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Abstract

Linear tree constraints are given by pointwise linear inequalities between infinite trees
labeled with nonnegative rational numbers. Satisfiablity of such constraints is at least as
hard as solving the Skolem-Mabhler-Lech Problem. We provide an interesting subcase, for
which we prove that satisfiablity is decidable. Our decision procedure is based on intricate
arguments using automata and combinatorics of words.

Our subcase allows to construct an inference mechanism for resource bounds of object
oriented Java-like programs: actual resource bounds can be read off from solutions of tree
constraints. So far, only the case of degenerated tree constraints (i.e. lists) was known to
be decidable which, however, is insufficient to generally solve the given resource analysis
problem. The present paper therefore provides a generalisation to trees of higher degree in
order to cover the entire range of constraints encountered by resource analysis.

1 Introduction

1.1 Amortised Analysis

Amortised Analysis provides guaranteed worst-case bounds for sequences of operations that are
tighter than simply summing the worst-case costs of individual instructions (bounds on discrete
resource consumption such as memory usage, execution steps, etc.). This is achieved through
a clever abstraction of all possible machine states, which reduces the state space down to a
manageable size. However, finding suitable state abstractions is difficult and is highly specific to
the data-structures that are used.

We give an intuition for this analysis in the object-oriented setting by an example of a doubly
linked list that is constructed from a singly linked list and then transformed back again into a
singly linked list. This example shows how the analysis adapts to changes of highly aliased data
structures during a computation. As usual in amortised analysis, we assign a nonnegative value,
called the potential, to each access path that leads to a certain object. Figuratively speaking,
the potential can be considered as an amount of dollars from which all operations associated
with this object must be payed (e.g. copying an object requires the allocation of a new object,
which has a certain cost).
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Figure 1: DList

The design of our analysis ensures that despite of aliasing and update, there is no doubling
or multiplying of the potential. This is ensured through careful balancing expressed by our
annotated typing rules. The potential of a list depends on its length and can be defined only via
its access paths. This is illustrated in Figure 1: in step 1, we see a singly linked list consisting
of Cons objects with a pointer to the next list and to the element, e.g. an integer number. This
list is still present in step 2, and in addition to it, we have also constructed a doubly liked list
with DCons objects and two empty lists (DNil) on each end. These DCons objects are again
deallocated in step 3, when we build a new singly linked list and set the pointers such that we
obtain the original list again. All yellow objects are allocated freshly.

Our automated analysis receives the program code of this example and a fixed cost model
(e.g. for each class the allocation cost per object, etc.) and generates some linear tree constraints.
The solution to these linear tree constraints tells us about the resource consumption of this
program. Say for the sake of simplicity for this example, that each object allocation costs 1,
then the solution to the generated linear tree constraints would tell us that the execution of the
whole program allocates n + 3 objects, were n is the length of the input list.

This example can be treated in previous work by Hofmann and Rodriguez and the output
constraints are already in this case hundreds in number!'. There, the analysable programs are
limited to a subset of those that consume at most a linear amount of resources. In this paper,
we will overcome this restriction.

We focus now on solving the arising linear tree constraints. Further background of the
amortised analysis technique is given in Section 1.3; and the interpretation of solutions to linear
tree constraints with respect to analysed program code is discussed in Section 3.

1.2 Syntax, Semantics and Preliminary Results

Definition 1. Let % be a finite set of branch labels and D = Qf U {oo}. An infinite tree Ty
with branches in X and labels in D is a map ¥* — D (with X* being all words over ¥*). A tree
s is a subtree of a tree t if there is w in X* such that s(p) = t(wp) for all p € X*.

IThe code can be found here: http://raja.tcs.ifi.lmu.de/demo/demo-dlist
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tu=ux|l(t), where l € ¥ with |X| < 00 (Atomic tree)
te i=1t | te + te (Tree term)
cu=te > te (Tree constraint)

Figure 2: Linear Tree Constraint Syntax

vi=n| | O®) (Atomic arithmetic expression)
hi=v|h+h (Arithmetic term)
ci=h>h (Arithmetic constraint)

Figure 3: Arithmetic Constraint Syntax

A tree constraint system is a set of pointwise linear inequalities between tree variables, for
example z > r(z) + I(z) + y, where z,y are binary trees with labels I and r such that r(z) is
the right subtree of = (and I(x) the left subtree.) In our setting, these tree variables can be
instantiated with infinite trees that contain a nonnegative rational number or infinity in each
node as in Definition 1. The degree of the trees is arbitrary but finite. The formal syntax for
the linear tree constraints is shown in Figure 2.

A solution of the tree constraints is a set of infinite trees for which the constraints hold
pointwise for each number in the nodes. More precisely, a constraint x > y holds for concrete trees
t1,to, if O(t1) > O(t2) and for all labels I (denoting the immediate subtrees) holds I(t1) > I(t2)
(cf. rule (Label) in Figure 6). The latter means the constraint holds recursively for all immediate
subtrees. Similarly, a tree constraint ), z; > > y; holds if the sum of the roots of the z; is
greater or equal to the sum of the roots of the y; and the same constraint holds recursively for
their children. We further define that for each a € QF U {oo} holds a + oo = oco.

In addition to the tree constraints, we have arithmetic constraints given for the numbers
in selected nodes of the trees that take the form of an arbitrary linear program with integer
coefficients. They are the same as tree constraints with the difference that they can include
numbers and hold only for the roots, which are arithmetic variables. Let A\ be a variable, n a
number and let ¢(z) denote the root of tree x. Figure 3 gives the syntax for them.

Example 1. Consider degenerated trees (i.e. lists) with root symbol head (i.e. head(t) := O(t))
and the only label being tail. The arithmetic list constraint head(x) 4+ head(y) > 2+ head(tail(z)).
states that the sum of the first elements of lists x and y are greater or equal to the second element
of z plus 2.

