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Abstract 
Many IT enterprises today use Service Oriented Architecture(SOA) as the effective 

architectural approach for building their systems. Service-Based Systems(SBS) like 
other complex frameworks are liable to change to fit in the new user requirements. 
These may lead to the deterioration of the quality and design of the software systems 
and may cause the materialization of poor solutions called Anti-patterns. Similar to 
object-oriented systems, web services also suffer from anti-patterns due to bad 
programming practices, design, and implementation. An anti-pattern is defined as a 
commonly used process, structure, or pattern of action that, despite initially appearing 
to be an effective and appropriate response to a problem, has more bad consequences 
than good ones. Anti- pattern detection using Web Service Description 
Language(WSDL) metrics can be used as a part of the software development life cycle 
to reduce the maintenance of the software system and also to improve the quality of the 
software. The work is motivated by the need to develop an automatic predictive model 
for the prediction of web services anti- patterns using static analysis of the WSDL 
metrics. The core ideology of this work is to empirically investigate the effectiveness of 
classifier techniques i.e, ensemble and deep learning techniques in the prediction of web 
service anti-patterns.  In this paper, we present an empirical analysis on the application 
of seven feature selection techniques, six data sampling techniques, and ten classifier 
techniques for the prediction of four different types of anti-patterns. The results confirm 
the predictive ability of WSDL metrics in the prediction of SOA anti-patterns. 
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1. Introduction 
A web service is an assortment of protocols and requirements utilized for trading data among 

applications. Web services are advanced dependent on standards that aid interoperability. They 
are utilized for the growing distributed system based on service-oriented architecture. Software 
developers can identify all the web services required to build a specific application and invoke 
all the desired web services.   There are several benefits of using web services;  for example, they 
use the SOAP mechanism, which is more efficient than regular HTTP. They help develop 
applications that are independent of programming languages. 

SOA (Service Oriented Architecture) permits building various kinds of Service-Based 
Systems (SBSs) similar to Amazon, eBay,  Dropbox,  etc.  The advancement of such systems 
raises sev- eral demanding situations. SBSs should advance to fit new user prerequisites and 
adapt new execution contexts, including the addition of the latest devices and technology. The 
design and Quality of Service (QoS) of SBSs may additionally debase the design because 
of a majority of these modifications and frequently result in a standard negative solution to 
habitual prob- lems, referred to as Anti-patterns[3]. These systems inside the design 
demonstrate a violation of fundamental design principles and negatively sway design quality. 
Anti-patterns makes it difficult for the evolution and advancement of the software system, but 
they also tend to help to detect problems within the code, the architecture, and the management 
of software projects. The web service anti-patterns which we considered in this paper are GOWS: 
God Object Web Service(AP1), FGWS: Fine-Grained Web Service(AP2), CWS: Chatty  Web  
Service(AP3),  and DWS: Data Web Service(AP4). Regardless of the general use of Web 
services, no particular and automatic methodology for detecting such anti-patterns from their 
Web Service Definition Language(WSDL) files exists to date. The motivation behind the paper 
is thus to explore the techniques to detect the anti-patterns using WSDL metrics automatically. In 
this paper, the WSDL metric set is used to detect the anti-patterns instead of the Object-oriented 
metrics used widely. We empirically investigate the effectiveness of 6 data sampling techniques, 
seven feature selection techniques, four different subsets of WSDL quantitative metrics, and ten 
classification techniques in the detection of web service anti-patterns. 

2. Objectives and Research Questions 
The primary objective of the work presented in this paper is to investigate the application of 

ensemble and deep learning techniques in the prediction of SOA anti-patterns using WSDL 
metrics as features. The other objective is to build tools and techniques for the automatic 
prediction of anti-patterns and investigate the relationship between the Web Service Description 
Language(WSDL) metrics and the incidence of anti-patterns in web services. The following 
research questions(RQ) have been answered in this work: 
• RQ1:Is there an essential differentiation between the performance displayed by the five data 

sampling techniques over the original data? 
• RQ2: Is there a quantifiably enormous distinction between the performance of the mod- els 

developed by utilizing the features selected by applying the seven feature selection 
techniques and the subset of WSDL quantitative metrics over the exhibition of the model 
produced by utilizing all the WSDL code quantitative metrics? 

