INPUT’
and ‘PROOF QUERY’ allow to capture the common practice in SAT solvers to simplify clauses and
thus starting to omit proof steps while parsing input clauses. Note that these edges are not
necessarily followed and checked in the same temporal order as they originally happened, e.g.,
the ‘q’ line in the ICNF file might be read after the last input clause is read from the LIDRUP
file but before it is simplified as next step following the self-loop in ‘PROOF QUERY’. Similarly the
‘i’ edge leaving the ‘PROOF CHECK’ state observes a clause added by the user propagator using
the Ipasir-Up interface during solving and is read from the LIDRUP file and then checked,
even though the following ‘i’ edge reading the corresponding clause from the ICNF file, could
be interpreted to have happened before. In any case the checker makes sure queries and cores
match, lemmas and cores can be derived, only active clauses can be deleted and weakened, only
weakened clauses can be restored, models satisfy input clauses and finally cores match queries.
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incremental proof generation, checking and delta-debugging support to CaDiCaL’s dedicated
model-based fuzzer, Mobical, is complex and left to future work. These fuzzers go through
either the generic Ipasir API or directly through the C API of CaDiCaL, generate interaction
files and trigger production of an IDRUP or LIDRUP proof from the SAT solver. Subsequently,
our checkers Idrup-Check or Lidrup-Check verify the correctness of generated proofs.

Basically, these grammar-based white-box fuzzers produce sequences of incremental SAT
problems, consisting of random clauses, assumptions and queries. As for non-incremental CNF
fuzzing [16], we pick a random number of variables and then determine the number of generated
clauses based on a random clauses-per-variable ratio sampled around the satisfiability threshold
of 4.26. This avoids any bias towards satisfiable or unsatisfiable queries. As novel feature we
however split these generated clauses across the randomly generated incremental queries.

One limitation we had to overcome when going through the Ipasir interface was that Ipasir
does not allow to set options (we expect this feature to become available in Ipasir 2). We
extended Ipasir to allow specifying the file to which the IDRUP proof is written.

To promote the use of the IDRUP format among solvers, we incorporated it into our
CaDiCaL SAT solver. We also added it to three other top-tier incremental SAT solvers:
MiniSat 2.2.0 [18], Glucose 4.2.1 [1], and CryptoMiniSat 5.11.21 [37]. The implementation
in MiniSat and Glucose was straightforward. This is because these solvers handle the original
problem’s literals without much simplification. We only appropriate printing of header and
status lines, as clause tracing is already part of the previously existing DRUP proof generation.

Modifying CryptoMiniSat as a sophisticated inprocessing solver with features like XOR-
reasoning is clearly more complex. It creates proofs in DRAT and FRAT [2] (partial LRAT
where some hints are missing) formats for non-inprocessing methods. Therefore, we chose to
implement only IDRUP, as altering the entire solver to support LIDRUP with hints looked
daunting. We also observed that originally Idrup-Fuzz did not trigger any simplifications
(inprocessing) in CryptoMiniSat due to the small size of the generated incremental SAT
problems. Thus we further extended the Ipasir API with a simplify function, which resulted
in much more interesting tests. For instance, we had to modify CryptoMiniSat to preserve
clauses for justifying equivalences, which were removed too early before.

The challenge was to achieve proper proof production during importing and simplifying input
clauses, which in CryptoMiniSat consists of three steps: The original imported clause (e.g.
a ∨ b ∨ c) is logged into the IDRUP proof file with ‘i’. Then, equivalent literals are substituted
(e.g., ¬d ∨ c ∨ c if b = c and a = ¬d). In non-incremental DRAT mode these two clauses are
interchangeable but for IDRUP the two ‘i’ lines in the ICNF interaction file and the IDRUP
proof file have to match. Finally duplicated literals are removed (c ∨ c) and then this version is
kept internally. To keep the number of modifications small, we opted to print the intermediate
clause ¬d∨ c∨ c in the proof – even if we delete the original clause (e.g., a∨ b∨ c) immediately in
the next step and the substituted one again immediately if the final clause is different – leading
to a higher number of proof steps.