Tree constraint systems without arithmetic constraints are always trivially satisfiable with
trees consisting only of zeros or only of infinity. The arithmetic constraints play a similar role
as the initial values for recurrences, starting from these values the whole tree is build up. If
they are not themselves zero or infinity, they also prevent setting entire trees to zero of infinity.

Each inequality over tree variables corresponds to infinitely many inequalities over arithmetic
variables (i.e. variables for the numbers in the nodes.) Thus the problem to decide whether a
set of tree constraints is simultaneously satisfiable can not directly be reduced to feasibility of a
(finite) linear program.
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Figure 4: Tree with infinite number of different subtrees

Example 2. The system consisting of the arithmetic constraint {(t1) = 1 and the tree constraints
T(tl) Z 2t1 l(tl) Z 3t1 tl 2 l’f’(tl)

where the O(+) symbol denotes the variable in the root of a tree, is unsatisfiable, because it implies

1 = <>(t1) Z ()(lr(tl)) Z 2<>(l(t1)) 2 6<>(t1) = 6 The system O(tg) = 1,T(t2) = th,l(tg) = 3t2

has the solution in Figure 4. The subtrees can be computed by duplicating the value in the root

of the subtree when going right and multiplying by three when going left:

Vw € (I|r)* : O(w(tz)) = 237, i = number of r’s in w, j= number of ’s in w.

The following problems are closely related [3].

e Skolem-Mahler-Lech Problem (SML)

Given: A homogeneous linear recurrent sequence of degree k with initial values
bi,...,br and constant rational coefficients a1, ..., ax of the form

Ty =01Tp—1+  + aTp_k,n >k

xlzbl,...,l‘kZbk
a;,b; €Q,b; >0foralli=1,... k,ar #0,

Asked: Is there an index n such that z,, = 07

e List Constraint Satisfiability Problem (LC)

Given: A finite system of list constraints (constraints over trees of degree 1 with label
tail) and arithmetic constraints

Asked: TIs there a set of lists, which simultaneously satisfies all constraints in of the
system in D = QF U {o0}?
e Tree Constraint Satisfiability Problem (TC)

Given: A finite system of tree constraints and arithmetic constraints
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Asked: Is there a set of trees, which simultaneously satisfies all constraints of the
system in D7

SML can be reduced to LC [3]. LC is an obvious subcase of TC. Thus LC and TC are
very hard and probably undecidable problems, since the decidability status of the famous and
NP-hard SML problem is still unknown. The detailed situation for recurrences and decision
problems there (as SML) is described in [28, 29, 4, 12].

This led us to the consideration of unilateral constraints, that can be shown sufficient for our
purposes (namely the program analysis). We examined the rules that generate constraints from
programs more closely and found a more accurate description of the constraints that are actually
produced than the original formulation by Hofmann and Rodriguez (cf. [3]). More precisely,
unilateral constraints are the only sort of constraints that arise from Java-like programs.

Definition 2. A unilateral tree constraint is a constraint with only one summand on the greater
side of the inequality (i.e. of the form c ==t > te according to Figure 2 (Tree constraint), or
equivalently t > t1 + - - - + t, ). We call unilateral tree constraints UTC. In contrast to the tree
constraints, the arithmetic constraints remain unchanged.

Note that the satisfiable tree constraints in Example 2 are not unilateral, because of the
equality sign that is constructed by combination of constraints with > and <, where the latter
are not unilateral. We also emphasise that there are no minus signs in the sum on the right hand
side. It follows from the nonnegativity of the summands on the right, that UTC is a proper
fragment of TC.

Unilateral constraints are considerably easier to solve, because all coefficients on the right
hand side (i.e. the smaller side of the inequality) are positive and thus complicated recurrences
can not all be expressed in ULC; in particular, SML can not be reduced to the unilateral
fragment. Furthermore, since all trees have only nonnegative entries, the left hand side is greater
than each single summand on the right. We will make use of this fact in our decidability proof
(Theorem 1) explicitely.

Indeed, it was shown that for the list case there exists a polynomial decision procedure by
reduction to linear programming [3]. We show that UTC is decidable. In contrast to ULC
(Unilateral List Constraints), our decision procedure is not polynomial in the size of the input.

We remark that according to the recurrence-like syntax nearly all constraints have only
nonlinear solutions. For instance, in the case of lists, the linear system by Hofmann and
Rodriguez can only (partially) treat periodic lists. In the tree case, we have analogous growth
rates as for lists in [3]. This means, as soon as we have a tree constraint with sums like e.g.
Irlre > lrx + lrz, the tree exhibits exponential growth.

1.3 Related Work

The first automated application of amortised analysis to first-order functional programs was
by Hofmann and Jost [22]. They annotated the types in the programs with the available
resources of the data structure and then introduced typing rules to reason about the resource
consumption of functions. There they had the restriction that the potential was required to be
linear. The approach was later generalised to multivariate polynomial potential by Hoffmann
[18, 19, 15, 16, 14]. This was the starting point for many other investigations in this direction.
Hofmann and Moser applied amortised analysis to term rewriting [24], Hoffmann refined his
work, made it fully automatic and carried over the analysis to concurrent programs and programs
in C and OCaml [17, 6, 7, 20, 21]. Among other related work, mainly on resource analysis, are
[10, 5, 13, 1, 11], which use different methods than our approach.
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Applying the amortised analysis to a fragment of Java (RAJA, i.e. Resource Aware Java,
similar to FJEU (Featherweight Java Extended with Update)), which features object oriented
programming, polymorphic functions and monomorphic recursion was started by Hofmann
and Jost [23]. Rodriguez further examined RAJA and introduced the tree constraint problem,
which remained open in her work [27, 25, 30, 26]. Her resource-type inference algorithm outputs
conditions that must hold for the potential of the objects (represented as trees) in form of linear
tree constraints. One can determine the resource consumption of a RAJA program if one has
a solution to its constraints. Recently, the list constraint satisfiability problem for RAJA was
proven decidable [3]. In this paper, we generalise that argument to trees.

