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Abstract

Stochastic Satisfiability Modulo Theories (SSMT) [1] is a quantitative extension of classical Satisfiability

Modulo Theories (SMT) inspired by stochastic logics. It extends SMT by the usual as well as randomized

quantifiers, facilitating capture of stochastic game properties in the logic, like reachability analysis of hybrid-state

Markov decision processes. Solving for SSMT formulae with quantification over finite and thus discrete domain

has been addressed by Tino Teige et al. [2]. In our work, we extend their work to SSMT over continuous quantifier

domains (CSSMT) in order to enable capture of, e.g., continuous disturbances and uncertainty in hybrid systems.

We extend the semantics of SSMT and introduce a corresponding solving procedure. A discussion regarding to

reachability analysis is given to demonstrate applicability of our framework to reachability problems in hybrid

systems.

1 Motivation and Definitions

The idea of modelling uncertainty using randomized quantification was first proposed within the

framework of propositional satisfiability (SAT) by Papadimitriou, yielding Stochastic SAT (SSAT)

featuring both classical quantifiers and randomized quantifiers [3]. This work has been lifted to

Satisfiability Modulo Theories (SMT) by Fränzle, Teige et al. [1, 2] in order to symbolically reason

about reachability problems of probabilistic hybrid automata (PHA). Instead of reporting true or false,

an SSAT/SSMT formula Φ has a probability as semantics. A serious limitation of the SSMT-solving

approach pioneered by Teige [4] is that all randomized quantifiers are confined to range over finite

domains. As this implies that the carriers of probability distributions have to be finite, a large number

of phenomena cannot be expressed within the current SSMT framework, such as continuous noise or

measurement error in hybrid systems. To overcome this limitation, we relax the constraints on the

domains of randomized variables so that continuous probability distributions are admitted.
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Our approach is based on a combination of the DPLL(T ) [5] and ICP (Interval Constraint

Propagation, [6, 7]) algorithms, as first implemented in the iSAT solver for rich arithmetic SMT

problems over the R
n [8, 9], and on branch-and-prune rules for the quantifiers generalizing those

suggested in [8, 4]. We extend these methods so that they can deal with SSMT formulae with continuous

quantifier domains. Our solving procedure therefore is divided into three layers: an SMT layer

manipulating the Boolean structure of the “matrix”1 of the formula, an interval constraint solving layer

reasoning over the conjunctive constraint systems in the theory part of the formula, and a stochastic SMT

layer reasoning about the quantifier prefix. Each layer is defined by a set of rules to generate, split, and

combine so-called computation cells, where a computation cell is a box-shaped part of the R
n, i.e., the

problem domain of the constraints. The solver thereby approximates the exact satisfaction probability

of the formula under investigation and terminates with a conclusive result whenever the approximation

gets tight enough to conclusively answer the question whether the satisfaction probability is above or

below a certain target specified.

Definition 1.1. An SSMT formula with continuous domain (CSSMT) is of the form: Φ = Q : ϕ,

where:

• Q = Q1x1 ∈ dom(x1) . . . Qnxn ∈ dom(xn) is a sequence of quantified variables, dom(xi)
denotes the domain of variable xi, which are intervals over the reals, Qi is either an existential

quantifier ∃ or a randomized quantifier

R

πi
with integrable probability density function over the

reals πi satisfying
∫

dom(xi)
πi(xi)dxi = 1.

• ϕ is an SMT formula over a quantifier-free non-linear arithmetic theory T . Without loss of

generality, we assume that ϕ is in conjunctive normal form (CNF), i.e., ϕ is a conjunction of

clauses, and a clause is a disjuction of (atomic) arithmetic predicates. ϕ is also called the matrix

of the formula.

Definition 1.2. The semantics of a CSSMT formula Φ = Q : ϕ is defined by the maximum probability

of satisfaction Pr(Φ) as follows, where ε denotes the empty quantifier prefix:

• Pr(ε : ϕ) = 0 if ϕ is unsatisfiable and Pr(ε : ϕ) = 1 if ϕ is satisfiable.