• RQ3: What is the general execution of the ensemble techniques and deep learning tech- 
niques considered concerning AUC and f-measure metrics? Is there a genuinely critical 
differentiation in the expected execution of the ten classifier techniques? 
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3. Related Work 
Upadhyaya et al. [7] proposed an approach to detect 9 SOA patterns. It is observed from the 

literature reviewed here that that the research on SOA anti-pattern detection still needs to be 
explored thoroughly. Peter Chen et al. [1] developed a framework that automatically flags the 
performance anti-patterns in the source code using the automated developed ORM(object- 
relational model) performance anti-patterns. Ouni et al. [4] introduced innovative genetic 
programming to detect web services anti-pattern by generating detection rules based on thresh- 
old values and a combination of different metrics. The validation of the above approach is 
done on 310 Web services to detect the five anti-patterns. Ouni et al. [5] used cooperative 
parallel evolutionary algorithms (P-EA), an automated approach to detect the anti-patterns. 
The idea behind their innovation is that the combination of several detection algorithms exe- 
cuting in parallel optimization processes would give better results. The results compared with the 
random search and the population-based searches gave a precision score of 0.89.  Jaffar et al. [2] 
argued in his paper that classes taking part in anti-pattern and patterns of software designs have 
dependencies with other classes, i.e., unvarying and mutating dependencies, that may spread 
issues to different classes. A significant portion of the proposed approaches is based on source 
code metrics, code-based analysis, or generation of rule cards to detect anti-patterns. In this 
paper, we propose investigating the effectiveness of WSDL metrics in detecting SOA anti-
patterns. 

4. Experimental Dataset 
Recent studies investigated the use of source code metrics in the detection of anti-patterns. 

While the indicative power of these source code metrics is validated on Object-oriented and 
service-oriented architectures, WSDL metric set effectiveness is not validated yet for SOA anti- 
pattern detection. 

In this study, we have used the dataset from the GitHub repository 1. The dataset has the files 
with .wsdl extension. These WSDL files are collected from the web services of various domains 
such as education, finance, travel, etc. We compute the WSDL metrics for each WSDL file.  

Figure 1: WSDL Metric Set Taxonomy 
A close investigation revealed that the GOWS anti-pattern exists in 21 out of 226 web 

services considered. The percentage of the existing FGWS, CWS, DWS, and AWS anti-
patterns in the dataset is 5.75, 6.19, 9.29, and 10.62, respectively. These low percentages indicate 
the presence of a class imbalance problem in the dataset considered.  The number of instances in 
the minority class(anti-patterns existing) is far less than the number of cases in the majority 
class( anti-patterns not existing). In this case, the number of web services in which anti-pattern 
exists is in the minority ( 5% to 11%) but not rare(<2%). The other cause for concern here 
is the sample size of the dataset, which is small. Therefore, our dataset has two issues: one is 
class imbalance distribution, and the other is the sample size. 
 

1https://github.com/ouniali/WSantipatterns 
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5. Research Framework 
Figure 2 illustrates the framework for the prediction of SOA anti-patterns using WSDL metrics as 

input. The framework, as shown in Fig 2, is a multi-step procedure that is discussed in detail in this 
Section.  Firstly, ROSE2 tool[6] is used for computing the WSDL metrics from the web services in 
the dataset. Next, we investigate the role of quantity metrics among the WSDL metrics in detecting 
SOA anti-patterns. Then we use feature selection techniques dis- cussed in section 5.3 for significant 
features selection. Besides the significant features selected using the mentioned feature selection 
techniques, we use Structural Quantity Metrics(SQM), Procedural Quantity Metrics(PQM), Data 
Quantity Metrics(DQM), and All WSDL quantity Metrics(AM) as input for the models generated for 
the detection of web service anti-patterns. Next, to deal with the class imbalance problem as discussed 
in Section , we use various variants of Synthetic Minority Oversampling Technique(SMOTE), i.e., 
Borderline SMOTE(BSMOTE), SVM-SMOTE(SSMOTE), SMOTE- Edited Nearest 
Neighbour(SMOTEENN), and SMOTE- TOMEK(SMOTEOM) besides the original dataset(OD). 
Further, We use various ensembling techniques besides the deep learning technique with a specific 
number of hidden layers to train the predictive models for anti-pattern detection. Finally, the 
performance parameters such as Area Under Curve (AUC) and Accuracy are utilized in this work to 
gauge the effect and reliability of the models generated for SOA anti-patterns detection. 
 

