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Abstract

Metis is an automated theorem prover based on ordered paramodulation. It is widely employed
in the interactive theorem provers Isabelle/HOL and HOL4 to automate proofs as well as reconstruct
proofs found by automated provers. For both these purposes, the tableaux-based MESON tactic is
frequently used in HOL Light. However, paramodulation-based provers such as Metis perform better on
many problems involving equality. We created a Metis-based tactic in HOL Light which translates HOL
problems to Metis, runs an OCaml version of Metis, and reconstructs proofs in Metis’ paramodulation
calculus as HOL proofs. We evaluate the performance of Metis as proof reconstruction method in HOL
Light.

1 Introduction
1.1 Preliminaries
Interactive theorem provers (ITPs) are programs that are used to formalise mathematical
concepts, verifying that properties following from the definitions (theorems) are correctly proven.
Assuming that a user trusts the soundness of an ITP, a user can be certain that proofs in an
ITP formalisation of a mathematical theory are indeed correct. Traditionally, users of an ITP
write mathematical definitions in the ITP’s language, followed by an interactive construction of
proofs, where the ITP gives the user advice, for example which parts of a conjecture are left to
prove, rejecting invalid inference steps and so on. The widespread usage of ITPs in mathematics
and related domains, such as software verification, has so far been hindered by the high level
of knowledge and experience required to operate ITPs. In particular, users frequently struggle
to find facts related to their current problems, and once they have found these facts, how to
combine them to solve their problems.

Automated deduction frameworks attempt to ease reasoning with ITPs by automatically
proving conjectures, thus reducing the entry barrier for users to employ ITPs. Many frameworks
employ automated theorem provers (ATPs), which in contrast to ITPs attempt to solve problems
without any user interaction, but whose logic might be different from an ITP’s logic. Given a
conjecture C, an automated deduction framework might proceed as follows to prove C in an
ITP:

1. Identify useful facts to prove conjecture C.
2. Translate C together with found facts from the ITP logic to the ATP logic.
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3. Find an ATP proof of C.
4. Reconstruct the ATP proof in ITP.
In some cases, the reconstruction of ATP proofs fails, because the ATP does not provide

sufficient information to reconstruct a proof. Still, it is often possible to reconstruct the ATP
proof by reproving the conjecture with a different ATP, using in addition the facts the first ATP
used in its proof.

In this paper, we describe the integration and performance of an ATP for proof reconstruction
in an ITP, which can be used for example in an automated deduction framework.

1.2 Related work
HOL Light [Har96a] and HOL4 [GM93] are LCF-style interactive theorem provers with a small
kernel. They feature several tactics, which serve the purpose to simplify goals. Examples of
tactics are rewriting, decision procedures for arithmetic, and β-reduction. One of the most
complex tactics in HOL Light is MESON [Har96b]: It translates the current goal along with an
optional list of premises to first-order logic, where it attempts to find a proof with the tableaux
method using the premises and then reconstruct the proof in HOL.

HOL(y)Hammer [KU15] is an automated deduction framework for HOL4 and HOL Light.
Given a conjecture, it attempts to find suitable premises, then calls external ATPs such as
E [Sch13], Vampire [KV13], or Z3 [dMB08], and attempts to reconstruct the proof using the
premises used by the ATP. To reconstruct proofs, it uses tactics such as MESON, simplification,
and a few other decision procedures, however, these are sometimes not powerful enough to
reconstruct proofs found by the external ATPs.

Metis [Hur03] is an ATP based on ordered paramodulation, which due to its small set of
inference rules is specially suited for reconstruction. Furthermore, it is a proof search method
that is frequently used in HOL4 and Isabelle/HOL [NPW02, PS07]. As shown by the second
author [KUV15], Metis can solve many problems that tableaux-based methods included in HOL
Light, such as MESON [Har96b] and leanCoP [Ott08], cannot solve. However, up to now, Metis
was not available as proof search method in HOL Light.

The challenges that have to be overcome to create a Metis-based tactic in HOL Light are as
follows.

