
EPiC Series in Computing

Volume 94, 2023, Pages 350–368

Proceedings of 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning

On the Complexity of Convex and Reverse Convex

Prequadratic Constraints

Rodrigo Raya , Jad Hamza, and
Viktor Kunčak
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Abstract

Motivated by satisfiability of constraints with function symbols, we consider numerical
inequalities on non-negative integers. The constraints we address are a conjunction of a
linear system Ax = b and an arbitrary number of (reverse) convex constraints of the form
xi ≥ xd

j (xi ≤ xd
j ). We show that the satisfiability of these constraints is NP-complete

even if the solution to the linear part is given explicitly. As a consequence, we obtain NP-
completeness for an extension of certain quantifier-free constraints on sets with cardinalities
and function images.

1 Introduction

Many satisfiability problems in logic naturally reduce to numerical constraints. This includes in
particular two-variable logic with counting [41–43], as well as description logics with cardinality
bounds [3,4]. In many of these cases, the resulting numerical constraints belong to linear integer
arithmetic (LIA) whose satisfiability problem is in NP [18,24,37]. However, satisfiability in the
presence of functions with multiple arguments naturally leads to multiplicative constraints
[20, 50]. Perhaps due to a negative answer to Hilbert’s 10th problem [51], such multiplicative
constraints are often avoided. Even the case of atoms t′ = t2 yields undecidability, because
of the identity 2t1t2 = (t1 + t2)

2 − t21 − t22. We show, however, that certain classes of such
constraints can still be solved within the complexity class NP—arguably low complexity for
logical constraints.
Prequadratic constraints. The main class of numerical constraints we consider extends
LIA with atoms of the form x ≤ yd. It is a strict subset of the so-called prequadratic con-
straints, which also allow atoms of the form x ≤ yz and were first studied in [20]. Two decades
ago, the authors of [20] sketched an argument that prequadratic constraints can be decided in
NEXPTIME and conjectured that the complexity can be reduced to NP. However, no result
showing membership in NP has appeared to date. In the meantime, an alternative method was
used to settle the complexity for Tarskian constraints [34]. Nevertheless, other reductions to
such non-linear inequalities remain of interest.
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In [27], the authors prove the decidability of satisfiability of monotone exponential Diophan-
tine formulas (LIA with atoms of the form x ≤ yz and of the form x ≤ yz). They do so by
reducing it to the emptiness ofmonotone AC-tree automata (tree automata modulo associativity
and commutativity), but they do not provide complexity bounds.

One application of non-linear inequalities is the satisfiability of set algebra with cardinality
constraints and images of functions of multiple arguments [50], which is related to description
logics [5]. Consider the constraint A = f [B,C], which states that A is the image of a two-
argument function f under sets B and C. Assume that all sets are non-empty. Then such f
exists if and only if |A| ≤ |B||C|, where the equality is reached only when f is injective. Denoting
|A| by x, |B| by y and |C| by z, we obtain constraints of the form x ≤ yz. What is more, by
picking fresh sets A, B, C, we can express arbitrary conjunctions of such constraints. In other
words, solving numerical inequalities is necessary to check certain constraints of cardinalities
and function images.

While we leave open the question of NP membership for the general case, x ≤ yz, we
solve it in the case of conjunctions of constraints of the form x ≤ y2, and, more generally,
x ≤ yd for any positive integer d. We also consider the dual case, x ≥ y2, and more generally,
x ≥ yd. As an application, we describe logics that handle quantifier-free constraints on sets with
cardinalities (QFBAPA) and (inverse) function images S = f [P d] (S = f−1[P d]). The atomic
formula S = f [P d] (S = f−1[P d]) expresses that S is an (inverse) image of P d under function
f . As a consequence of the results shown for x ≤ yd (x ≥ yd), under restrictions on multiple
occurrences of f , the satisfiability problem of these logics with (inverse) function images is in
NP.

We believe that such results are of interest because they compose with other constructions
that preserve NP membership. In particular, in a recent analysis of array theories [45] we
observed that the fragment of combinatory array logic [13] corresponds to the theory generated
by a power structure with an arbitrary index set subject to QFBAPA constraints. Given that [45]
shows a NP complexity bound for such product, it is natural to ask how far we can extend NP
satisfiability results. The non-linear constraints we present in this paper can be applied to the
case when the index set I is a power Jd, because image constraints with functions on subsets
of Jd reduce to non-linear constraints whose complexity we consider.

Finally, we argue that non-linear inequalities are such a natural and fundamental problem
that their complexity is of intrinsic interest. Once their complexity is understood, they are
likely to find other applications.

(Non-)convexity. [48] has proven a NP complexity bound for certain classes of convex non-
linear constraints. However, the class of numerical constraints considered in our Theorem 12
is different, since we do not bound the degree of the non-linear monomial. On the other hand,
the class of numerical constraints considered in Theorem 14 is non-convex. Indeed, consider
the constraint x ≤ y2. Both (x, y) = (4, 2) and (x, y) = (16, 4) satisfy the constraints, but the
midpoint of the line segment connecting them is (10, 3), which does not satisfy the constraint.
In the operational research literature [22, 33, 35], these constraints receive the name of reverse
convex, since the set of solutions is the complement of a convex set. We are not aware of any
previous NP complexity bounds for non-convex constraints.