 
Figure 2: Proposed Framework 

5.1 Computation of WSDL Metrics 
The dataset considered in this study has web services in WSDL format for which the WSDL 

metrics are computed using the ROSE2 tool[6]. ROSE2 is a tool that uses the principles of rough set 
theory and rules discovery techniques. WSDL metrics include Complexity metrics, Qualitative 
metrics,  and Quantity metrics. In this paper, we aim to investigate the role of WSDL quantity metrics 
in anti-patterns detection. The taxonomy of the WSDL metric set obtained is shown in Figure 1. 

5.2 Data Sampling Techniques 
The selection of an appropriate sampling technique plays a critical role in the research study, as it 

significantly impacts the quality of our results and findings. As discussed in section 5, the dataset 
considered is having a class imbalance problem, and we are choosing the data sampling
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technique SMOTE and its variants to solve this problem. In this paper, we are considering five 
different data sampling techniques namely SMOTE, Borderline Smote(BSMOTE), SVM- 
SMOTE(SSMOTE), SMOTE- Edited Nearest  Neighbour(SMOTENN),  and  SMOTETOMEK along 
with the original dataset(OD) to generate the predictive models. 

5.3 Feature Selection Techniques 
WSDL metrics computed have some irrelevant and redundant features. Research revealed that the 

high dimensional feature space consisting of irrelevant and redundant features decreases the 
performance of the classifiers. The presence of many features, i.e., WSDL code metrics in our case, 
pose an intrinsic challenge to classifier algorithms. Hence, it is important to remove these irrelevant 
features,  for which we employed several feature selection techniques in this work. We use various 
techniques such as feature selection using low variance (VFST), Uncorrelated features data(UCFT), 
CHI2 value Test(CHI2T), ANOVA F-value between label and feature(FTST), False Positive Rate 
Test(FPRT), Family Wise Error Rate(FWER) and Genetic Algorithm(GA) for selecting significant 
features. 

5.4 Classifier Techniques 
In this paper, we have applied five different ensemble techniques i.e., Bagging classifier (EST1), 

Random Forest Classifier (EST2), Extra Trees Classifier (EST3), AdaBoost Classifier (EST4), 
Gradient Boosting Classifier (EST5) and a deep learning technique with a different number of hidden 
layers i.e., DL with one hidden layer(DL1), DL with two hidden layers (DL2), DL with three hidden 
layers (DL3), DL with four hidden layers (DL4) and DL with five hidden layers (DL5) for training 
the predictive models for detecting anti-patterns. 

6. Experimental Results 
In this work, we empirically investigated the application of eleven feature selection techniques, six 

data sampling techniques, and ten classifier techniques to predict four different types of anti-patterns. 
• Table 1 shows the experimental results in terms of accuracy for the models developed for the 

detection of GOWS anti-pattern. The results for the other three anti-patterns, along with AUC 
results, were not included due to space constraints. 

• From Table 1, it has been observed that the value of AUC parameters of the model trained 
using Random Forest Classifier(EST2) and Extra Trees Classifier(EST3) are higher than 
those of the other models. 

• The performance of the models developed using all the WSDL quantitative metrics(AM) and 
Feature selection using Low Variance (VFST) showed similar and high performance 
compared to the models developed using other feature sets as input. 

7. Comparative  Analysis 
RQ1: Is there an essential  differentiation  between the  performance  displayed  by 
the five data sampling techniques over the original data? 