• Pr(∃xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)
=supv∈dom(xi) Pr(Qi+1xi+1 ∈ dom(xi+1) . . .Qnxn ∈ dom(xn) : ϕ[v/xi]).

• Pr(

R

πi
xi ∈ dom(xi) . . .Qnxn ∈ dom(xn) : ϕ)

=
∫

v∈dom(xi)
Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi])πi(v)dv.

Example 1.1. Fig. 1 constructs a tree according to the semantics of CSSMT formula, where N (0, 1)
refers to the standard normal distribution. Semantically, Φ determines the maximum probability s.t.

there are values for x which are between [−1, 1] s.t. for normal distributed values of y the matrix is

satisfiable. We branch the domain of x into three parts, and for each part, we branch the domain of y
into two parts. Take the leftmost branch as an example, the matrix can not be satisfied and we mark

the probability of satisfaction as 0. At last we propagate the probability according to the corresponding

quantifiers, for example, y is normal distributed, so the probability when y takes value from (−∞, 0]
is 0.5. If we combine the probability from bottom to top and choose maximum value among the

three branches for x (since x is bounded by existential quantifier), then we get that the probability

of satisfaction of Φ is 1.

2 Solving Procedure for CSSMT

The problem we consider is formalised as follow:

1In SSAT parlance, this is the body of the formula after rewriting it to prenex form and stripping all the quantifiers.
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Φ = ∃x ∈ [−1, 1]

R

N (0,1)y ∈ (−∞,+∞) : (x2 ≤ 1
9 ∨ a3 + 2b ≥ 0) ∧ (y > 0 ∨ a3 + 2b < −1)

x

Pr(Φ) = max(0.5, 1, 0.5) = 1

y y y

x ∈ [−1,− 1
3 ) x ∈ (13 , 1]

x ∈ [− 1
3 ,

1
3 ]

y ∈ (−∞, 0]
Pr = 0.5

y ∈ (0,∞)
Pr = 0.5

y ∈ (−∞, 0]
Pr = 0.5

y ∈ (0,∞)
Pr = 0.5

y ∈ (−∞, 0]
Pr = 0.5

y ∈ (0,∞)
Pr = 0.5

Pr = 0 Pr = 1 Pr = 1 Pr = 1 Pr = 0 Pr = 1

Pr = 0.5 · 0 + 0.5 · 1 = 0.5 Pr = 0.5 · 0 + 0.5 · 1 = 0.5
Pr = 0.5 · 1 + 0.5 · 1 = 1

a3 + 2b ≥ 0
a3 + 2b < −1

unsat

a3 + 2b ≥ 0
sat

a3 + 2b < −1
sat

sat
a3 + 2b ≥ 0
a3 + 2b < −1

unsat

a3 + 2b ≥ 0
sat

Figure 1: Semantics of a CSSMT formula depicted as a tree.

Given a CSSMT formula Φ = Q : φ, a reference probability δ, and an accuracy ε, the solving

procedure shall return

• “GE”, if Pr(Φ) is greater than or equal to δ + ε;

• “LE”, if Pr(Φ) is less than or equal to δ − ε;

• “GE” or “Inconclusive”, if Pr(Φ) ∈ [δ, δ + ε];

• “LE” or “Inconclusive”, if Pr(Φ) ∈ [δ − ε, δ].

In order to do so, the algorithm is equipped with the following structures:

• C: a set collecting the constraints which must be satisfied in the current phase.

• ρ: an ordered list (corresponding to the order of variables inQ) which records the interval valuation

for each variable.

• H : a set of computation cells. Intuitively, a computation cell is a convex “box” attached with a

probability estimation.

The algorithm will start its deduction sequence, which is given by the DPLL rules at the outermost

level, which in turn builds on the rules at the constraint solving and the SSMT layer. All the rules share

the same structure: the manipulations are based on the set H which contains the computation cells.

When the cells meet the premises, they will update, split or combine according to the conclusions.