Organization of the paper. Section 2 introduces the classes of constraints that we solve.
They are of the form φ = L ∧ Q where L stands for linear constraints and Q for certain
conjunctions of monomial inequalities. We also recall known facts on the structure of semilinear
sets. Finally, Lemma 11 gives a normal form that is used in the rest of the paper. Section 3
proves a NP complexity bound when Q is a conjunction of constraints of the form x ≥ yd.
Section 4 proves a NP complexity bound when Q is a conjunction of atoms of the form x ≤ yd.
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Note that one cannot reduce either case to the other because non-negativity of numbers breaks
the symmetry between ≤ and ≥ (in fact, one case has a small model property whereas the other
one needs certificates that are not always actual values of integer variables). Section 5 states
NP-hardness of both problems even under the assumption that the solution of the linear part
is given explicitly. Section 6 gives the complexity of satisfiability for sets with cardinalities and
(inverse) function images based on Sections 3 and 4. Section 7 concludes the paper.

2 Background and Initial Analysis

2.1 Basic definitions and facts

Families of linear arithmetic constraints. We now define the families of constraints that
we discuss in the paper. In the following, N will denote the set of non-negative integer numbers.
Our constraints can be fully expressed in the framework of relational logic [10, Chapter 4], that
is, first-order logic without quantifiers. All the families of constraints we address extend linear
arithmetic, a restriction of full arithmetic that omits multiplication.

Definition 1. A linear arithmetic formula is a relational formula whose atoms are of the
form a1x1 + . . . + anxn ≤ b where a1, . . . , an and b are integer constants and x1, . . . , xn are
non-negative integer variables.

Note that we choose our variables over the non-negative integers since they represent car-
dinalities of sets. It is straightforward to reduce linear arithmetic constraints over the integers
to those over non-negative integers by encoding each integer variable as the difference of two
non-negative integer variables. As we mentioned, the satisfiability problem of linear arithmetic
constraints is in NP. In this paper, we will show NP-completeness for the following extensions
of linear arithmetic.

Definition 2. A less-than-monomial (more-than-monomial) constraint is a relational conjunc-
tion whose atoms are linear arithmetic formulae or of the form x ≤ yd (x ≥ yd) where x, y
are variables, d ≥ 2 is a non-negative integer that may be distinct for different atoms and yd

denotes the dth power of y.

We will refer to the non-linear part of less-than-monomial and more-than-monomial con-
straints as monomial inequalities. The non-linear restrictions of less-than-monomial constraints
form a strict subset of the non-linearities in the prequadratic class [20].

Definition 3. A set of Diophantine inequalities of the form p(x1, . . . , xn) ≤ q(x1, . . . , xn)
between polynomials p and q over nonnegative integer variables x1, . . . , xn is prequadratic if
every p is linear and every q is either linear or is a product of variables.

By adding slack variables, we may transform any prequadratic constraint p(x1, . . . , xn) ≤
q(x1, . . . , xn) as a Diophantine equation p(x1, . . . , xn) + s = q(x1, . . . , xn). Solving these equa-
tions over the integers was shown to be undecidable in a joint effort of Davis, Matiyasevich,
Putnam and Robinson [32], which yielded a solution of the so-called Hilbert’s tenth problem.
Furthermore, it is easy to show that the analogous problem over the non-negative numbers is
also undecidable [32, Section 1.3]. In our case, this yields at once the following corollary.

Corollary 4. The satisfiability problem for relational conjunctions whose atoms are linear
arithmetic formulae or of the form x ≤ yd, x ≥ yd where x, y are variables, d is a non-negative
integer that may be distinct for different atoms and yd denotes the dth power of y is undecidable.
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In Section 6, we will also make use of the quantifier-free fragment of BAPA [28, 29], termed
QFBAPA, whose language allows to express Boolean algebra and cardinality constraints on sets.
Figure 1 shows the syntax of the fragment: F presents the Boolean structure of the formula,
A stands for the top-level constraints, B gives the Boolean restrictions and T the Presburger
arithmetic terms. U stands for the universe of the interpretation and MAXC for its cardinality.

F ::= A |F1 ∧ F2 |F1 ∨ F2 | ¬F
A ::= B1 = B2 |B1 ⊆ B2 |T1 = T2 |T1 ≤ T2 |K dvd T

B ::= x | ∅ | U |B1 ∪B2 |B1 ∩B2 |Bc

T ::= k |K |MAXC |T1 + T2 |K · T | |B|
K ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

Figure 1: QFBAPA’s syntax

Note that QFBAPA constraints can also be seen as extending linear arithmetic restrictions.
Indeed, as noted in [28, Section 2], the addition of the cardinality operator allows to express
all Presburger arithmetic (i.e. the theory of the structure ⟨N, 0, 1,+,≤⟩) operations. In turn,
these can be efficiently represented by linear arithmetic constraints. The relation K dvd T
(divisibility by an integer constantK) and the termK ·T (multiplication by an integer constant)
are added to preserve the expressive power of full first-order Presburger arithmetic as in [44].
Semilinear sets. As a first step of our NP procedures, we will guess a normal form of the
input constraint. The particular normal form is based on results on the structure of the sets
defined by the linear part of the constraint.

Let Nn denote the direct product N taken n times. We will distinguish elements of Nn from
those in N using bold font. If x ∈ Nn then the sum norm and the infinite norm are defined as
follows:

∥x∥1 =

n∑
i=1

|xi|

∥x∥∞ = max{|x1|, . . . , |xn|}

A subset L ⊆ Nn is linear if there exist members a,b1, . . . ,bm ∈ Nn such that:

L =
{
x
∣∣∣∃α1, . . . , αm ∈ N. x = a+

m∑
i=1

αib
i
}

The element a is called the base vector of L and the elements b1, . . . ,bm are called the step
vectors of L. We refer to both the base vectors and the step vectors as the generators of the
set L.