• Goal translation. To convert a HOL problem to a FOL problem tractable by many ATPs,
there exists a multitude of translation methods [Har96b, Hur03, MP08, Bla12], differing in
their treatment of types, λ-terms, Hilbert’s ε operator and many more aspects.

• Using Metis. Metis is written in Standard ML, whereas HOL Light is written in OCaml.
Calling Metis as an external program increases the burden on users because they need
to install and maintain a separate program, whereas an OCaml port of Metis takes a
considerable effort due to the size of its code base (around 900kB).

• Proof reconstruction. To recreate a proof found by Metis in HOL Light, it is necessary to
translate all Metis inferences to equivalent HOL Light inferences, as well as to reconstruct
the types of the variables used in the (untyped) Metis proof.

We investigated the effectiveness of a HOL Light tactic using Metis for proof reconstruction
in automated deduction systems such as HOL(y)Hammer. To this end, we:

• created a HOL Light tactic that translates HOL problems to first-order logic, reusing parts
of HOL Light’s MESON infrastructure;

• ported a subset of Metis, namely its given-clause algorithm, to OCaml to allow proof search
for first-order problems directly inside HOL Light; and
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• created a proof reconstruction routine that translates Metis proofs to HOL Light proofs by
using detailed Metis proof objects.

We evaluated the resulting tactic on two different datasets by comparing it with the HOL
Light tactics MESON and a single complete strategy of leanCoP. Our new method reconstructs
the largest number of problems in the shortest time.

2 Goal Translation
To translate HOL goals to first-order logic, we reuse large parts of the corresponding MESON
parts, as done for the HOL Light leanCoP tactic. The biggest difference is that we do not
generate equality axioms, because Metis treats equality directly.

Consider the Flyspeck lemma length_eq_imp_length_tl_eq as an example of a HOL goal
to translate:

|s1| = |s2| =⇒ | tl s1| = | tl s2|,

where |x| stands for the length of a list x and tl x denotes the tail of a list x. An ATP found a
proof of the conjecture using the following HOL Light theorems:

∀l.l 6= [] =⇒ | tl l| = |l| − 1 (LENGTH_TL)

∀l.|l| = 0 ⇐⇒ l = [] (LENGTH_EQ_NIL)

To reconstruct the ATP proof in HOL Light, one first refutes the goal:

¬(|s1| = |s2| =⇒ | tl s1| = | tl s2|) =⇒ ⊥,

then one adds the ATP premises as assumptions via POLY_ASSUME_TAC. This tactic attempts to
instantiate premises containing polymorphic constants (such as tl) with the types of the objects
they are used with:

LENGTH_TL =⇒ LENGTH_EQ_NIL =⇒ ¬(|s1| = |s2| =⇒ | tl s1| = | tl s2|) =⇒ ⊥

Furthermore, the translation involves the following steps.

• Elimination of Hilbert’s ε operator: εx.Px denotes an object x for which Px holds. As the ε
operator is not available in Metis’ first-order logic, HOL Light’s SELECT_ELIM_TAC replaces
occurrences of the form εx.Px by a fresh variable v, adding the assumption ∀x.Px =⇒ Pv.
As this step does not preserve logical equivalence, it can make a provable goal unprovable.

• Fixing of function arities: If the same function appears multiple times in the goal with
a different number of arguments, e.g. fx and fxy, it cannot be directly translated to a
Metis FOL function, as they need to always be applied to the same number of arguments.
The translation thus replaces applications of such functions with an application operator I,
turning fx into Ifx and fxy into I(Ifx)y.

• Elimination of λ-abstractions (via λ-lifting), β-conversion
• Conversion to prenex normal form
• Instantiation of universally quantified variables with fresh variables
• Skolemisation
• Conversion to conjunctive normal form (CNF)
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• Splitting: Performs case distinction for disjunctions, producing new subgoals. For example,
this might break the goal a ∨ b ∨ c =⇒ g into subgoals a =⇒ g, b =⇒ g, and
c =⇒ g. The splitting limit specifies the maximum number of times case distinction can
be performed on a single disjunction.