In this section, we analyzed the differences in the performance of the dataset generated 
after applying the class imbalance techniques and the original dataset. We use box plots to 
represent the Accuracy and the Area Under Curve(AUC) for the generated models. We have also 
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used Wilcoxon rank-sum test to compare the models’ performance using different data sets 
generated. 

Table 1: Accuracy of all models:  GOWS anti-pattern 
Data Sampling 

Technique 
Feature Selection 

Technique EST
1 

EST
2 

EST
3 

EST
4 

EST
5 

DL1 DL2 DL3 DL4 DL5 Data Sampling 
Technique 

Feature Selection 
Technique EST1 EST

2 
EST

3 
EST
4 

EST
5 

DL1 DL2 DL3 DL4 DL5 

ORG AM 90.91 91.41 92.93 90.91 88.38 89.39 90.91 92.42 90.91 90.4 SVMSMOTE AM 84.21 90.6 92.48 86.09 82.71 80.83 81.58 94.74 90.98 91.73 
ORG SQM 90.91 91.92 94.44 89.9 88.89 91.41 90.4 90.4 90.4 90.91 SVMSMOTE SQM 91.16 90.88 93.09 87.85 88.95 83.7 88.12 89.5 90.33 90.06 
ORG DQM 89.39 91.41 91.41 91.41 87.37 88.89 89.9 90.91 90.4 89.39 SVMSMOTE DQM 87.68 92.96 94.37 90.49 88.73 69.37 74.65 79.93 80.63 81.34 
ORG PQM 91.41 89.9 90.4 89.39 88.89 90.4 90.4 89.39 88.89 88.89 SVMSMOTE PQM 89.47 90.46 93.42 89.47 86.18 68.75 67.76 77.96 76.64 72.04 
ORG VFST 90.91 90.91 93.94 90.91 88.38 89.9 90.4 91.92 90.91 91.41 SVMSMOTE VFST 84.7 92.91 95.15 86.94 89.18 81.34 81.72 90.3 88.06 87.31 
ORG UCFT 89.9 89.9 88.89 88.89 87.88 91.41 91.41 91.41 91.41 91.41 SVMSMOTE UCFT 78.67 88.46 90.21 84.62 82.17 63.64 63.29 61.54 63.64 61.54 
ORG CHI2T 87.88 85.86 88.38 85.35 84.85 91.41 91.41 91.41 91.41 91.41 SVMSMOTE CHI2T 78.52 78.89 81.11 79.63 77.41 66.67 67.04 67.78 64.81 64.07 
ORG FTST 89.39 89.39 87.88 90.4 89.39 91.41 91.41 90.91 91.41 91.41 SVMSMOTE FTST 90.06 92.82 88.4 88.95 88.95 86.74 69.34 87.85 88.95 87.85 
ORG FPRT 91.92 92.42 90.91 91.41 88.38 89.9 90.91 91.41 90.91 90.91 SVMSMOTE FPRT 87.5 91.79 93.93 91.43 90 82.5 83.57 87.5 85.71 85 
ORG FWER 91.41 90.4 90.91 91.41 88.38 89.9 90.4 91.92 90.4 90.91 SVMSMOTE FWER 87.19 92.53 92.88 88.26 90.04 81.85 81.14 87.54 85.05 85.05 
ORG GA 91.41 89.39 92.42 85.86 87.88 91.41 91.41 90.4 89.9 90.4 SVMSMOTE GA 86.23 89.13 93.84 89.13 89.49 65.22 67.03 75.36 67.75 72.1 