2.1 SMT Level.

Rule (INI) adds the first computation cell to H , which contains: 1) the formula Q : φ to be decided; 2) ρ
is an initial evaluation for each variable; 3) the constraints C which must be satisfied, initially an empty

set; 4) a superscript (p, q)i = (0, 1)1 over-approximating the satisfaction probability of the remaining

formula when chopping off the quantifier prefix before variable xi. For the Rule (INI), (0, 1)1 means

that no quantifiers have been resolved at the moment and the lower- and upper-estimation are 0 and 1
respectively.

H → H ∪ {(Q : φ, ρ, ∅)(0,1)1}
(INI)

If all the disjuncts except one (l′) in some clause (L ∨ l′) can not be satisfied w.r.t. the current

evaluation ρ, then this remaining “unit” must hold (added to C). Rule (UP) corresponds to the unit
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propagation in the DPLL framework.

(L ∨ l′) ∈ φ, ρ 2 L

H ′ ∪ {(Q : φ, ρ, C)(p,q)i} → H ′ ∪ {(Q : φ, ρ, C · 〈l′〉)(p,q)i}
(UP)

If the range of a variablexj can be narrowed according to the constraintsC and the current evaluation

ρ by means of ICP (Interval constraint propagation, [6, 7]), and if ρ is not yet hull consistent w.r.t. to

the new bound (using the notation 2hc, intuitively, hull consistency means no interval narrowing can be

further performed by using ICP), we update the evaluation set and the probability estimation according

to the narrowing ρ
C
 (xj ∼ b) of xj computed by ICP:

ρ
C
 (xj ∼ b), ρ 2hc (xj ∼ b)

H ′ ∪ {(Q : Φ, ρ, C)(p,q)i} → H ′ ∪ {(Q : Φ, updateρ(xj ∼ b), C)renewalρj (p,q)i}
(ICP)

where

updateρ(xj ∼ b)(xi) =

{

ρ(xj) ∩ {z|z ∼ b}, if xi = xj

ρ(xj), otherwise

Intuitively, the update operator narrows the bound of variable xj and leaves other variables un-

changed. The corresponding change in the probability estimate induced by narrowing a —potentially

randomized— variable xj is reflected by

renewalρj
(p, q)i =

{

(p, q)i, if xj ≺ xi

P(ρ(xi)× · · · × ρ(xj) ∩ {z|z ∼ b} × · · · ρ(xn))i, otherwise

where ≺ corresponds to the order of variables appearing in Q, P(Ii × · · · × In) is a safe, interval-

arithmetic based probability estimation which returns an interval over-approximating the measure of

Ii × · · · × In under the distributions attached to the quantifiers.

When both rule (ICP) and rule (UP) do not yield further deductions, we say φ is inconclusive on

ρ. We may then perform the splitting rule (SPL) to split the current computation cell into two cells (in

practice, this can be achieved by splitting from middle point) and update ρ as well as the probability

estimation accordingly.

ρj 6= ∅, ρ1j ∪ ρ2j = ρj
H′∪{(Q:φ,ρ,C)(p,q)i}→

H′∪{(Q:φ,ρ′·〈ρ1
j
〉·ρ′′,C)

renewal
ρ1
j

(p,q)j
,(Q:φ,ρ′·〈ρ2

j
〉·ρ′′,C)

renewal
ρ2
j

(p,q)j
}

(SPL)

2.2 Constraint Solving Level.

When a conflict is obtained, i.e. if ICP under the current evaluation ρ and constraints C narrows some

variables to empty sets, or if ρ violates every part in one clause, the current computation cell can be

safely marked with probability 0. This is reflected by rule (CFL):

ρ
C
 (xi = ∅) or L ∈ φ ∧ ρ 2 L

H ′ ∪ {(Q : φ, ρ, C)(p,q)i} → H ′ ∪ {(Q : φ, ρ, C)(0,0)n}
(CFL)

If the current evaluation ρ is hull consistent w.r.t. the actual constraint set C, a paving procedure [10]

can be invoked to generate an inner approximation and an outer approximation of the actual solution

set by sets of boxes (i.e. {(·)}∗ means number of cells). By computing safe upper (lower, resp.)

approximations on the probability measures of the outer (inner, resp.) approximations of the solution
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sets, we obtain a safe interval estimate on the satisfaction probability. Rule (CNSIS) assigns these.