This procedure deviates only marginally from those used in MESON and the HOL Light
version of leanCoP. It produces untyped HOL problems, which correspond to Hurd’s uHOL
problem set [Hur03]. As Blanchette showed in his PhD thesis [Bla12], encoding types as in
Isabelle’s Sledgehammer [MP08] can increase the number of reconstructible problems. In Isabelle
and HOL4, several different translations (untyped and typed) are passed to the ATPs, thus
increasing the chance of finding a proof. We expect similar gains for HOL Light when producing
different translations, and due to the similarity of FOL translation methods in MESON, leanCoP,
and Metis, we believe that all these methods could profit from such an improvement with
relatively little adaptation.

For the particular problem at hand, the translation produces the following (untyped) FOL
problem, where v1 and v2 are the only variables:

v1 = [] ∨ | tl v1| = |v1| − 1 (LENGTH_TL’)
=⇒ |v2| 6= 0 ∨ v2 = [] (LENGTH_EQ_NIL =⇒ )
=⇒ |v2| = 0 ∨ v2 6= [] (LENGTH_EQ_NIL⇐= )
=⇒ |s1| = |s2| =⇒ | tl s1| 6= | tl s2| (negated conjecture)
=⇒ ⊥

The set of assumptions that implies ⊥ are the clauses that are handed over to Metis.

3 Metis
Metis is an automated theorem prover based on ordered paramodulation. It accepts as input a
set of clauses and runs a given clause algorithm that attempts to deduce from the clauses all
possible inferences. If one of these inferences shows the empty clause � (which corresponds to
⊥ in HOL), Metis returns the proof tree for �. If it is not able to infer any new statements
anymore and � is not among the previous statements, then the original clause set is satisfiable.
Because Metis is usually run on translations of negated conjectures (¬C), deducing the empty
clause � corresponds to finding a proof for C.

Metis can be directly used in HOL4 and Isabelle/HOL, because both these projects are
written in Standard ML. However, because HOL Light is written in OCaml, we cannot directly
use Metis inside it. The first option to use Metis in HOL Light is to call it as external program
from HOL Light, as done in HOL Light’s Prover9 tactic. The disadvantage of this solution
is that it increases the burden on users to install and maintain a separate executable, as well
as that it requires us to parse the output of Metis. The second option is to translate Metis
to OCaml in a way that it can be directly used inside HOL Light. The disadvantage of this
solution is that it requires a lot of work, because the Metis source code weighs about 900kB
(For comparison, MESON consists of 10kB of OCaml code, and leanCoP is only 1kB of Prolog.)

We manually ported Metis to OCaml. The port took about one week and resulted in about
400kB of code. We were able to reduce the size by omitting parts of the code (such as the TPTP
parser) not related to the given clause algorithm as well as by reusing OCaml data structures
that were manually implemented in the SML version of Metis.
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Table 1: Reconstruction of the Metis proof rules in HOL Light. Typewriter font (as in C)
indicates HOL versions of corresponding Metis objects: In particular, C and D stands for
clauses, L for a literal, t for a term, and p for a path (denoting the position of a subterm). The
term of a literal L at position p is denoted by L[p], and the replacement of a subterm of L at
position p by a term t is denoted by L[p 7→ t].

Metis (i) HOL Light (I(i,m))

C
axiom C ASSUME

{L,¬L} assume L ∀x.x ∨ ¬x TAUT

L ∨ ¬L SPEC L

C
σC

subst σ
I(C,m{x ∈ dom σ | x 7→ Type(σ(x))})

σC
SUBST σ

{L} ∪ C {¬L} ∪D
C ∪D resolve L

I({L} ∪ C,m)
L ∨ C FRONT L

I({¬L} ∪D,m)
¬L ∨ D FRONT ¬L

C ∨ D RESOLVE

{t = t} refl t
t = t REFL t

{¬(L[p] = t),¬L,L[p 7→ t]}
eq L p t

L ASSUME L[p] = t
ASSUME

L[p 7→ t]
PATH_CONV p

¬(L[p] = t) ∨ ¬L ∨ L[p 7→ t]
DISCH_DISJS

In the next section, we show how to convert Metis proofs of � back to HOL Light proofs of
⊥.