SMOTE AM 78.45 89.78 91.71 86.46 88.12 69.61 70.99 93.37 87.85 90.88 SMOTEENN AM 89.61 94.16 95.13 94.81 91.56 83.12 82.14 92.86 91.56 91.23 
SMOTE SQM 82.6 90.06 87.57 80.39 80.94 70.99 69.89 77.07 75.69 76.8 SMOTEENN SQM 95.07 95.77 98.94 96.48 95.77 64.08 85.92 95.07 95.42 95.07 
SMOTE DQM 79.28 88.4 89.78 79.83 80.66 72.1 71.55 79.83 76.24 79.01 SMOTEENN DQM 92.28 91.95 96.64 91.95 92.62 82.55 85.57 87.92 89.26 88.26 
SMOTE PQM 76.24 86.19 87.02 87.02 83.98 67.68 68.78 79.56 76.8 78.45 SMOTEENN PQM 89.62 94.23 96.54 96.15 95.77 89.23 90.38 91.92 91.54 91.54 
SMOTE VFST 83.43 89.5 90.33 85.08 85.36 77.9 76.8 88.67 86.19 86.46 SMOTEENN VFST 89.97 93.65 96.66 94.31 90.97 84.95 84.95 92.31 87.96 88.63 
SMOTE UCFT 78.73 87.29 88.95 83.98 83.15 47.51 60.77 69.61 70.99 46.96 SMOTEENN UCFT 92.34 97.58 95.56 99.19 97.18 77.42 72.98 78.63 81.85 68.15 
SMOTE CHI2T 82.6 81.49 83.43 80.11 81.22 56.91 68.51 77.62 67.96 64.64 SMOTEENN CHI2T 97.5 98.21 99.29 99.29 97.5 89.29 74.29 96.43 76.79 90.36 
SMOTE FTST 80.94 80.39 81.49 80.66 81.49 72.1 63.26 76.24 74.31 74.03 SMOTEENN FTST 96.97 98.11 98.11 97.73 97.35 85.98 91.29 96.59 94.7 93.94 
SMOTE FPRT 76.8 87.29 91.71 84.81 82.87 75.14 73.76 84.53 86.19 79.28 SMOTEENN FPRT 90.66 94.12 97.58 93.08 91.7 85.12 85.47 86.51 86.16 86.51 
SMOTE FWER 79.01 88.12 91.99 84.53 82.04 69.34 67.96 85.91 82.87 82.87 SMOTEENN FWER 90.24 95.29 96.97 93.6 90.57 87.21 89.9 91.25 89.9 88.55 
SMOTE GA 80.94 84.25 87.57 84.25 80.66 73.2 75.97 75.69 74.59 74.31 SMOTEENN GA 89.68 94.66 95.37 93.95 92.88 87.19 88.61 89.68 88.97 89.68 
BSMOT