2 Decidability

We now establish our main result (Theorem 4), namely that satisfiability of unilateral linear tree
constraints is decidable. The proof is structured as follows: We first observe that unsatisfiability
is semi-decidable. We then show that we can reduce a set of constraint systems that contains all
satisfiable ones to linear programming using the following arguments:

e We describe how to derive inequalities that follow from a set of constraints using a sound
and complete proof system,

e characterise the set of trees greater than a fixed tree as a regular language,
e use these languages to find all trees bounded from above and from below,

e show that all other trees can be set to zero or infinity without changing the satisfiability
properties of the system, and finally

e reduce the constraints to an equisatisfiable linear program.

This means satisfiability is semi-decidable. Together with the semi-decidability of unsatisfiability,
this implies that satisfiability is decidable.

2.1 Unsatisfiability is Semi-Decidable

From now on we are in the realm of UTC and omit the word “unilateral”. An unfolding step for
a constraint x > S1 + --- + S, where S; are (sums of) tree variables, consists of adding the
arithmetic constraint ¢(x) > ¢(S1) + - + O(Sy,) and application of the (LabelSum) rule in
Figure 5 for all [ € ¥ to obtain the constraints for the next step.

S=3.5: TOkz>8
TCH1(z) > 3, 1(S) (LabelSum)
S=3.5 TCFz>S
2i . Root)

TCF O(x) >, 0(5:)

Figure 5: Label application rules
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Each such step delivers a new, bigger set of arithmetic constraints that can be seen as a
linear program. We have a succession of programs (P;);>o.

Lemma 1. The constraint system (AC,TC), where AC is a set of arithmetic and TC a set of
tree constraints, is unsatisfiable if and only if one of the linear programs P; is unsatisfiable.

The proof closely follows the same ideas as the compactness proof for infinite dimensional
0-1-programming in [8]. Thus, if there is a contradiction, we find it, but if the system is
satisfiable, this will not terminate.

2.2 The Set of Trees Greater than a Fixed Tree is a Regular Language

We now describe the implications of a constraint system as given in Figure 6. Intuitively, if a
constraint = > y holds for trees x and y, then also each subtree of x is greater than or equal to
the subtree of y with the same label, and similarly the root of £ must be greater or equal to the
root of y. Further, the greater-or-equal relation must be transitive.

m (Reﬂexwlty)

TChrzxz>y
TCF(z) > l(y)

(Label)

x>y1+ ..ty €TC TCFuy; >z
TCFur >z

(Transitivity)

Figure 6: Proof system for unilateral tree constraints

Tree expressions are of the form ux where u : X* and X is the set of tree labels like left, right,
etc., and z is a variable. We use letters ¢, z,y, z, possibly decorated with indices, for both
variables and tree expressions.

The judgement TC |= x > y , where x and y are expressions, has the meaning that = > y
follows semantically from the tree constraints in T'C'. That is, every valuation that satisfies T'C
also satisfies ¢ > y. The judgement T'C' - z > y means that the inequality x > y is derivable by
the rules in Figure 6.

Theorem 1. The proof system in Figure 6 is sound and complete (i.e. TC x>y < TC
x>y)

Proof. Soundness is trivial. For completeness we argue as follows. Let T be the set of all tree
expressions over the variables in T'C' and define a graph G = (V, E) where V =T and

E ={(z,y)| there is a constraint ' > y; +--- +y,, € TC and

u: Y.z =wux’ and y = uy; for some i}.

Now fix a tree expression zg and define a valuation 5 in such a way that n(¢(z)) = 0 if z is
reachable from zy in G and n(Q(z)) = oo otherwise. We claim that n satisfies TC. Indeed,
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suppose that x > y; + -+ + y, is a constraint in TC. We must show that n(0(uz)) >
n(O(uy1))+- - - +n(O(uyy)) holds for all u : ¥*. If ux is unreachable from xg then n(Q(ux)) = co
and the inequality holds. Otherwise, if ux is reachable then uyy, ..., uy, are also reachable and
the inequality holds as well.

Now suppose that zy > y is an inequality that is not derivable from T'C'. In this case, y is
not reachable from xg in G. The valuation n constructed above then satisfies TC' yet n(zo) =0
and 7(y) = 0o 80 xg > y is not a semantic consequence of T'C'. O

For the next step, we are interested in the set LZ of tree expressions greater or equal to
a fixed tree expression z (resp. LS ); in short all z such that TC 2 > 2. Let us define the
language L, ; == {u | TC - ux >t} with  a fixed tree variable and ¢ a (possibly prefixed) tree?,
as an auxiliary step to compute LZ.

Theorem 2. The language L ; is regular.

Proof. We construct a finite automaton that accepts a word w, if and only if TC F wzx > t.

With the proof system in Figure 6, we can first build a pushdown automaton A from T'C,
that reads no input and such that u : L, if and only if A accepts beginning from stack ux.

We give the idea for the construction of a slightly more general pushdown automaton, namely
an automaton that accepts a word vz (wt)” (w” denotes the word w reversed) if and only if the
constraints imply vz > wt. Acceptance is by empty stack, and we start by writing v on the
stack while we are in a so-called “write-state”, then go into a state named “z”, there modify vz
nondeterministically and without reading from the input, as the constraints describe (possibly
going to state “t” for another variable ¢). After that, we leave state “t” (or “z”) and go into
a “compare-state” where we compare the obtained stack with w and empty it if they both are
equal.