S is semilinear [38, Definition 12] if it is the union of a finite number of linear sets. The
base vectors (step vectors, generators) of S are defined as the union of the set of base vectors
(step vectors, generators) of each of its linear parts [40].

In [19], it was shown that the sets definable by linear arithmetic formulas are precisely the
semilinear sets. Every semilinear set can be written in the form {x ∈ Nn|F (x)} where F is a
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linear arithmetic formula. Furthermore, it was shown in [15, 31] that when given in terms of
a linear arithmetic formula F , the semilinear set defined by F can be represented using a set
of generators whose coefficients are polynomially bounded in the size of F . [39, Theorem 2.13]
derives the following normal form for F based on these facts.

Theorem 5. Let F be a linear arithmetic formula of size s. Then there exist numbers
m, q1, . . . , qm ∈ N and vectors ai,bij ∈ Nn for 1 ≤ j ≤ qi, 1 ≤ i ≤ m with ∥ai∥1, ∥bij∥1 ≤ 2p(s)

with p polynomial such that F is equivalent to the formula:

∃α11, . . . , αmqm ∈ N.
m∨
i=1

(
x = ai +

qi∑
j=1

αijbij

)
Finally, the integer analog of Carathéodory’s theorem [17] allows to express any element of

a semilinear set using polynomially many step vectors. It is formulated in terms of integer conic
hulls.

Definition 6. Given a subset S ⊆ Nn, the integer conic hull of S is the set:

intcone(S) =

{
t∑

i=1

λisi

∣∣∣t ≥ 0, si ∈ S, λi ∈ N

}
Theorem 7. Let X ⊆ Nn be a finite set of integer vectors and b ∈ intcone(X). Then there
exists a subset X ′ ⊆ X such that b ∈ intcone(X

′) and:

|X ′| ≤ 2n log(4nM)

where M = maxx∈X ∥x∥∞.

Computational complexity. We assume basic definitions in the theory of computation [2,47]
such as NP-hardness and NP-completeness. We will use the notion of polynomial-time verifier
which is equivalent to that of non-deterministic polynomial-time procedure with the difference
that the non-deterministic computation is encoded as a certificate.

Definition 8. A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial p : N → N and
a polynomial-time Turing machine V , called the verifier for L such that for every x ∈ {0, 1}∗,
x ∈ L if and only if there exists C ∈ {0, 1}p(|x|) such that V (x,C) = 1. If x ∈ L and C ∈
{0, 1}p(|x|) satisfy V (x,C) = 1, then C is called a certificate for x.

It is straightforward to generalise the notion of polynomial-time verifier so that it outputs a
bit-string rather than a single bit. We use this notion to define NP-reductions which we use to
combine the normal form of Lemma 11 with the polynomial-time verifiers of Theorem 12 and
Theorem 14 into a single NP procedure.

Definition 9. A language L ⊆ {0, 1}∗ is NP-reducible to a language L′ ⊆ {0, 1}∗, written
L ≤np L

′, if there is a polynomial-time verifier V such that for every x ∈ {0, 1}∗, x ∈ L if and
only if there exists a certificate C such that V (x,C) ∈ L′.

Lemma 10. The relation ≤np satisfies the following properties:

1. If L ≤np L
′ and L′ ∈ NP then L ∈ NP.

2. If L ≤np L
′ and L′ ≤np L

′′ then L ≤np L
′′.

Proof. Ad 1), by hypothesis, we have a verifier V satisfying Definition 9 for L ≤np L
′. We also

have a verifier V ′ accepting L′. Then V ′′ = V ′ ◦ V is a verifier for L. Ad 2), if V satisfies
Definition 9 for L ≤np L′ and V ′ satisfies Definition 9 for L′ ≤np L′′ then V ′ ◦ V satisfies
Definition 9 for L ≤np L

′′.
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2.2 Normal Form of Constraints

The following lemma gives a normal form for linear arithmetic formulae conjoined with mono-
mial inequality constraints. The resulting structure of the generators of the semilinear set is
shown in Figure 2. This normal form will be used as input in Sections 3 and 4 to establish NP
complexity bounds for the more-than-monomial and less-than-monomial constraints.

Lemma 11. There is a NP-reduction mapping each satisfiable formula (F ∧ Q)(x) where F
is a linear arithmetic formula and Q is a conjunction of monomial inequalities to a satisfiable
formula (L ∧ Q′)(x) where L is of the form ∃α1, . . . , αK ∈ N. x = a +

∑K
i=1 αib

i and Q′ is
a conjunction of monomial inequalities obtained from Q by permuting its variables. Moreover,
the reduction ensures that:

1. K is polynomial in the size of F .

2. If xi, ai and b
i
j are the coordinates of the vectors x,a and bi then:

• a1 ≤ . . . ≤ an and bi1 ≤ . . . ≤ bin for all i = 1, . . . ,K.

• for all satisfying assignments of L ∧Q′, x1 ≤ . . . ≤ xn.

3. bi > bi+1 for all i = 1, . . . ,K where > is the strict lexicographic order defined as b >
b′ ≡ ∃k. bk > b′k ∧

∧
1≤j<k bj = b′j.