E 
AM 89.5 92.82 91.16 88.4 89.5 82.04 85.36 90.61 92.27 91.16 SMOTETOM

EK 
AM 79.55 90.34 92.9 84.09 86.93 78.41 80.97 94.32 93.75 92.05 

BSMOT
E 

SQM 87.85 90.33 91.44 87.02 88.12 69.34 67.13 75.97 78.18 77.62 SMOTETOM
EK 

SQM 85.8 90.63 92.61 83.24 83.52 65.63 62.22 77.84 75.28 77.56 

BSMOT
E 

DQM 91.71 94.48 94.48 91.71 91.16 77.62 79.83 83.98 87.85 84.81 SMOTETOM
EK 

DQM 83.05 88.79 91.95 82.47 82.18 74.14 74.71 80.75 77.59 77.59 

BSMOT
E 

PQM 88.95 90.88 91.99 89.5 90.33 78.45 80.11 88.67 88.95 88.4 SMOTETOM
EK 

PQM 75.99 86.44 87.85 85.31 82.2 70.34 70.62 76.55 74.01 74.86 

BSMOT
E 

VFST 90.06 92.54 92.82 90.33 90.88 85.91 88.12 92.54 90.88 90.33 SMOTETOM
EK 

VFST 79.49 89.04 92.13 82.87 87.08 75.28 75.56 92.42 84.27 83.71 

BSMOT
E 

UCFT 82.6 90.61 90.61 85.08 82.87 54.7 61.88 62.43 60.77 61.88 SMOTETOM
EK 

UCFT 83.64 88.48 91.21 88.79 87.27 52.73 58.48 63.94 62.73 70.3 

BSMOT
E 

CHI2T 88.95 85.36 85.08 85.36 84.81 58.29 64.64 82.04 72.1 76.8 SMOTETOM
EK 

CHI2T 82.94 84.41 85.88 82.06 82.35 66.47 56.18 77.35 76.76 72.06 

BSMOT
E 

FTST 88.95 90.61 90.61 86.74 88.12 77.35 78.18 78.18 83.98 79.56 SMOTETOM
EK 

FTST 79.07 82.85 83.43 81.1 81.4 70.35 70.35 71.22 66.57 71.8 

BSMOT
E 

FPRT 87.57 92.27 93.65 88.95 90.06 79.01 80.94 91.99 86.74 86.19 SMOTETOM
EK 

FPRT 80 89.43 90.86 84.57 86.29 77.43 81.14 88.57 84 86.57 

BSMOT
E 

FWER 88.95 91.99 91.16 85.64 89.5 80.39 85.64 89.5 90.06 88.95 SMOTETOM
EK 

FWER 76.4 86.8 92.13 82.02 79.78 69.94 74.72 87.36 86.24 85.39 

BSMOT
E 

GA 90.88 92.82 92.54 90.06 90.61 75.97 76.8 82.87 82.04 81.22 SMOTETOM
EK 

GA 82.95 87.28 91.33 83.24 81.79 70.81 71.97 72.83 74.28 72.54 

 
Figure 3: Box-plot for Accuracy and AUC: Data Sampling Techniques 

 
Comparision of various sampling  techniques  using  Descriptive  Statistics  and Box-
plot diagram: From Figure 3 and Table 2, we compare the differences in performances 
between the models generated using the original dataset and the unbiased samples obtained from 
the dataset after applying the considered data sampling techniques. Box-plot represents the first 
and the third quartile, and the red line represents the median value. From Figure 3 and Table 2, 
we observed that the mean AUC value of the model developed using SMOTEOM is high when 
compared to the other models. The model developed using SMOTEOM achieved 0.87 average 
AUC value, 1.00 max AUC, and 0.98 Q3 AUC value, i.e., 25% models developed using 
SMOTEOM have 0.98 AUC value. The performance level of the models developed using 
SMOTEEN is very similar to the performance shown by the models developed using SMO- 
TEOM. However, the model developed using all the WSDL quantitative metrics(AM) has a low 
predictive ability compared to other techniques. 
 
Comparison of Data Sampling Techniques: Significant Test: In this study, Wilcoxon 
signed-rank test is applied on the AUC, F-measure, and accuracy for statistically comparing 
the predictive ability of web service anti-pattern detection techniques using different sampling 
techniques. The primary motivation of this statistical testing is to find whether the models 
developed using different sampling techniques have a significant enhancement or not. pvalue is 
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used in this test to determine whether to accept or reject the null hypothesis. The considered null 
hypothesis for this work is:” The web service anti-pattern detection models developed us- ing 
different sampling techniques are significantly the same.” The considered null hypothesis is 
accepted if the pvalue obtained using the rank-sum test is more significant than 0.05. Table 3 
depicts the results of the Wilcoxon signed-rank test on different pairs of data sampling tech- 
niques. From Table 3, we observed that most of the comparison points are having values less 
than 0.05. We conclude that the models developed by considering different sampling techniques 
as input are significantly different for most cases.  

Table 2: Statistical Measures:  Data Sampling Techniques 
 Min Median Q3 Max Q1 Mean 

ORG 0.01 0.79 0.93 1.00 0.68 0.79 
SMOTE 0.01 0.83 0.95 1.00 0.69 0.80 

BSMOTE 0.01 0.90 0.97 1.00 0.73 0.83 
SSMOTE 0.16 0.93 0.98 1.00 0.80 0.86 
SMOTEE

N 
0.16 0.95 0.98 1.00 0.85 0.87 

SMOTEO
M 

0.16 0.95 0.98 1.00 0.87 0.87 

Table 3: Significance Test:  Data Sampling Techniques 
 ORG SMOT

E 
BSMOT

E 
SSMOT

E 
SMOTEE

N 
SMOTEO

M 
ORG 1 0.037 4.26E-07 3.20E-16 1.43E-22 6.77E-24 

SMOTE 0.037 1 0.005 1.46E-08 3.54E-13 3.07E-14 
BSMOTE 4.26E-07 0.005 1 0.006 9.87E-06 1.65E-06 
SSMOTE 3.20E-16 1.46E-08 0.006253687 1 0.066 0.024 
SMOTEE