4 Reconstruction
While there exist stronger ATPs than Metis such as Vampire [KV13] and Z3 [dMB08], a reason
to choose Metis for proof reconstruction is its small set of only six different proof rules. In a
Metis proof, every inference is represented by the inference type (e.g. resolve), a list of premises,
and a conclusion. However, for proof reconstruction, it is convenient to have more information,
such as the resolvent used in a resolution step. Conveniently, Metis provides a function to yield
more detailed proof objects, similarly to the prooftrans tool, which translates Prover9 [McC10]
proofs to a format that can be verified by the IVY proof checker [MS00] and which is used in
HOL Light’s Prover9 tactic. We show the HOL Light inferences for each detailed Metis proof
rule in Table 1.

The reconstruction of a Metis proof is done recursively top-down, starting at the proof of the
empty clause (�). The HOL translation of a Metis inference i is denoted as I(i,m), where m
is a map from variables to types, and the HOL translation of a whole Metis proof is I(i�, {}),
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g(a) 6= f(b) axiom

f(x) = g(y) axiom

x0 = x0 refl x0 6= x0 ∨ x0 6= y0 ∨ y0 = x0
eq

x0 6= y0 ∨ y0 = x0
resolve

f(x) 6= g(y) ∨ g(y) = f(x) subst

g(y) = f(x) resolve

g(a) = f(b) subst

� resolve

Figure 1: Metis proof of f(x) = g(y) =⇒ g(a) 6= f(b) =⇒ ⊥.

where i� is the Metis inference that proves �. The type map m is necessary because when
reconstructing Metis inferences that contain terms where the type of variables cannot be inferred,
such as x = x, it is necessary to know the type of the variable x to correctly reconstruct the
inference in HOL.

The substitution rule is the key to successfully inferring variable types: When a substitution
σ maps the variable x to a constant c, we can conclude that x will have the type of c in the
remaining proof reconstruction branch. For example, consider the Metis proof in Figure 1:
When reconstructing the HOL proof of g(y) = f(x), it is necessary to know the types of the
variables y and x. The reconstruction can infer the types because the substitution rule was used
in a lower part of the proof, instantiating y with a and x with b. As the types of a and b are
known, the types of y and x can be inferred.

Metis stores clauses as sets of literals, whereas in HOL Light, clauses are represented by
disjunctions of literals, where the order of the literals matters. We only have to deal with this
difference in Metis’ axiom rule; for if we naively build the disjunction of all Metis literals to
create a HOL clause C, C will not necessarily match any assumption in the HOL goal because
of the different order of literals. To account for this, we always convert all HOL assumptions
and conclusions of the axiom rule to canonical form, which allows us to find the corresponding
HOL assumption for a Metis axiom conclusion by simple comparison.

The paths used by Metis in the equality rule are not directly usable in HOL Light because
of their different format; see Figure 2 for an example. To convert a path p in Metis format to
HOL Light format, we require also the term t to which the path refers:

Path(p, t) =
{
l|~x|−i−1 · r · Path(xi, p

′) if t = f~x ∧ p = i : p′

[] otherwise.

Once the path is converted to HOL Light, we use it via PATH_CONV to reconstruct equality
inferences. The reconstruction also uses our DISCH_DISJS rule which behaves like HOL Light’s
DISCH rule, but creates a disjunction instead of an implication.

5 Evaluation
We use HOL Light (SVN revision: 193) to evaluate the reconstruction performance of three
different methods.

• MESON : We use the version with a splitting limit of 8, as used by default in HOL Light.
• leanCoP−: We use a single strategy of the OCaml version of leanCoP integrated in HOL

Light[KUV15] without cut and without splitting. If cut is enabled, leanCoP may discard
search branches. This leads to the loss of completeness, but was found to increase the
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Figure 2: Representations of the term f(a, b, c) = g(x) and the path to its subterm c (“13” in
Metis, “lrr” in HOL Light).

number of proven problems in fixed time limits. As MESON and Metis use complete
strategies, we use a complete strategy here as well.