Example 3. Consider the constraints
Ir(z) > rr(z) Ir(z) > U(y)
The pushdown automaton Ag = (Z,%,T,6, z0, #) such that
Z = {20, %00 22y 2y, 2, 2" 1, 8 = {l,r,z,y}, T = {L, R, #}

and the transition relation § is defined as depicted in Figure 7. Note that the lower case input
symbols in 3 correspond to the according upper case letters in the stack alphabet T'. Here zq is
the write-state, zo, the compare-state and z', 2" are auziliary states. For instance, in Figure 7,
the auziliary states are used as intermediate steps to rewrite lr(z) to rr(x) or to l(y). We use
the usual notation with triples for the current state, the read input symbol and the stack content,
that are then mapped to the next state and the new stack content by §. In the picture, the triples
on the arrows mean the input symbol, the stack before and the stack after the transition.

The language L corresponding to this generalisation is not always a regular language: this
can be seen with the Pumping Lemma. Assume L would be regular and let p be the Pumping
Lemma number and let the constraints be lrx > Irlrz and consider words (Ir)'za(rl)*+!, which
are implied by the constraints and thus in L. Then the word a = (Ir)P is obviously longer than
p. For each division of axz(rl)P*! = uvw in three words u,v,w such that |uv| is not longer
than p, for instance with v = Ir, holds Vk.(Ir)PT*zx(rl)PT! € L, which is not implied by the

2Note that t may just be a tree variable.
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(zo,m B) (zz,B),
6(20,y, B) = (2y, B),
5(zz, €6, RB) = (', B),
§(z',e,LB) = (2", B),

8(2",¢, B) = {(22, RRB), (2, LB)},
0(2z,2, B) = (200, B),
6(2y,y, B) = (200, B),
3(200, 7y RB) = (200, B),
0(200, 1, LB) = (200, B),
(200, € #) = (200, €),

BeTl*ae{l,r}

Figure 7: Example pushdown automaton

constraints. In any case we have that the label word before the z’s is longer than the label word
after them, which is not a consequence of the constraint. This is a contradiction.

However, we can use L to show the regularity of the language L, = {u | TC F uz > t}
where the second variable ¢ including its label word is fixed and z is fixed, but not its label word.?
For that, we build the above mentioned pushdown automaton A similar to the construction

for Ay above. We can assume w.l.o.g. (possibly by introducing new states), that .4 has only

h
transitions of the form z — y, x pl(‘)l) Yy, or x p“s—@ y, with z, y states that belong to variables.

We then define the set

Q= {(z,y)lzr =" y}

and enumerate it using dynamic programming and the rules in Figure 8. Now we obtain for
L, + the representation in Figure 9. From this we can read off a finite automaton B for L ;

directly: the states are the states of A, for each pair (z,y) € @ we introduce an e-move from

state = to state y, and the A-transitions z’ PoP(E) 17 are the montrivial moves that consume the

letter a. O

We then also have Ly, = {w | wu € Ly 4}, Ly vy and Lyg oy regular. The disjoint union
over the sets L, ., for all 2 equals LZ, for the expression z = vy.
From now on we omit the brackets for trees with prefixed labels and write [z instead of I(x).

Example 4. Let z,y, z be tree variables ranging over trees with labels in {l,r}, as before. Let

3In the list case, where we have only one label, this is a direct consequence of Parikh’s theorem.
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T—>y (y,2): Q z —w
Q

" push(a) (y’ Z) : Q . Pﬂ;) w

(,w) : Q

Figure 8: Rules for Q

@y):Q

€: Ly,

w: Ly y (", 2"): Q o PR (z,2'): Q

ua : Ly

Figure 9: Rules for L, ;

the constraints be

lx >z T >rz lrz > lly ly>y

then Ly = Ly gy =1 and Lz, = I*. The language Lﬁz = {lr,,l,,1,, €}, where the subscript
x at label word w means that w € Ly iy, .

Recall that tree constraints systems without arithmetic constraints are always trivially
satisfiable by setting all tree entries to zero. Analogously, all nodes that have bounds only in one
direction (i.e. are only implied to be greater than a set of arithmetic variables a; or only less) can
be set to zero or infinity. The only interesting case appears when we have subtrees x whose root
O(x) lies between two arithmetic variables a and b. The set LZ N ng ={z|a<{(x) <b} can
be computed using the languages L2 and LE for certain subtrees x,y. These trees are defined as
the subtree starting at the point where the arithmetic variables a, b are located. For instance, if
a = O(Irrz), then the subtree z is Irrz. Thus we can write LZ N LbS ={z|TCFy, <z <y},
where y, (resp. yp) is the tree with root ¢(y,) = a (resp. b).

Example 5. Consider the constraints
Oz) =1 lre > x lx >z mx > x x> rix z > mlx

The language of trees with root being either greater-than-or-equal, equal, or less-than-or-equal to
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the root of x are obtained by iteratively applying the constraints and transitivity.

LZ

o@) (ml | )}

=(r|lm);, Lgu = Lg(l) N Lg(w) =m(lr)*ly = ml(rl);, L<S>(x) =

2.3 Normal Form for Tree Constraints

We now bring the constraints into a normal form to start our procedure. Constraints in this
normal form all have a variable with label word of length n on the left hand side, and all label
words on the right are at most of length n. The variables with label word of length exactly
n can be represented as a directed acyclic graph with an edge between z and y if and only if
TC F x < y. Further, there are no arithmetic constraints below level n — 1 (i.e. for trees with
label word of length more than n — 1).