N 
1.43E-22 3.54E-13 9.87E-06 0.066 1 0.664 

SMOTEO
M 

6.77E-24 3.07E-14 1.65E-06 0.024 0.664 1 

 
RQ2: Is there a quantifiably enormous distinction between the performance of 
models developed by utilizing the features selected by applying the seven 
feature selection techniques and the subset of WSDL quantitative metrics over 
the exhibi- tion of the model produced by using all the WSDL code 
quantitative metrics? 
 
This study used eleven different feature selection techniques to remove redundant features and 
select the right sets of relevant features. We have validated the performance of the models 
developed using a different subset of WSDL quantitative features using various performance 
values such as AUC, F-measure, and accuracy and compared their performance using Descrip- 
tive Statistics, box-plot, and significant tests. 

 
Figure 4: Box-plot for Accuracy and AUC: Feature Selection Techniques 

 
Comparison of Different sets of Features using  Descriptive  Statistics  and  Box- 
plot diagram: Figure 4 represents the performance value, i.e., AUC and accuracy of the 
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models trained using the subset of WSDL quantitative features(SQM; DQM; PQM), selected 
set of features using different feature selection techniques (VFST; UCFT; CHI2T; FTST; 
FPRT; FWER; GA) and all the WSDL Quantitative features(AM). From Figure 4 and Table 
4, we can see that the models developed using VFST and AM have slightly better performance 
compared to other techniques. The models developed using VFST achieved 0.91 mean 
AUC, 1.00 max AUC, and 0.98 Q3 AUC, i.e., 25% models developed using VFST have 
0.98 AUC value. It is also observed that the models developed using AM have very similar 
performance to the models developed using VFST, but the number of features in AM is very high 
compared to the number of features selected using the VFST technique. 

Table 4: Statistical Measures: Feature Selection Techniques 
 Min Median Q3 Max Q1 Mean 

AM 0.36 0.96 0.98 1.00 0.92 0.92 
SQM 0.24 0.94 0.98 1.00 0.83 0.86 
DQM 0.20 0.95 0.98 1.00 0.86 0.88 
PQM 0.29 0.95 0.98 1.00 0.85 0.88 

VFST 0.32 0.96 0.98 1.00 0.90 0.91 
UCF

T 
0.08 0.90 0.98 1.00 0.66 0.78 

CHI2
T 

0.01 0.87 0.95 1.00 0.73 0.79 

FTS
T 

0.10 0.91 0.97 1.00 0.77 0.82 

FPR
T 

0.33 0.95 0.98 1.00 0.88 0.90 

FWE
R 

0.32 0.95 0.98 1.00 0.88 0.90 

GA 0.26 0.94 0.98 1.00 0.85 0.87 

Table 5: Significance Test: Feature Selection Techniques 
 AM SQM DQM PQM VFS

T 
UCF

T 
CHI2

T 
FTS
T 

FPR
T 

FWE
R 

GA 

AM 1.00 0.00 0.01 0.03 0.34 0.00 0.00 0.00 0.04 0.00 0.00 
SQM 0.00 1.00 0.22 0.15 0.00 0.01 0.00 0.01 0.07 0.21 0.85 
DQM 0.01 0.22 1.00 0.92 0.12 0.00 0.00 0.00 0.64 0.89 0.34 
PQM 0.03 0.15 0.92 1.00 0.17 0.00 0.00 0.00 0.75 0.78 0.32 