6 Experimental Set-Up

Our experiments were conducted on the bwForCluster Helix with AMD Milan EPYC 7513 CPUs
using a memory limit of 16GB RAM. We evaluated the feasibility of our approach in two typical
use cases for incremental SAT reasoning: (i) bounded model checking with the hardware model
checker CaMiCaL [20] (1 h timeout) and (ii) solving Boolean abstractions for lazy SMT in
cvc5 [5] (5min timeout). Both applications rely on an incremental SAT solver, although the
way in which they interact with that solver differs significantly (cf. Fig. 4).
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(a) Comparing running times it took to solve
and check individual model checking bounds
(incrementally and non-incrementally) for differ-
ent workflows of using CaDiCaL as SAT solver
backend for CaMiCaL.

(b) Comparing times it took to solve and check
individual model checking bounds incrementally
using different SAT solvers with CaMiCaL, all
with IDRUP production, except for CaDiCaL
which supports both IDRUP and LIDRUP.

Figure 7: Results of BMC experiments. The x-axis corresponds to bounds solved over all models,
while the y-axis shows the time needed to answer and check the individual SAT queries.

The coarse-grained interaction of CaMiCaL with the SAT solver during hardware model
checking is captured by Ipasir, while SMT solving requires fine-grained interaction with
the SAT solver through Ipasir-Up. In both cases, CaDiCaL can produce an IDRUP or
LIDRUP certificate recording every interaction and reasoning step it performs. This certificate
is then forwarded to Lidrup-Check to verify its correctness (either through files or pipes).
Our experiments aim to show that proof production and online checking using our proposed
LIDRUP format and Lidrup-Check is practical, has only limited overhead, and much less
than the IDRUP format.

7 Bounded Model Checking Experiments

To evaluate LIDRUP and the proof checker Idrup-Check, we enhanced CaMiCaL, a bounded
hardware model checker for the AIGER format, which unrolls a model checking problem up to
a specified bound (k = 1000 in our experiments) incrementally. Our enhancement records every
interaction between CaMiCaL and its SAT solver in an ICNF and an IDRUP file. In previous
work, we only supported CaDiCaL (through its API), while we now also support MiniSat and
Glucose (via the Ipasir interface, utilizing an additional method for specifying the proof file),
as well as CryptoMiniSat (through its API).

We use the 300 AIGER models from the hardware model checking competition 2017
(HWMCC’17), as in previous work in [20], and check them until bound k = 1000. As performance
metric we use the distribution of the individual wall-clock times it took to answer each query
(not the whole incremental SAT problem) or the times it took to check individual queries with
the proof checker. This information is logged by CaMiCaL and the proof checkers. On the
illustrating figures the x-axis corresponds to bounds solved over all models, while the y-axis
shows the time needed to answer or check the individual SAT queries.
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Figure 8: IDRUP and LIDRUP checking vs. solving time per individual model checking bound.

In Fig. 7a we explore various variants of using CaDiCaL as backend SAT solver forCaMiCaL:
non-incremental (no proof), solve-only (no proof), writing proof to ‘/dev/null’, writing proof
to the file system (only produce proof), storing the proof and subsequent verification (offline
verification), and using named pipes for immediate proof consumption by the checker (online
verification). The non-incremental approach emerged as significantly slower than its counterparts,
emphasizing the critical role of incremental processing. Offline verification outpaced the online
version, albeit with a more substantial discrepancy observed in IDRUP compared to LIDRUP.

Utilizing named pipes presents two key advantages: first, it eliminates the need for storing
proofs (which can be large, cf. Fig. 9), and second, it facilitates simultaneous solver-checker
operation through synchronization at the pipe level. However, a full pipe means that the solver
and the checker wait on each other. For instance, while experimenting with CryptoMiniSat,
we discovered “hanging proofs” tied to insufficiently frequent output flushing during proof
generation–the solver awaited content in the pipe, and the checker waited for content receipt.
To rectify this issue, we had to adjust the default buffer size for CryptoMiniSat proof-writing.