4. bi1 = 0 for all i = 1, . . . ,K.

Proof. The NP-reduction is the composition of two simpler ones.

The first reduction is based on the observation that for each satisfiable formula (F ∧Q)(x),
we can choose a permutation σF∧Q such that the formula (F∧Q)(x)∧xσF∧Q(1) ≤ · · · ≤ xσF∧Q(n)

or renaming variables (F ∧Q)(σ−1
F∧Q(y))∧ y1 ≤ . . . ≤ yn where σ−1(y) = (yσ−1(1), . . . , yσ−1(n))

is satisfiable. We define a polynomial-time verifier V that takes a certificate, interprets it as
a permutation σ of the variables occurring in its input formula (F ∧ Q)(x) and outputs the
formula (F ∧ Q)(σ−1(y)) ∧ y1 ≤ . . . ≤ yn. V satisfies Definition 9: if (F ∧ Q)(x) is satisfiable
then some certificate encodes σ−1

F∧Q and if (F ∧Q)(x) is not satisfiable then for any certificate

the formula (F ∧ Q)(σ−1(y)) ∧ y1 ≤ . . . ≤ yn is still unsatisfiable. The permutation can be
encoded in the certificate since it takes linear space on the input formula.

For the second reduction, we observe that since F is satisfiable, there must exist a satisfiable
disjunct in its full disjunctive normal form. Such a disjunct can be encoded in the certificate
of a polynomial-time verifier because it only takes linear space in the size of F [45, Lemma 1]
and it can be written as a linear system Ay ≤ b. Such a linear system is itself a linear
arithmetic formula. By Theorem 5, its satisfying assignments are of the form y = a+

∑
j αjbj

with ∥a∥1, ∥bj∥1 ≤ 2p(s), p polynomial and s the size of F . Let yF∧Q be one such satisfying

assignment. By Theorem 7, there is a polynomial q such that yF∧Q = aF∧Q+
∑q(s)

j=1 α
j
F∧Qb

j
F∧Q.

We define a polynomial-time verifier V that takes a certificate C, interprets it as the list

A,a,bj,b, checks Aa ≤ b, Abj ≤ 0 and if successful outputs ∃α1, . . . , αq(s).y = a+
∑q(s)

j=1 αjb
j∧

Q(y), satisfies Definition 9: if (F ∧Q)(y) is satisfiable, then there is some certificate encoding

aF∧Q,b
j
F∧Q, A,b and if (F ∧ Q)(y) is not satisfiable then the formula ∃α1, . . . , αq(s).y = a +∑q(s)

j=1 αjb
j ∧Q(y) ∧Aa ≤ b ∧

∧
Abj ≤ 0 is also unsatisfiable.
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Composing the two reductions, we obtain a formula

ψ ≡

(
∃α1, . . . , αK ∈ N.y = a+

q(s)∑
i=1

αib
i

)
∧ y1 ≤ . . . ≤ yn ∧Q′(y)

equisatisfiable with (F ∧Q)(x).
We now show items 2, 3 and 4.
For 2), observe that the first transformation ensures that y1 ≤ . . . ≤ yn for any solution

y = a +
∑K

i=1 αib
i. Taking all the αi = 0 yields y = a. This implies that a1 ≤ . . . ≤ an.

Now, for each i, take y = a + αib
i by setting αj = 0 for j ̸= i. Finally, the coordinates

of bi are increasing. By contradiction, if bij > bik for j < k then there is some αi such that

yj = aj +αib
i
j > ak+αib

i
k = yk. But we showed that the components of y are linearly ordered.

For 3), observe that there is no need to have two identical (or even linear dependent) vectors
among bi in ψ. So, we assume the vectors are distinct. As the order of vectors is not relevant
either, we will henceforth assume that the order of vectors is chosen so that i1 < i2 implies
bi1 > bi2 , i.e. b1 > . . . > bK .

4) is a consequence of the coefficients of the step vectors being linearly ordered. Indeed, if
for some i we have that bi1 ≥ 1 then, for all j, bij ≥ bi1 ≥ 1. Setting αj = 0 for j ̸= i and letting

αi increase towards infinity, each prequadratic constraint xi ≤ xdj becomes satisfied because
the left-hand side grows linearly whereas the right-hand side grows at least quadratically. This
implies that x1 = a1.

Figure 2 shows the structure of the matrix of step vectors that the verifier of Lemma 11
guesses. The matrix is syntactically similar to the row echelon form found in Gaussian elimina-
tion. Here, all zero rows are at the top and each zero value of a row appears to the right (but
not necessarily strictly to the right) of its previous row.

zeros

non-zeros

j

bi

bij

Figure 2: Vertical column arrangement of the step vectors b1,. . . ,bK .

3 Satisfiability of Convex Monomials

This section proves an NP bound for more-than-monomial constraints. We assume the input
formula is given in the normal form found in Lemma 11. Let m denote the largest constant
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appearing in the constraint, that is, the largest among all coordinates aj and bij . We first note
that, in this case, it is not possible to find a polynomial bound on the size of minimal solutions,
because there are systems whose minimal solutions are doubly exponential in m (and thus have
an exponential number of bits). For example, consider the following system of n variables:{

x1 ≥ 2

xi+1 ≥ x2i ∀i ∈ {1, . . . , n− 1}

Consider any solution x1, . . . , xn of the above system. Then by induction it immediately follows
that xi ≥ 22

i−1

for 1 ≤ i ≤ n. Indeed, x1 ≥ 2 = 22
0

and if xi ≥ 22
i−1

for i < n then:

xi+1 ≥ x2i ≥
(
22

i−1
)2

= 22·2
i−1

= 22
i

Despite the lack of small enough solutions, we show that the satisfiability problem can be solved
in non-deterministic polynomial time by observing that satisfiability can be checked without
exhibiting a specific solution. In Section 6, we apply this result to show a NP upper bound of
a fragment of QFBAPA with (inverse) function images.