To obtain constraints in this normal form, we examine the form of each constraint. If there
is only one label word of maximal length, we take this word and isolate it on the left side of the
inequality. If there is more than one such word, we write k-times repeated addition of the same
summand s as k - s. If there is then only one summand s of maximal length, we bring it on the
left hand side and divide both sides by k. Otherwise, we build [ constraints by bringing the I’th
of the longest summands on the left (possibly again by dividing by a positive integer). Then,
we apply the rules in Figure 5 to all the obtained constraints until all label words on the left
have the same length. The result is an equivalent constraint system (i.e. a system with exactly
the same solutions) consisting of unfolded tree constraints and a new, bigger set of arithmetic
constraints.

Depending on the position of this longest label word and according to the unilateral syntax,
we have — after bringing the longest label word on the left side — three kinds of constraints:

e [ower bounds are of the form wx > wyy1 + - -+ + w;y;, with all w; shorter than w.
e upper bounds have the shape wx < w'y — w1y — - - - — w;y;, with all w;, w’ shorter than w.

e undirected constraints have two label words of the same length on both sides, as for
instance z > y+ 2z, <y — z.

Example 6. The constraint x > lz 4+ y is an upper bound and is rewritten to lx < z —y.

The last set (the undirected constraints) can be transformed into a directed acyclic graph by
removing cycles as follows: If we can derive x > y; > yo2 > --- > & + R by just using transitivity
(not through label application, which would require again a regular language), then we conclude
that © = y; forall ¢ and that R is identical to the tree consisting only of zeros. In this graph, we
have now encoded upper and lower bounds simultaneously.

Example 7. Let the constraints be x >y + z, z > t, y > t. They correspond to the graph with
an edge from x to y and to z and from y and z to t.We then add the four constraints t < z,
t<y,y<az—z z<z—y to our system. We must traverse this graph in two directions (i.e.
we need both kinds of bounds that are implied by it) to obtain an order in which we treat the
nodes. The need for this will be explained in Example 8.

2.4 Idea and Examples

Let us briefly explain the intuition behind our procedure before covering the technical details.
The idea is that we label all nodes in the trees which are in a set L= N LbS for arithmetic variables
a and b with sets of intervals to which the number in the node has to belong to. These intervals
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are derived from the constraints. Nodes with the same set of intervals are defined to be in
the same class. It can then be shown that there are only finitely many different classes for all
constraint systems that contain the satisfiable ones.

Last, we translate the statement that all these intervals are nonempty into a finite set of
linear inequalities between the arithmetic variables. This linear program is equisatisfiable to the
constraints (i.e. if the intervals are nonempty, then there exists a solution with the valuation of
each ¢(z) in the interval assigned to {(x)). If they are satisfiable, we thus get the answer in
terms of a satisfiable linear program, and, in addition to that, an assignment of a class to each
of the nodes that can be seen as a certificate for satisfiability.

Combining this with Lemma 1, we have a decision procedure that either returns an unsatisfi-
able linear program implied by the constraints or a schematic notation for the intervals that
contain their solutions from which it is directly possible to compute a solution.

Example 8. Consider the (list-) constraints
Oz) =0(y) =1 T>y lx <z ly>y

They are equivalent to the system O(z) = O(y) = 1 in congunction with C = {c1, ca, c3, ¢4}, where
cp=ly <lx e =l >y cg=lr<zx cy=ly>y

which is in normal form (with constraint c¢i being redundant in this case). The constraint c3
delivers the interval [0,1] for O(lx) (resp. ca delivers [1,00] for O(ly)). Thus ¢1 gives us the
interval [1,1] for O(ly) and co gives the same interval for O(lx). By duplicating the constraint,
we ensure that we treat the nodes in subsequent levels of the DAG (as constructed above) correctly.
Imagine we had only ¢ without ca, then we would miss the bound on O(ly). In the next steps,
we derive no new bounds any more.

The system in Example 8 is satisfiable by the trees consisting of only 1s. If we modify it
slightly, it becomes unsatisfiable:

Example 9. The constraints © > y,0(y) > Lz + 1z < z,ly > y+ y are equivalent to
O(x) > O(y) > 1 and D = {dy,da,d3,ds}, where

dy =1y <lx do =1z >y ds =lzr < 0.5z dy =1y >2y

We have the intervals [0,0.50(z)] and [20(y), oo] for O(lx) by ds and dz2, and [20(y), o] and
[0,0.50(x)] for O(ly) by da and d1. In the next steps, the factors will be 0.25 and 4, etc. The
list © is exponentially decreasing, whereas y grows exponentially. So if the roots of x and y are
neither zero nor infinity, then no matter which number they are, x will at some point be less
than y. Here we see that there is a contradiction, but we can not say after how many iterations
we will find it. There the other part of our algorithm, namely Lemma 1, applies.

2.5 Satisfiability is Decidable

Before we prove the central facts (Theorem 3 and Theorem 4) of this paper, we need some
word-combinatorial preliminaries. We say that two label words are dependent if one is a suffix
of the other. The next two lemmas are well known and can be found for instance in [9].

Lemma 2. Let u,s,t € Z“‘ such that tu = st. There then exist q,r € X* and i € N such that
s=qr,u=rq, t=q(rq)".
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aia ...an as...ay
a1a9 as...apa102 as...ap

Figure 10: Commuting words ajas and ag ... a,

Lemma 3. If for word x,y,z holds z"y™ = z*, with n,m,k > 2, then exists t such that

x,y,z € t*.

Lemma 4. Let ¢ be a unilateral tree constraint. If it is of the form
102 ...GpT > €1 A3 ... AnT+ -+ Cp - ApT + Cpay - T (1)

with all a; # €,c; € Ny and label words and = a tree, then it can be transformed (by application
of labels from the left) into a constraint with all a;, € p* for a suitable word p and all other
summands independent.