In the remaining experiments, we use online-checking through pipes only, as it prevents
generation of extensive files and is only slightly slower. We first examine proof sizes of completed
model and proof checking runs (cf. Fig. 9). It is evident that LIDRUP proofs can be substantially
larger than those generated by IDRUP. This disparity persists even when steps such as delete,
weaken, and restore are combined in LIDRUP; the extra chains offset the reduced cost. Our
subsequent investigation compares IDRUP and LIDRUP (cf. Fig. 8): despite the increased
expense of parsing, the proof verification process is considerably faster for LIDRUP due to
the simplified nature of checking all operations (‘l’ but also ‘w’, ‘d’, ‘r’, ‘l’ and ‘u’). The IDs
provide a simple way to identify clauses and focusing resolution on the antecedent clauses is
much faster than propagation through reverse unit propagation.

Beyond using CaDiCaL as SAT solver backend we have also experimented with our modified
versions of MiniSat, Glucose, and CryptoMiniSat (cf. Fig. 7b). Even though there is a clear
slow-down due to proof checking, using the solver non-incrementally (cf. Fig. 7a) is even slower
(even without proof checking). All calls were checked and we did not find any discrepancy.

The CaDiCaL backend with proof checking is faster than any other solver without proof
checking. The performance of CryptoMiniSat is surprisingly worse than expected, which we
contribute to a potential performance regression compared to the 2020 version submitted to the
incremental SAT Competition 2020. We are in the process of reaching out to the author for
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Figure 9: Sizes of completed proofs of incremental model checking instances where model
checking either reached the bound k = 1000 or the query of the bound became satisfiable.

confirmation. Still this does not invalidate the conclusion that adding IDRUP support is easy
and proof checking of incremental problems is achievable with a small overhead.

8 Satisfiability Modulo Theories Experiments

In this experiment we evaluated the feasibility of LIDRUP production and checking in the
context of solving the Boolean abstraction of SMT problems. Our goal is to demonstrate that
proof production of the SAT solver of an SMT solver is affordable in practice, rather than to
evaluate the performance of the SMT solver. Thus, we focused on quantifier free problems with
linear real arithmetic as a background theory (QF LRA benchmarks of SMT-LIB [8]), a theory
that is relevant for many applications, but not the most technically challenging for SMT solvers.

We experimented with cvc5 [5], a state-of-the-art SMT solver that supports to switch out its
Boolean engine with any CDCL SAT solver that implements the Ipasir-Up interface [21]. We
used a recent version of cvc5, referred to as cvc5-ipasirup3, that supports the most current
version of Ipasir-Up. We plugged into cvc5-ipasirup our extended version of CaDiCaL4 by
adjusting some compilation parameters of cvc5, without modifying cvc5 or CaDiCaL any
further. The workflow of the experiment is shown at the left side in Fig. 4.

Benchmark
All Solved wo. Proof Solved & Verified

Instances Queries Instances Queries Instances Queries

QF LRA 1754 1754 1671 1671 1650 1650
incr-QF LRA 10 1515 2 730 2 725

Table 1: Number of solved and verified incremental SAT queries of CaDiCaL in cvc5-ipasirup
on incremental and non-incremental SMT problems in QF LRA (with 300 sec. time limit).

3Though this update of cvc5 is not released yet, it is publicly available at https://github.com/

aniemetz/cvc5/tree/cdclt-cadical-removable. Commit 6cdd2e6 in the fork https://github.com/kfazekas/

cvc5-cadical-idrup-test shows the necessary modification.
4Available at https://github.com/arminbiere/cadical/tree/ipasirup-lidrup
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Our results are shown in Table 1. The table is split into two rows: non-incremental and
incremental QF LRA SMT problems. Note that the problems solved by CaDiCaL are in
both cases incremental: given an initial SAT problem (the Boolean abstraction of the input
SMT problem), it is continuously refined with further theory lemmas during the CDCL loop.
However, incremental SMT problems result in more incremental SAT queries and employ several
assumptions. In contrast, non-incremental SMT problems induce only one SAT problem, which
is incrementally extended with further clauses during solving, without any assumptions.