Theorem 12. Satisfiability of more-than-monomial constraints is in NP.

Proof. We can assume that the input formula is of the form specified in Lemma 11. Let m
denote the maximum of the coefficients of the generators of the linear part. We introduce the
notation j∗ to refer to the column of the first zero entry for the j-th row, and supp(j) to refer
to the set of indices with non-zero values of the j-th row of the step vector matrix (see Figure
3):

j∗ :=

{
0 if for every 1 ≤ i ≤ K. bij ̸= 0

i if i is the least index such that bij = 0

supp(j) := {i | bij ̸= 0} = [1, j∗ − 1]

zeros

non-zeros

j

j∗

0

supp(j)

Figure 3: The support supp(j) and the critical value j∗ of a row j in the vertical column
arrangement of the step vectors b1,. . . ,bK .
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The proof is based on three observations:
1) We can assume that Q contains only constraints of the form xk ≥ xdj with j < k. If Q

contains a constraint xk ≥ xdj with j ≥ k then we would have xj ≥ xk ≥ xdj ≥ xj and thus
xj = xk = 1 or xj = xk = 0. Thus, these can be guessed and substituted by the NP procedure.

2) If there is xdj ≤ xk ∈ Q such that I = supp(j) = supp(k) then αi ≤ m for every i ∈ I.

Towards a contradiction, assume that αl ≥ m+1 for some l ∈ I. Note that since l < j∗, blj > 0.

Let vj = aj + αlb
l
j and vk = ak + αlb

l
k. We have vdj > vk because:

vdj ≥ αd
l > (αl − 1)(αl + 1)αd−2

l ≥ m(αl + 1)αd−2
l ≥ m(αl + 1) = m+ αlm ≥ vk

It is also the case that vj ≥ αlb
l
j ≥ αl ≥ m+ 1.

Since (xj , xk) = (vj , vk) +
∑

i∈I\{l} αi(b
i
j , b

i
k), we obtain a contradiction with the inequality

xdj ≤ xk:

xdj =
(
vj +

∑
i∈I\{l}

αib
i
j

)d
=
(
vj +

∑
i∈supp(j)\{l}

αib
i
j

)d

≥ vdj +

(
d

d− 1

)
vd−1
j

( ∑
i∈supp(j)\{l}

αi

)
+

( ∑
i∈supp(j)\{l}

αi

)d

> vdj + vj
∑

i∈supp(j)\{l}

αi ≥ vk + (m+ 1)
∑

i∈supp(k)\{l}

αi

> vk +
∑

i∈supp(k)\{l}

αib
i
k = xk

3) Otherwise, for every xdj ≤ xk ∈ Q, supp(j) ⊊ supp(k). Then, xj depends only on

b1, . . . , bj
∗−1 while xk depends also on a term αj∗b

j∗

k where bj
∗

k > 0. We can thus extend
any solution (α1, . . . , αj∗−1) of constraints which only depends on b1, . . . , bj

∗−1 to a solution
(α1, . . . , αj∗) where x

d
j ≤ xk also holds, by making αj∗ large enough.

These observations suggest the following NP algorithm.

On input ⟨L ∧Q⟩ in normal form:

1. Compute the set B of inequalities xdj ≤ xk ∈ Q such that supp(j) = supp(k).

2. If B = ∅ then accept. Otherwise, non-deterministically guess α1, . . . , αl ≤ m where
l = max

xd
j≤xk∈B

(j∗ − 1).

3. Accept iff α1, . . . , αl satisfy the inequalities xdj ≤ xk ∈ Q with k∗ − 1 ≤ l.

If there is a solution to the constraints in Q then it is clear that the algorithm accepts.
Conversely, if the algorithm accepts, we can construct a solution (α1, . . . , αl, α

∗
l+1, . . . , α

∗
n) for

Q as follows.

On input ⟨Q,B⟩:

1. Sort the inequalities xdj ≤ xk ∈ Q \B with k > l by lexicographic order of the tuple (j, k)
in a list L.

2. While L is non-empty:
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• Remove the first element (j, k) of L and find a coefficient αjk for bj
∗
such that

xdj ≤ xk is holds. This is possible since supp(j) ⊂ supp(k).

• Repeat for all pairs of the form (j′, k′) with supp(j′) = supp(j). Since the step
vectors are ordered lexicographically, these appear immediately after (j, k).

• Set α∗
j∗ = max

j′,k
αj′,k and α∗

t = 0 for any l + 1 ≤ t < j previously left unset.

3. Set the remaining α∗
j to zero.

The result, (α1, . . . , αl, α
∗
l+1, . . . , α

∗
n), satisfies Q by construction.

The constraints we solve in Theorem 12 are of the form x ≥ yd or equivalently 0 ≥ f(x, y)
where f(x, y) = yd − x. This function is convex since it is the addition of a linear function
(trivially convex) and the dth power function (convex for having a positive semidefinite Hessian)
[8, sections 3.1.4 and 3.2.1].