ρ �hc C

H ′ ∪ {(Q : φ, ρ, C)(p,q)i} → H ′ ∪ {(Q : φ, ρ′, C)(p′,q′)n}∗
(CNSIS)

2.3 Stochastic SMT Level.

Two computation cells can be combinative in that they estimate satisfaction probability w.r.t. adjacent

intervals for the same variable xi. In case that xi is bound by ∃, combining the two cells yields the

maximum probability (Rule (∃-COM)); otherwise if bound by

R

, the two cells can be combined by

adding their probabilities (Rule

R

-COM).

ρ1i ⊎ ρ2i is the interval hull of ρ1i and ρ2i
H′∪{(Q′∃xiQ′′:φ,ρ′·〈ρ1

i
〉·ρ′′,C)(p1,q1)i ,(Q′∃xiQ′′:φ,ρ′·〈ρ2

i
〉·ρ′′,C)(p2,q2)i}→

H′∪{(Q:φ,ρ′·〈ρ1
i
⊎ρ2

i
〉·ρ′′,C)max((p1,q1)i,(p2,q2)i)}

(∃-COM)

ρ1i ⊎ ρ2i is the interval hull of ρ1i and ρ2i
H′∪{(Q′

R

xiQ′′:φ,ρ′·〈ρ1
i
〉·ρ′′,C)(p1,q1)i ,(Q′

R

xiQ′′:φ,ρ′·〈ρ2
i
〉·ρ′′,C)(p2,q2)i}→

H′∪{(Q:φ,ρ′·〈ρ1
i
⊎ρ2

i
〉·ρ′′,C)(p1,q1)i+(p2,q2)i}

(

R

-COM)

where the interval hull of two sets I1 and I2 here is the smallest interval which contains I1 and I2.

If all the computation cells w.r.t. the same variable have been tackled, the probability should be

propagated to the preceding variable in the variable order. Rule (LFT) checks all the computation cells

in H , and will propagate if all its siblings have been combined.

∀(Q : φ, ρ′, C′)(·,·)j ∈ H ′ : j 6= i

H ′ ∪ {(Q : φ, ρ, C)(p,q)i} → H ′ ∪ {(Q : φ, ρ, C)(p,q)i−1}
(LFT)

2.4 Termination.

Whenever the estimated probability interval at the level of the first variable x1 becomes less and equal

than the reference probability δ, the original formula is concluded to satisfy P (Φ) ≤ δ. Rule (LE) then

reports “LE”; rule (GE) does the equivalent for the converse case.

q ≤ δ

H ′ ∪ {(Q : φ, ρ, C)(p,q)1} → LE
(LE)

p ≥ δ

H ′ ∪ {(Q : φ, ρ, C)(p,q)1} → GE
(GE)

If the above two cases cannot be be judged under the accuracy ε, the evaluation of the formula remains

inconclusive w.r.t. δ :
q > δ ∧ p < δ ∧ |p− q| < ε

H ′ ∪ {(Q : φ, ρ, C)(p,q)1} → INCON
(INCON)

Whenever none of the above three termination rules applies, we have to go back to the SMT level and

generate more cells by (SPL).

Example 2.1. Consider the CSSMT formula Φ = ∃x ∈ [−10, 10]

R

y ∈ U [5, 25]

R

z ∈ U [−10, 10] :
(x > 3∨ y < 1)∧ (z > x2 + 2∨ y ≤ 20)∧ (x2 > 49∨ y > 7x)∧ (x < 6∨ y ≥ z), where y and z are

uniformly distributed with range [5, 25] and [−10, 10] correspondingly. The initial configurations are