Proof. We assume that there is a label word ¢ € ¥* which we can apply from the left such that
all summands stay dependent of ajas . ..a,z. (If such a ¢ does not exist, then all summands are
already independent.) This is,

tajas ...ay has the suffixes tas...an,tas...ap,...tay,t. (2)

We apply Lemma 2 to taias...a, = st with v = a;...a, and obtain r,q € ¥* such that
a...ap, = rq,t = q(rq)' = q(ay...a,)". Thus tay...a, = q(ay...a,)'as...a,. According
to (2), tas . ..a, is a suffix of tajas...a, = q(a; ...a,)"" . This means that a; and as...a,
commute. Hence there is p; such that both are in pf.

Similarly, tajas...a, has the suffix tas...a, = g(ay... an)iag ...0ay, and thus ajas and
as . ..a, commute (see Figure 10, where words of the same length are written in boxes). We can
thus conclude that there is ps with a1a2 and as . .. a, are in p; . We proceed the same way until we
obtain in the last step that a; ...a,_1 and a,, commute. We now write a; = p?,az Ay = p{l

and aias = pél,ag ey = ng, etc. Application of Lemma 3 allows us to conclude from
(ay...a,)? = pitHipht7z = pg(“ﬂ” that p1,p2, p3 € p* for a certain p. Thus all p; are in pT

and for all 4, we have a; € p™. O

Theorem 3. Satisfiability of linear tree constraints is semi-decidable.

Proof. Assume that all constraints are in the normal form described above. Introduce an
arithmetic variable for each node above level n. Recall that there are no arithmetic constraints
below level n — 1 and all left hand sides of the constraints have label word of length exactly n.
Now calculate the sets L2 N ng for all pairs of arithmetic variables a,b. One may assume
w.l.o.g. that all a,b are neither zero nor infinity: Otherwise, let A, B be disjoint subsets of the
set of arithmetic variables and test all combinations of additional constraints A > a; = 0 and
B > a; = co. If one of them is satisfiable, we return this as the result.

Our procedure starts with step 1 at level n and assigns a set of intervals to each node.
For the lower bounds, which have the form wx > wiy; + -+ + Wmym, with all w; shorter
than w, we add the interval ), O(w;y;),00]. For the upper bounds, that have the shape
wr < W'y — wiyr — -+ — WYm, with all w; and w’ shorter than w, we add the interval
0, 0(w'y) — ¥, O(wiys))-

For the undirected constraints, we observe that the membership of all nodes in LZ N ng
ensures that we have already an interval for the starting nodes of the DAG constructed above.
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We traverse it in both directions and add for constraints x > y; + - - - + ¥, the new set of
intervals {[3; a;, 0] | [as, b;] is an interval for O(y;) }; respectively for # <y — 21 — -+ — zp, the
new intervals {[0,b— ", ¢;] | [a,b] is an interval for O(y) and [c;, d;] is an interval for (z;)}.

Further, we set all nodes that have bounds in only one direction to [0,0] or [co,00]. We
denote the set of intervals for node ¢(x) with I(x), and I,, is the set of all I(x) obtained until
step n.

The unilateral constraint syntax allows us to define a meaningful addition and subtraction
on interval sets that formalises how we compute new interval sets.

I(z)+ I(y) = {[a—|—c,oo] | [a,b] € I(x),]c,d] EI(y)}
I(‘T) 7I(y) = { [07 b*C] | [aab] € I(x)a[cad] € I(y)}

Observation 1. The order of evaluation does not play any role for sums of interval sets, i.e.
I(w) = I(y) — I(2) = I(z) = (I(y) + I(2)).

To prove this, let w.l.o.g. be I(x) = [a,b], I(y) = [¢,d] and I(z) = [e, f]. Then

[a,b] — [c,d] —[e, f]=[0,b—c—¢] =1[0,b— (c+ €)]
- [a7b] - [c+€7oo] = [avb] - ([C’d} + [eaf])

In step n + 1, we apply the rule (LabelSum) from Figure 5 to the constraints to increase the
length of the label word of the left sides by 1. Then, for the lower bounds we no longer necessarily
have arithmetic variables as roots of the trees on the right, but also nodes equipped with intervals.
Thus, we proceed in a similar way as for the undirected constraints on level n, namely add the
intervals that can be derived from the variables on the right. We do the same for the upper
bounds and the undirected constraints on level n + 1. More precisely, for the lower bounds, we
set I(z) = I(y1) + -+ I(ym), and for the upper bounds I(x) = I(y) — I(z1) -+ — I(2m).

We claim that after a finite amount of steps, no new intervals are derived any more: If we see
the set of intervals that belong to a node as its class, then there are only finitely many different
classes. The reason is that if the intersection of one of the interval sets would be constantly
shrinking, we would infinitely often add a nonzero number to the lower bound or subtract a
nonzero number from the upper bound or divide the upper bound by a positive integer (by
the assumption that all arithmetic variables are neither zero nor infinity). Since all considered
nodes are bounded from above and below, we would at some point obtain a contradiction (see
Example 9).

It is thus necessary to give a criterion that ensures that we have found all classes already
and must not search for new classes anymore. Having found all intervals, the condition that the
intersection of all intervals that belong to the same node is nonempty delivers an equisatisfiable
linear program.

We now define S as the least common multiple of all differences of label word lengths that
appear in the constraint system. For instance, S for the single constraint lrrlex > z + lx is
12 = lem(4, 3). Note that in the list case, S is a bound on the period length of the solution lists
(cf. [3]). The criterion looks as follows: Let L be the set defined by

L=Uus(LZNLY),
which describes the nodes with bounds in two directions. If in S iterations no new interval sets

for the nodes in L are derived any more (i.e. for each node x on a certain level and word p with
Ip| = S, the intersection of all intervals that belong to px is equal to the intersection of the
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intervals for z), then we have found all of them.
There are two things to show, namely that the premise of this criterion implies I = I, for a
n € N and that this premise will finally hold.