In [26], a related result is given for systems of s convex polynomial inequalities fi(x1, . . . , xn) ≤
0, i = 1, . . . , s where the fi(x1, . . . , xn) ∈ Z[x1, . . . , xn] are convex polynomials in Rn with in-
tegral coefficients. It is formulated over the integers but one can add the linear constraints
−xi ≤ 0 (which are trivially convex) to obtain an analogous result over the natural numbers.

Theorem 13 (Tarasov and Khachiyan (1980) [48]). For a fixed d ≥ 1 the problem of deter-
mining the consistency of systems of convex diophantine inequalities of degree at most d over
the integers belongs to the class NP.

While Theorem 13 allows for arbitrary convex inequalities, it fixes the degree that the
polynomial-time verifier can handle. Our Theorem 12, on the other hand, focuses on monomial
constraints but gives a single verifier for the entire class, over all degrees d.

4 Satisfiability of Non-Convex Monomials

This section proves a NP complexity bound for less-than-monomial constraints. Our proof
shows a small model property for (α1, . . . , αn). If there is a solution, then there is a solution
where αi ≤ m+1 for i ∈ {1, . . . , n} wherem is the maximum of the coefficients o fthe generators
of the linear part.

The key insight of the proof is that we can avoid recomputation of the underlying linear
set each time we substitute one fixed variable. Instead, we guess small coefficients αi and show
that if αi is large enough, then the prequadratic constraints xl ≤ xj · xk where bil, b

i
j , b

i
k > 0

are satisfiable. This follows from an inductive argument that is sketched in the fourth case
distinction below.

Theorem 14. Satisfiability of less-than-monomial constraints is in NP.

Proof. We can assume that the input formula is of the form specified in Lemma 11. Let m
denote the maximum of the coefficients of the generators of the linear part. We introduce the
notation i∗ to refer to the row of the last zero entry and null(bi) to refer to the set of indices
with zero values of the step vector bi (see figure 4):

i∗ =

{
0 if null(bi) = ∅
maxnull(bi) if null(bi) ̸= ∅

null(bi) = {j | bi
j = 0}
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zeros

non-zeros

i∗

bi

0

null(bi)

Figure 4: The nullity null(bi) and the critical value i∗ of a column bi in the vertical column
arrangement of the step vectors b1,. . . ,bK .

Given a solution xs = a+
∑K

i=1 αib
i, our goal is to prove that there exists another solution

xs′ = a+
∑K

i=1 α
′
ib

i of L ∧Q where max
i
α′
i ≤ m+ 1.

If max
i
αi ≤ m + 1 then we are done. Otherwise, let l be the smallest index such that

αl > m+1. Since we assume a lexicographic order in the bi’s, if i ≤ i′ then null(bi) ⊆ null(bi′).
This together with the linear order in the solutions xs leads to a matrix of step vectors where
bll∗ separates the lower-left non-zero submatrix from the upper-right zero part.

We construct another solution xs′ = a+
∑K

i=1 αi
′bi with:

α′
i =


αi if i < l∗

m+ 1 if i = l∗

0 if i > l∗

xs′ is a small solution in terms of (α1, . . . , αn) since ∥(α′
1, . . . , α

′
n)∥∞ = m+1. Furthermore,

xs
′

j ≤ xsj for any j since if j ≤ l∗ then:

xsj = aj +
K∑
i=1

αib
i
j = aj +

l−1∑
i=1

αib
i
j = aj +

l−1∑
i=1

α′
ib

i
j = aj +

K∑
i=1

α′
ib

i
j = xs

′

j

and if l∗ < j:

xs
′

j = aj +

K∑
i=1

α′
ib

i
j = aj +

l−1∑
i=1

αib
i
j + (m+ 1)blj <

< aj +

l−1∑
i=1

αib
i
j + αlb

l
j ≤ aj +

K∑
i=1

αib
i
j = xsj

where we used that all base and step vector components and all coefficients are greater or equal
than zero and αl > m+ 1, bij ≥ 1 for i < l.

Finally, we show that xs′ is a solution of Q. Given xj ≤ xdk ∈ Q, we show xs
′

j ≤ (xs
′

k )
d.

Consider four cases:
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1. j ≤ k: the components of the solutions are linearly ordered and thus xs
′

j ≤ xs
′

k ≤ xs
′

k

d
.

2. k < j ≤ l∗: x
s′

j = xsj ≤ (xsk)
d = (xs

′

k )
d.

3. k ≤ l∗ < j: xs
′

j < xsj ≤ (xsk)
d = (xs

′

k )
d

4. l∗ < k < j: call vj = aj + (m+ 1)blj and vk = ak + (m+ 1)blk.

We show by finite induction on the natural number t ≤ l∗ that:

vj +
∑
i<t

α′
ib

i
j ≤

(
vk +

∑
i<t

α′
ib

i
k

)d
(a) In the base case, t = 0 and we need to show vj ≤ vdk:

vj ≤ m+ (m+ 1)m ≤ (m+ 1)2 ≤ (m+ 1)d ≤ (ak + (m+ 1)blk)
d = vdk

(b) Assume that for t < l, we have:

vj +
∑
i<t

α′
ib

i
j ≤

(
vk +

∑
i<t

α′
ib

i
k

)d
then we need to show that:

vj +
∑

i<t+1

α′
ib

i
j ≤

(
vk +

∑
i<t+1

α′
ib

i
k

)d
Set v′j = vj +

∑
i<t α

′
ib

i
j and v′k = vk +

∑
i<t α

′
ib

i
k. Then it suffices to show that:

v′j + α′
tb

t
j ≤ v′dk + α′

tm

≤ v′dk + α′
tvk

≤ v′dk +

(
d

d− 1

)
v′d−1
k α′

tb
t
k ≤ (v′k + α′

tb
t
k)

d

where in the second and third inequalities we have used that since k > l∗ and t ≤ i∗
we have that blk, b

t
k ≥ 1.