C = ∅, H = ∅ and ρ = ([−10, 10], [5, 25], [−10, 10]), we set δ = 0.45 to be the reference probability.
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By applying Rule (INI), we add the first computation cell (Φ, ([−10, 10], [5, 25], [−10, 10]), ∅)(0,1)1 to

the set H . According to the Rule (UP), the formula x > 3 is added to C as a constraint which must

be satisfied. Interval constraint propagation is then performed so that the domain of x is narrowed,

which yields proof state (Φ, ((3, 10], [5, 25], [−10, 10]), {x > 3})(0,1)1 . The current evaluation makes

z > x2 + 1 unsatisfiable, so y ≤ 20 will be added to C (Rule (UP)), the domain of y is then

narrowed to [5, 20] (Rule (ICP)), since y is bounded by

R

, we need update the probability estimation,

this yields (Φ, ((3, 10], [5, 20], [−10, 10]), {x > 3, y ≤ 20})(0,0.75)1 , we cannot guarantee that there

are solutions in [5, 20], so the lower bound is 0, for the upper bound we can conclude that it will

not exceed 0.75 since y is uniformly distributed and only the values in [5, 20] will be considered.

The next step is to apply the rule (SPL). We choose x and split its interval into two parts, giving

H = {(Φ, ((3, 7), [5, 20], [−10, 10]), {x > 3, y ≤ 20})(0,0.75)1, (Φ, ([7, 10], [5, 20], [−10, 10]), {x >
3, y ≤ 20})(0,0.75)1}. Since the evaluation violates the clause x2 > 49 ∨ y > 7x, the first computation

cell is marked with probability 0 according to (CFL). For the second cell, by performing rule (UP) we

get (Φ, ([7, 10], [5, 20], [−10, 10]), {x > 3, y ≤ 20, x2 > 49, y ≥ z})(0,0.75)1 . Now the constraints C
is hull consistent w.r.t. the current evaluation ρ. For the sake of demonstration, we generate one inner

box and one outer box manually in this illustrating example (in practice, we employ RealPaver for this

task.), i.e., (Φ, ([7, 10], [5, 10], [−10, 10]), {x > 3, y ≤ 20, x2 > 49, y ≥ z})(0,0.33∗0.75)3 (all the points

in the inner box are satisfied w.r.t. y ≥ z, so we can estimate the real probability by lower- and upper-

bounds which are close to the real one) and (Φ, ([7, 10], (10, 20], [−10, 10]), {x > 3, y ≤ 20, x2 >
49, y ≥ z})(0.66∗0.75,0.67∗0.75)3 (the outer box contains both solutions and non-solutions, so the lower

bound has to be assigned to 0 and upper bound be the maximum), which over and under approximate

the solutions for C w.r.t. ρ respectively. As has been depicted in Fig. 2-(a), a light gray area is shown,

where the formula Φ is satisfiable. The red box is the corresponding outer box and blue is an inner.

(a) 1 inner box and 1 outer box. (b) 347 inner boxes and 135 outer boxes.

Figure 2: Inner and outer approximations for constraint solving problem: {x > 3, y ≤ 20, x2 > 49, y ≥
z} where x ∈ [7, 10], y ∈ [5, 20] and z ∈ [−10, 10].

Now we have three cells and try to propagate the probability, as depicted in Fig. 3.

The given δ for this running example is 0.45, according to the Rule (GE), we know that Pr(Φ) >
0.45. The decision procedure terminates here. Now let us consider a higher reference probability, i.e.,

δ = 0.70, a tighter approximation can be achieved by generating more boxes. As shown in Fig. 2-

(b), we use RealPaver [10], which is a modeling language implementing interval-based algorithms to

process systems of nonlinear constraints over the real numbers, to generate the inner boxes and outer

boxes so that a better result can be obtained. By doing so, we get a tighter approximation, which is

[0.7181, 0.7191].
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(Φ, ([−10, 10], [5, 25], [−10, 10]), ∅)(0,1)1

(UP)

(Φ, ([−10, 10], [5, 25], [−10, 10]), {x> 3})(0,1)1

(ICP)

(Φ, ((3, 10], [5, 25], [−10, 10]), {x > 3})(0,1)1

(UP) (ICP)

(Φ, ((3, 10], [5, 20], [−10, 10]), {x > 3, y ≤ 20})(0,0.75)1

(SPL)