Without any proof production or checking, cvc5-ipasirup can solve 95% of the non-
incremental SMT problems (see column ’Solved wo. Proof’). When the underlying CaDiCaL
solver generates a LIDRUP proof and pipes it directly to Lidrup-Check while solving, 21
(∼1%) fewer instances are solved. However, in that case the reasoning of the SAT solver is
completely certified and verified (see column ’Solved & Verified’). Proof production does not
affect the number of fully solved instances for incremental SMT problems. Only 2 out of the 10
problems are solved completely, as it is shown in the second row of Table 1. However, these
problems generate several SAT queries (a total of 1515 queries), and proof production and
checking results in 5 fewer queries to be solved (< 1%).

The cost of LIDRUP proof production and checking was minimal in this experiment. This
is not surprising, as in SMT the more complex reasoning typically happens in theory solvers.
However, we argue that having LIDRUP proofs readily available in these use cases is still
valuable. It can aid debugging and profiling of the interaction between the different reasoning
engines. Additionally, it has the potential to serve as a component in more general SMT proofs.
Investigating these possibilities is an intriguing area for future work.

9 Conclusion

We took first steps towards a principled approach to incremental proof production and checking.
As two concrete examples of incremental proof formats we presented IDRUP and LIDRUP
which capture both the interaction and logical reasoning of incremental solving. We have
further implemented and evaluated proof production in various solvers. We introduced our
new proof-checkers Idrup-Check and Lidrup-Check which can be used to validate both
coarse- and fine-grained interaction with a SAT solver. In our experiments we show that proof
production is feasible with a negligible overhead, particularly for the new LIDRUP format with
clause identifiers and antecedent hints. As future work we propose to investigate whether our
incremental proofs have other usage beside proof checking, such as interpolation or diagnosis
and what implications our approach has on the design of incremental SAT solver interfaces.
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Appendix

The syntax of the ICNF interactions format is shown in Fig. 10, adapted from [22], followed
by the syntax of the IDRUP proof format in Fig. 11 without clause identifiers and antecedent
identifier hints. Both are closely related to the syntax of LIDRUP (cf. Fig. 3).

<icnf > = { <comment > "\n" } <header > "\n" { <line > "\n" }

<comment > = "c " <any -character -but -new -line >

<header > = "p icnf"

<line > = <comment > | <input > | <query > | <status > | <model > |

<core > | <value > | <failed >

<input > = "i" { " " <literal > } " 0"

<query > = "q" { " " <literal > } " 0"

<status > = "s SATISFIABLE" | "s UNSATISFIABLE" | "s UNKNOWN"

<model > = "m" { " " <literal > } " 0"

<core > = "u" { " " <literal > } " 0"

<value > = "v" { " " <literal > } " 0"

<failed > = "f" { " " <literal > } " 0"

<id> = <pos >

<literal > = <pos > | <neg >

<pos > = "1" | "2" | ... | <INT_MAX >

<neg > = "-" <pos >

Figure 10: Syntax of the common ICNF interaction format.

<idrup > = { <comment > "\n" } <header > "\n" { <line > "\n" }

<comment > = "c " <any -character -but -new -line >

<header > = "p idrup"

<line > = <comment > | <input > | <query > | <lemma > | <delete > |

<weaken > | <restore > | <status > | <model > | <core >

<input > = "i" { " " <literal > } " 0"

<query > = "q" { " " <literal > } " 0"

<lemma > = "l" { " " <literal > } " 0"

<delete > = "d" { " " <literal > } " 0"

<weaken > = "w" { " " <literal > } " 0"

<restore > = "r" { " " <literal > } " 0"

<status > = "s SATISFIABLE" | "s UNSATISFIABLE" | "s UNKNOWN"

<model > = "m" { " " <literal > } " 0"

<core > = "u" { " " <literal > } " 0"

<id> = <pos >

<literal > = <pos > | <neg >

<pos > = "1" | "2" | ... | <INT_MAX >

<neg > = "-" <pos >

Figure 11: Syntax of the IDRUP proof format without clause identifiers.
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