Claim 1 (Part 1). If there is a n € N such that for all x € L on level n,...,n+ S and for all
label words p with |p| = S, the set I(px) is equal to I(x), then I = Ujenl; = Ly s.

Claim 2 (Part 2). There is a n € N such that for all x € L on level n,...,n+ S and for all
label words p with |p| = S, the set I(px) is equal to I(x).

To prove the first, we show that forall k =0, ..., S and for all [ € N, we have I,,4;11.5 = Lntk-
We consider three cases:

1. If we have a lower bound constraint pz > 3. y;, we know that for all label words p, ¢ with
px,qpr € L and |p|, |q| = S, this implies gpz > ", qy;. The lower bounds of the intervals
for qy; are not stronger than those for y;. This follows from the assumption if qy; € L. It
is also true if qy; ¢ L, because then the interval for qy; must be [0,0] (since it is less or
equal to gpx, which is at most b and so it can not be 0o, c0]) and thus it delivers no new
bounds at all. We mark this property by ().

2. Similarly, in case of upper bounds pz < y — >, z;, the upper bounds for gy and the
lower bounds of the intervals for gz; are not stronger than those for y and z;. Again, if
qy, qz; € L, this is a consequence of the assumption, and if qy € L and gz; ¢ L, then gz;
has interval [0,0]. Last, if gy ¢ L then gy has interval [co, co] and delivers no new bounds.
This property is called (%*).

In these two cases, the right hand side in (x) and (xx) is on level less or equal to the level on
the left. We may assume that all py;, qy, qz; € L. For all label words ¢,p with ¢gpx € L and
lg|, |p| = S, we have I(qy;) = I(y:), I(qy) = I(y), I(qz;) = I(z;) and the set of intervals for gpz,
which is the sum of the intervals for the gy (resp. the difference between the intervals of gy and
the gz;) is (after intersection) not smaller than the set of intervals for gpx (according to (x) and
(%%)), and also not smaller than the interval for . More precisely, we have

I(gpr) = I(qy:) + -+ I(qym) = L(yi) + -+ + L(ym) = L(px) = I(x), or resp.
I(gpx) = I(qy) — I(qzi) — -+ — I(qzm) = I(y) — L(21) — - — I(2m) = I(px) = (7).

This means that if we jump S levels down in the tree and nothing changes regarding the intervals,
then the next iteration will never again obtain a new interval.

3. The last case occurs if we have an undirected constraint « > y+z. This implies pz > py+pz,
with I(pz) = I(x), I(py) = I(y), I(pz) = I(2), and for the new interval obtained from the
undirected constraint Ie.,(px) = I(py) + I(pz) = I(y) + I(2) = I(z), etc. If there are no
changes in the intervals for p, ¢ of length S, then there are no changes at all and I = I, ;5.

To prove the second part of the claim, we assume that for all levels there is a p of length S and
x on that level (optionally plus a number between 1 and S) such that I(pz) # I(z). In other
words, we derive at least one new interval on each Sth level.

All constraints on the variables in L (except a subset of the undirected constraints where all
label words have the same length) imply constraints of the form qy > z + R (resp. qy < z — R)
with |g] = S. For the lower bounds, we have to consider all possibilities for the choice of z in
the following, whereas for the upper bounds there is only one positive summand and thus z is
unique.
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We can assume that for all = holds I(pz) C I(x) because of the choice of S: if this was not
the case and pqy had strictly weaker lower bounds (resp. strictly weaker upper bounds) than pz,
the interval I(pqy) would contain more than I(pz) and thus gy could not have z as a bound.

Thus we have I(pqy) = I(pz) + I(R) (resp. I(pqy) = I(pz) — I(R)). We now assume w.l.o.g.
that y plays the role of the 2 above and that z = y holds*. So we have a constraint pz > z + R
or pr < x — R which is derivable just by unfolding using the (LabelSum) rule in Figure 5. We
just treat the first since both are similar.

According to Lemma 4, either some label words of the summands in R =7y +--- 4+, and
p are powers of the same path ¢, or in the next step all summands in ¢R == qr1 + -+ + qrm,
are independent of gpz for all ¢ of length S. If the second happens, if no tree ¢’z is reachable’
from R, then either this constraint delivers no new bounds below level n + .S, or R must contain
a tree z that is at least constant when seen as a list (p’*z); along a path p’ € t* of length
S. This implies p = p/, which again implies ppr = t'pxr = t¥z > t/xz + t* 2z + R’, and that
means p'z > p!~lz 4+ p!tF=2z holds — just like in the first case. Overall, we have that either
the constraint does not deliver an infinite amount of new bounds or has the form of a strictly
increasing list along the path (O(p?));. In both cases, this is a contradiction, since only finitely
many p'x can be in L, thus I(p'z) is at some point equal to [0o, 0o] and then stops changing.

Claim 1 and Claim 2 ensure that in a set of cases including the satisfiable ones, we will
only derive finitely many different intervals. Thus the problem to decide whether the values
of the arithmetic variables can be chosen such that these intervals are all nonempty can be
solved by linear programming. If and only if they can be chosen this way, the constraints are
satisfiable. O

Example 10. Consider the constraint system
llx > re+mx Olra) =1

There are no arithmetic constraints below level 1, and the system is already in normal form. All
summands on the right hand side of the tree constraint are independent of the variable on the
left hand side. We derive the interval [1,00] for llx and continue with unfolding the constraint
to obtain

rlile > rrx + rmx Uz > lrx + Imx mlle > mrx + mma

Because of the independency, we obtain no new intervals at all, since none of the trees on the
right sides are in L.