Thus, the trivial NP procedure that guesses all the coefficients α1, . . . , αn ≤ m + 1 and
accepts if and only if xs = a +

∑K
i=1 αib

i respects the inequalities xj ≤ xdk ∈ Q shows the
problem can be decided in NP.

The function f(x, y, z, . . .) = yd − x is convex as discussed in Section 3. The constraints of
the form f(x, y, z, . . .) ≥ 0 are called reverse convex in the operations research literature. To
the best of our knowledge this is the first complexity result for conjunctions of reverse convex
constraints over the integers.

Note that it is key that, thanks to the inductive argument, we can disregard the remaining
α’s after αl. These α’s would be detrimental for an inequality xj ≤ xdk with k < l∗ < j.
However, in the general case, we could furthermore have linear inequalities xj ≤ xkxm with
m < l∗ < k, j and we cannot guarantee that the α’s after αl are superfluous. Furthermore, the
inductive argument would fail in the case that bij > 0 but bik = bim = 0.
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5 Satisfiability of Monomial Inequalities with Solved Lin-
ear Constraints

In previous sections, we have presented decision procedures that leveraged insights on the
structure of the set of solutions of linear constraints in order to find solutions to restricted
families of non-linear inequalities. It is thus natural to ask how hard it is to check satisfiability
of the non-linear part when given the set of solutions to the linear constraints as input. The
answer to this question is mixed. On the one hand, we observe that from the results of [36],
it follows that for a single more-than-monomial constraint, satisfiability with the Hilbert basis
given as input can be decided in polynomial time. This is no longer true when given arbitrary
more-than-monomial or less-than-monomial constraints.

Theorem 15. The more-than-monomial and less-than-monomial problems are NP-hard even
when the linear part of constraint is given as input.

The proof is deferred to the appendix.

6 Logical Consequences

Theorems 12 and 14 can be used to establish an NP complexity bound on some fragments of
theories of relational logic since an unconstrained d-ary relation R on a set U exists if and only
if |R| ≤ |U|d. Let’s consider as in [50], the theory of QFBAPA enriched with unary functions
of sets and their inverse and direct function images f−1[B] = {y|∃x.x ∈ B ∧ y = f(x)} and
f [B] = {y|∃x.x ∈ B ∧ y = f(x)}. Let’s also allow for a set variable B, to form the Cartesian
product Bd of B iterated d times. Then the satisfiability of the formula S = f−1[P d] is
equivalent to the satisfiability of the non-linear constraint |P |d ≤ |S|. Similarly, the satisfiability
of the formula S = f [P d] is equivalent to the satisfiability of the non-linear constraint |S| ≤ |P |d.

As a result, we obtain a fragment that is strictly more expressive than the language of
QFBAPA. It enriches the language of Figure 1 with top-level constraints of the form S = f−1[P d]
(QFBAPA-Fun) or S = f [P d] (QFBAPA-InvFun). Note that one cannot mix both kinds of
constraints since as remarked in the introduction this would express Hilbert’s 10th problem
and would thus yield an undecidable fragment.

Theorem 16. Satisfiability of QFBAPA-Fun and QFBAPA-InvFun is in NP.

7 Conclusion

Non-linear Diophantine constraints have been widely investigated in mathematical optimisation
and automated reasoning. Despite the number of applications of prequadratic [1, 12, 20, 45, 50]
and more general constraints [16, 21, 23, 25, 30, 49, 52] there exist few classes in the literature
with low complexity bounds making them suitable for integration in satisfiability modulo theory
solvers [6,7,9,11,14,46]. In this work, we prove an optimal bound for a subfamily of prequadratic
Diophantine constraints. We show that these constraints are useful in analyzing the cardinality
of cartesian powers, which can be used in fragments of Boolean algebra with function and inverse
images. We have remarked that in the case of a single monomial constraint, the complexity is
polynomial when given the Hilbert basis of the linear part. On the other hand, we have shown
that with arbitrary monomial constraints the problem becomes NP-hard even if the Hilbert
basis of the linear part is given. The key of our development is the normal form of Section 2.2.
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In future work, we plan to investigate larger classes of (non-)convex and general prequadratic
constraints.
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A Appendix: proof of the statements in Section 5

A.1 One Monomial Inequality

We start with the case where there is a single monomial inequality and the linear part has been
solved in the normal form suggested, i.e. we have:{

xk ≥ xlj
x = a+

∑
αib

i

If supp(j) ̸= supp(k) then we know there is a solution. If supp(j) = supp(k) then, by the
second observation in the proof of Theorem 12, a solution necessarily lies in the ball B(0,m+
2nm2 log(4m)). Theorem 3.12 in [36] shows that in contrast to Sections A.2 and A.3, this
instance can be solved in polynomial time:

Theorem 17 (Onn [36]). There is an algorithm that, given A ∈ Zm×n, G(A), l, u ∈ Zn, b ∈ Zm

and separable convex f : Zn → Z presented by comparison oracle, solves in time polynomial in
⟨A,G(A), l, u, b, f̂⟩ the problem min {f(x) : x ∈ Zn, Ax = b, l ≤ x ≤ u} .