(Φ, ((3, 7), [5, 20], [−10, 10]),
{x > 3, y ≤ 20})(0,0.75)1

(Φ, ([7, 10], [5, 20], [−10, 10]),
{x > 3, y ≤ 20})(0,0.75)3

(Φ, ([7, 10], [5, 20], [−10, 10])
{x > 3, y ≤ 20, x2 > 49, y ≥ z})(0,0.75)1

(CFL)

(UP)

(CNSIS)

(Φ, ((3, 7), [5, 20], [−10, 10]),
{x > 3, y ≤ 20})(0,0)3

(Φ, ([7, 10], [5, 10], [−10, 10]),
{x > 3, y ≤ 20, x2 > 49, y ≥ z})(0,0.2475)3

(Φ, ([7, 10], (10, 20], [−10, 10]),
{x > 3, y ≤ 20, x2 > 49, y ≥ z})(0.495,0.5025)3

(

R

-COM)

(Φ, ([7, 10], [5, 20], [−10, 10]),
{x > 3, y ≤ 20, x2 > 49, y ≥ z})(0.495,0.75)3

(∃-COM)

(Φ, ([(3, 10], [5, 20], [−10, 10]),
{x > 3, y ≤ 20, x2 > 49, y ≥ z})(0.495,0.75)3

(LFT)

(Φ, ([(3, 10], [5, 20], [−10, 10]),
{x > 3, y ≤ 20, x2 > 49, y ≥ z})(0.495,0.75)2

(LFT)

(Φ, ([(3, 10], [5, 20], [−10, 10]),
{x > 3, y ≤ 20, x2 > 49, y ≥ z})(0.495,0.75)1

Figure 3: Solving procedure for Example 2.1

3 Reachability Analysis by Using CSSMT

CSSMT is capable to analyze the reachability properties for systems with stochastic behavior, e.g.,

temperature regulation problem which has been considered in [11] where it was modeled by discrete

time stochastic hybrid systems (DTSHS) and investigated by using dynamic programming (DP). Instead,

in our recent work [12] the CSSMT framework was adopted. The framework can be concluded as

follows:

• Formalize the initial conditions (I), transition relations (T ) and the goal (G) the system should

achieve, as the conjunction of constraints, i.e, Q : I ∧ T ∧ G, where Q is a sequence of

quantifiers. Due to the continuity and randomness of some variables, i.e., random delays regarding

to the switching among different states, the disturbance and noise introduced by measurement and

environment etc, the formula Q : I ∧ T ∧ G belongs to CSSMT;

• Perform the solving procedure so that we can obtain a probability estimation forPr(Q : I∧T ∧G),
which tells us how probable the system can reach the goal G starting from the states satisfying I.

The candidate intervals which lead to the maximum probability of satisfaction can be interpreted
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as “optimal” decisions or configurations.

In [12], we considered the problem of regulating the temperature of a room during some time horizon

[0, N ] by a thermostat that can switch a heater on or off. The goal of the regulation problem is to

determine a control strategy that maximizes the probability that the average room temperature is driven

close to a given temperature with an admissible tolerance. The idea is same as what we mentioned above,

we translate the initial condition, transition relations and desired sets into a CSSMT formula Q : Φ, then

perform the CSSMT solving steps to obtain the maximum probability of satisfaction w.r.t. the formula.

At last we extract the values of control action from the branches which lead to the maximum probability.

The implementation is done in MATLAB, however it is just a prototype implementation which can not

be generalized to other case studies, a full CSSMT solver is expected to be implemented in order to

support stochastic modeling so that a larger class of properties can be handled. The implementation

is currently an on-going work, which may partially be based on iSAT/SiSAT [9, 13] and Realpaver

[10] in order to obtain safe bounds. In this paper, we only discussed the solving procedure by using

DPLL and ICP, yet conflict driven clause learning (CDCL) performs better due to to non-chronological

backjumping and memorization of reasons for inconsistencies. CDCL will be considered in the tool

implementation for efficiency. As has been mentioned, the solving procedure for CSSMT is handled by

computation cells equipped with probability estimations. The cells can be combined at any time when

combinative, this structure makes parallel computation possible, i.e., the SMT level and Stochastic level

can be separated and handled in parallel.
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