• Metis: We evaluate our newly created Metis tactic1 using a splitting limit of 8 and the
default Metis parameters.

A reconstruction problem consists of a conjecture and a set of dependencies which an ATP
found to prove the conjecture. The ATP dependencies are obtained as in [KU14]. We evaluate
a problem by feeding the conjecture and the dependencies to a proof reconstruction method in
HOL Light, such as:

let goal = "m <= n ==> m..n = m INSERT (SUC m..n)" in
let dependencies = [NUMSEG_LREC; ADD1] (* found by an ATP *) in
MESON dependencies (parse_term goal);;

If the method can reconstruct the proof within a given time limit, the problem counts as
proven.

As datasets, we use toplevel goals from Flyspeck (SVN revision: 3511) [HAB+15] as well as
from HOL Light’s standard library. We evaluate every problem in parallel on a 48-core server
with AMD Opteron 6174 2.2 GHz CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU.

The results are given in Table 2 and Table 3: Our Metis tactic performs better than leanCoP−
and MESON, both in terms of speed as well as number of proven problems. The speed gains
might be due to the fact that the FOL representations of some problems are satisfiable and
therefore not provable, in which case Metis stops as soon as it finds a satisfiable assignment,
whereas MESON and leanCoP continue trying to solve the problem.

We evaluated the Metis tactic without splitting (splitting limit = 0), which we found to
perform slightly worse than with splitting: For example, on the Flyspeck data with timeout
5s, disabling splitting decreased the number of proven problems from 6924 to 6889, which still
places Metis above the other methods.

1Source for the Metis tactic and the evaluation is available at: http://cl-informatik.uibk.ac.at/users/mfaerber/
tactics.html
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Table 2: Results for Flyspeck data (18956 problems, avg. 39.1 dependencies per problem).

(a) Timeout: 5s

Prover Proven Unique Time [s]
MESON 6484 225 1601
leanCoP− 5352 113 1732
Metis 6924 889 1533
Σ 7552 4866

(b) Timeout: 30s

Prover Proven Unique Time [s]
MESON 6665 191 8315
leanCoP− 5609 102 8921
Metis 7398 1037 7193
Σ 7918 24429

Table 3: Results for HOL Light data (1773 problems, avg. 3.6 dependencies per problem).

(a) Timeout: 5s

Prover Proven Unique Time [s]
MESON 1208 37 88
leanCoP− 957 8 114
Metis 1266 132 76
Σ 1357 278

(b) Timeout: 30s

Prover Proven Unique Time [s]
MESON 1236 33 390
leanCoP− 1019 9 545
Metis 1318 132 252
Σ 1392 1187

In the evaluation we focused on a single strategy of the leanCoP tactic running inside
HOL Light. Using the single cut strategy without completeness has a negative effect on the
performance (contrary to the standalone results [KUV15]). Enabling cut would decrease the
number of proven problems, for example on the Flyspeck data with timeout 5s from 5352 to 3984
proven problems. The results of leanCoP with multiple strategies in [KUV15] and our evaluation
are also different for other reasons: the stand-alone OCaml version of leanCoP, whereas we
the HOL Light version reuses the slower HOL Light structures. Even if its performance would
match the stand-alone version, the results from [KUV15] show that Metis is still very interesting
as it complements leanCoP and MESON.

6 Conclusion

We developed a HOL Light tactic using the paramodulation-based ATP Metis. This tactic
can be used by HOL(y)Hammer to reconstruct proofs found by stronger ATPs, or it can be
used directly by users as a proof search method. For the Flyspeck dataset at timeout 30s, our
tactic was able to reconstruct over 7% more proofs than the union of MESON and the complete
strategy of the HOL Light version of leanCoP, while being the fastest proof reconstruction
method of the three. Further experiments could be conducted with different translations from
higher-order to first-order logic, as done for Isabelle [Bla12].

An interesting future direction is the integration of machine learning techniques techniques
similar to those used in MaLeCoP [UVŠ11] to reduce the search space. Providing multiple
strategies, including incomplete ones, would allow directly comparing Metis to leanCoP.
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