Here G(A) stands for the so-called Graver basis which is a generalisation of the notion of

Hilbert basis for the non-positive orthants. On the other hand, f̂ stands for the maximum of f
over the compact domain l ≤ x ≤ u. The theorem guarantees that the minimisation problem
can be solved in polynomial time in the size of the parameters. Since we are interested in the
solution in a ball, the maximum of the function f̂ is simply a constant and can be ignored.
Then, we would minimise the function f(x) = xlj − xk. If the minimum value is ≤ 0 then we
accept, otherwise we reject.

A.2 More-Than-Monomial Constraints

Consider a family of more-than-monomial constraints:{
{xk ≥ xdi

j }i=1,...q,ni∈N,di≥2

x = a+
∑
αib

i

To show NP-hardness we reduce from the circuit satisfiability problem [2]:

Definition 18. CKT-SAT is the decision problem which for a given n-input circuit C deter-
mines whether there exists u ∈ {0, 1}n such that C(u) = 1.

Theorem 19. More-than-monomial is NP-hard.

Proof. We reduce CKT-SAT to more-than-monomial. In order to ease the translation, we
assume that the circuit to which the reduction is applied is given in terms of NAND gates. It
is known that NAND gates are universal, that is, any circuit can be represented in terms of
this operation. Since translating each basic gate requires only a constant number of NAND
gates, one further observes that the translation of a Boolean circuit into an equivalent NAND-
based circuit increases size by a constant multiplicative factor, which is irrelevant for complexity
considerations.

First, we observe that we can encode each NAND gate with polynomially many more-than-
monomial constraints.
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Let g : z = ¬(x∧ y) be a NAND gate. We introduce four variables α0, α1, α2, α3. The index
i of αi translated to a two-digit binary number corresponds to each possible valuation of x, y.
We add the equalities x = α2 + α3, y = α1 + α3, z = α1 + α2 + α3.

We impose for each i, j ∈ {0, 1, 2, 3} (i ̸= j) the restriction that αi + αj ≤ 1. This ensures
that at most one coefficient αi is set to one. This restriction can be enforced with more-than-
monomial constraints by adding variables uij , vij with i ̸= j such that uij = αi+αj , v = 3, u2ij ≤
vij .

Similarly, we impose the restriction that 1 ≤ α0 + α1 + α2 + α3. This ensures that at least
one coefficient is satisfied. This restriction can be enforced by adding variables r, s such that
r = 1, s = α0 + α1 + α2 + α3, r

2 ≤ s.

x
y
z
u01
...
u32
v
r
s


=



0
0
0
0
...
0
3
1
0


+ α0



0
0
0
1
...
0
0
0
1


+ α1



0
1
1
1
...
0
0
0
1


+ α2



1
0
1
0
...
1
0
0
1


+ α3



1
1
1
0
...
1
0
0
1


(1)

In summary, the linear set of equation 1 together with the prequadratic constraints r2 ≤
s, u2ij ≤ v where i < j and i, j ∈ {0, . . . , 3} encode the operation of g.

Second, we encode the rest of the circuit. For each new gate, we add a new diagonal block
to the step vectors. Each block repeats the pattern shown in equation 1.

We may reuse any of the variables x, y, z in other gates. To do so, we need to encode equality
between two variables of the left hand side. Since we will later enforce that each variable is
zero-one valued, this can be done using more-than-monomial constraints: to say that x and y
are equal it suffices to impose that x2 ≤ y and y2 ≤ x. In the zero-one valued case, this implies
that x = y.

The last step of the transformation ensures that all variables, either those labelling wires in
the original circuit or those added later, are zero-one valued. In particular, for the coefficients
αi of the linear set, we first introduce equations t = αi. Finally, we add the inequalities x2i ≤ xi
for all the resulting variables.

The transformation can be clearly done in polynomial time and the correctness is ensured
by construction. Thus, more-than-monomial is NP-hard even when the underlying linear set is
explicitly given, as we wanted to show.

A.3 Less-Than-Monomial Constraints

Now assume that we are given a family of monomials:{
{xj ≤ xdi

k }i=1,...q,di∈N,di≥2

x = a+
∑
gib

i

Theorem 20. Less-than-monomial is NP-hard.

Proof. It suffices to modify slightly the construction above. To enforce xj ∈ {0, 1}, it suffices to
set xi = 1 and xj ≤ x2i . To enforce αi+αj ≤ 1 it suffices to write uij = αi+αj , v = 1, uij ≤ v2.
To enforce that 1 ≤ α0 + α1 + α3 + α3 we simply set r = 1, s = α0 + α1 + α2 + α3, r ≤ s2.

368


	1 Introduction
	2 Background and Initial Analysis
	2.1 Basic definitions and facts
	2.2 Normal Form of Constraints

	3 Satisfiability of Convex Monomials
	4 Satisfiability of Non-Convex Monomials
	5 Satisfiability of Monomial Inequalities with Solved Linear Constraints
	6 Logical Consequences
	7 Conclusion
	References
	A Appendix: proof of the statements in Section 5
	A.1 One Monomial Inequality
	A.2 More-Than-Monomial Constraints
	A.3 Less-Than-Monomial Constraints