Example 11. Let the constraints be
Oy) =1 y > ly y>Ty lx>x+y re>c+y x> lrx

Then all nodes in (I|r)*ty are assigned the intervals [0,0]. Similarly, Itz and r*x and all other
nodes are set to [00,00], except those nodes that have bounds in two directions (i.e. are in L).
The only nodes in L are the roots of lr*x and O(y). Thus we only need to compute intervals for
Ir*x. The root O(x) gets the interval [1,1]. On level two, there is no node in L. Then, on level
three, Q(lrx) is labeled with the intervals [1,00] and [0,1]. Thus their intersection is equal to

4If this is not the case for the initial y, the next candidate for z is z.
5No lower bound constraint on any summand #'z in R with ¢’ € t* on the right exists — which is decidable
according to Theorem 2.
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[1,1]. The same happens on level 4,6,8, etc. Indeed, we can easily check that another solution
than one with Yw € (Ir)*.Q(wzx) = 1 is not possible.

Combined with the semi-decidable unsatisfiability, we can decide UTC.
Theorem 4. The unilateral tree constraint problem is decidable.

Proof. For a given constraint system, we run the two semi-decision procedures for satisfiability
and unsatisfiability in parallel. As we proved, one of them will terminate and this yields our
result. O

2.6 Complexity

If the constraints are unsatisfiable, we cannot determine the complexity at all, because this
contradiction may be located arbitrarily deep in the tree, depending on the initial values. For
instance, if we have tree constraints

y>ax lre > x y > 2lry O(x) =1 Oy) > 1024 = 210

then we will need 10 steps to find a contradiction, if ¢(y) = 1024. However, for {(y) > 219
we will need 100 steps. The complexity for the algorithm in the satisfiable case is at least
exponential according to the number of linear programs used when assuming that all initial
values are nonzero.

3 Relation to RAJA programs

We briefly sketch how we can read off resource bounds from constraint solutions. The amortised
analysis approach associates a potential (i.e. resources) to each reference to an object. For each
individual access path to a runtime object, we find the associated resources as a number within
a tree. Since we may have cyclic object references, these trees must be assumed to be infinite;
as cyclic references allow for access paths of arbitrary lengths. More precisely, the number in
the node of tree ¢ encodes the required resources for an object x itself and the subtrees of ¢
belong to the attributes of x, which are again objects. The amortized resource analysis for
object-oriented programs produces UTC as a result; the solutions then compute the actual
numbers. Note that a solution gives us more information than just some constant linear factors,
since the information whether or not a factor is non-zero determines asymptotic complexity.

Consider the RAJA program shown in Figure 11, which creates a degenerated binary tree
out of a tree by replacing the left subtree by the sum of all elements of the right subtree. The
class Tree has subclasses NonemptyTree and Empty.

The analysis produces 1398 constraints for this program (including all class definitions that
are not shown in Figure 11). One of these constraints is

re > x4y

where the inhomogeneity belongs to a constant tree and thus causes linear growth for the tree x,
when going along the rightmost path. Intuitively, the reason for the nonlinear bound is that we
create a new NonemptyTree object 1 in each recursive step of the function sums, which each
time requires a constant amount of resources. So each node must have these resources at hand
to spend them for the new allocation. In addition, the nodes of the right subtrees also have
to have enough resources for calling the function toDegTree recursively. The recursion here
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class NonemptyTree extends Tree{
int elem; Tree left; Tree right;

Tree sums (){
let 1 = new NonemptyTree in
let _ = l.elem <- this.elem + this.left.sums().elen
+ this.right.sums().elem in return 1;}

Tree toDegTree (){
let _ = this.left <- this.right.sums() in
let _ = this.right <- this.right.toDegTree() in return this;}

}

class Main{
Tree main(NonemptyTree t’){return t’.toDegTree();}
}

Figure 11: RAJA code with nonlinear constraints

leads to the condition that the right subtree of x must contain the same or more resources than
x itself. This program thus needs super-linear (more precisely at least quadratic) resources,
because we obtain the overall resource consumption by adding the required resources for each
single node. Thus this program that cannot be analyzed with the results in previous work, but
with the decision procedure in this paper, programs of this kind become analyzable.

4 Conclusion

We have proven that linear constraints over infinite trees, as generated by an automatic resource
type inference for the language RAJA, are decidable. Our approach uses pushdown automata,
nondeterministic finite automata and combinatorics of words to generalise the list constraint
theory to trees. For the latter, satisfiability was previously proven decidable in polynomial time.
In contrast to that, our algorithm for trees needs exponential time, because the number of the
linear programs that we reduce the problem to is exponential in the size of the input.

This decidability result enables us to analyse arbitrary RAJA programs with respect to their
resource consumption. We can read off upper bounds on the memory usage from the solutions
of the constraints. Until now this was only possible for a subset of programs that need linear
resources.

For example, sorting a list using merge-sort is one of the examples provided with the prototype
implementation of RAJAS. The analysis of this example previously only succeeded thanks to
using static garbage collection, namely free expressions. While there is research on static garbage
collection [31, 2], there are still many open questions about the realization of a static garbage
collector in Java. The results of this paper now enables a successful resource analysis of the
merge-sort example even in the absence of static garbage collection (i.e. no free expressions
in the code). Thus nonlinear bounds make our analysis independent of this construction and
thus closer to real Java. Note that especially for bigger programs or programs with auxiliary

6raja.tcs.ifi.lmu.de
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functions or nested data structures, the constraint generation is very involved and often leads to
superlinear resource annotations.

Future work includes a procedure for finding closed formulas for the optimal, namely minimal
solutions, similar to the list case in [3]. In order to develope an implementation based on the
existing RAJA tool, it would be useful to optimise our algorithms and then determine the exact
complexity of our decision procedure.
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