VFST 0.34 0.00 0.12 0.17 1.00 0.00 0.00 0.00 0.26 0.08 0.01 
UCF

T 
0.00 0.01 0.00 0.00 0.00 1.00 0.22 0.59 0.00 0.00 0.01 

CHI2
T 

0.00 0.00 0.00 0.00 0.00 0.22 1.00 0.02 0.00 0.00 0.00 

FTST 0.00 0.01 0.00 0.00 0.00 0.59 0.02 1.00 0.00 0.00 0.00 
FPRT 0.04 0.07 0.64 0.75 0.26 0.00 0.00 0.00 1.00 0.50 0.15 
FWE

R 
0.00 0.21 0.89 0.78 0.08 0.00 0.00 0.00 0.50 1.00 0.41 

GA 0.00 0.85 0.34 0.32 0.01 0.01 0.00 0.00 0.15 0.41 1.00 

 
Comparison of  Different  Sets  of  Features:  Significance  Test:In  this  section,  the 
Wilcoxon rank-sum test is applied to the accuracy and AUC for statistically comparing the 
predictive ability of web service anti-pattern detection techniques developed using different sets of 
features as input. The motive of this testing is to determine whether the performance of the 
developed models depends on input sets of features. The null hypothesis in this section: ”The 
web service prediction models developed by considering different sets of feature as input are 
significantly same.”The considered null hypothesis is accepted if the obtained p-values using 
Wilcoxon signed-rank test are greater than 0.05.  The results of the Wilcoxon signed-rank test 
are shown in Table 5. From the information in Table 5, we observe that most of the comparison 
points are having a p-value less than 0.05. Hence, we conclude that the models developed using 
different feature sets as input are significantly different. 
 
RQ3: What is the general execution of the ensemble techniques and deep learn- ing 
techniques considered concerning AUC and f-measure metrics? Is there a 
genuinely critical differentiation in the expected performance of the ten classifier 
techniques? 
 
The predictive ability of web service anti-pattern detection models developed using different 
classification techniques are computed using performance measures such as Accuracy and AUC. 
They are compared with the help of Descriptive Statistics, Box-plot,  and significance tests.  In 
this work, we used five ensemble learning techniques and five deep learning techniques with 
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5-fold cross-validation to train anti-pattern prediction models. 
Table 6: Statistical Measures:  Classification Techniques 

 Min Median Q3 Max Q1 Mean 
EST1 0.64 0.94 0.98 1.00 0.88 0.92 
EST2 0.45 0.98 0.99 1.00 0.95 0.95 
EST3 0.46 0.98 0.99 1.00 0.96 0.96 
EST4 0.60 0.95 0.98 1.00 0.90 0.93 
EST5 0.16 0.95 0.98 1.00 0.88 0.89 
DL1 0.01 0.85 0.95 1.00 0.54 0.73 
DL2 0.10 0.88 0.96 1.00 0.65 0.78 
DL3 0.14 0.93 0.97 1.00 0.76 0.84 
DL4 0.12 0.93 0.97 1.00 0.75 0.83 
DL5 0.10 0.92 0.97 1.00 0.74 0.82 

Table 7: Significance Test: Classification Techniques 
 EST

1 
EST
2 

EST
3 

EST
4 

EST
5 

DL1 DL2 DL
3 

DL
4 

DL5 

EST
1 

1.00 0.00 0.00 0.06 0.96 0.00 0.00 0.00 0.00 0.00 

EST
2 

0.00 1.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EST
3 

0.00 0.06 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EST
4 

0.06 0.00 0.00 1.00 0.13 0.00 0.00 0.00 0.00 0.00 

EST
5 

0.96 0.00 0.00 0.13 1.00 0.00 0.00 0.00 0.00 0.00 

DL1 0.00 0.00 0.00 0.00 0.00 1.00 0.12 0.00 0.00 0.00 
DL2 0.00 0.00 0.00 0.00 0.00 0.12 1.00 0.00 0.01 0.04 
DL3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.48 0.25 
DL4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.48 1.00 0.64 
DL5 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.25 0.64 1.00 

 
Comparison of  Classification  Techniques  using   Descriptive   Statistics   and   Box- plot 
diagram: Figure 5 and Table 6 shows the performance measures, i.e., AUC and Accuracy of 
different classifier techniques using Box-plot diagrams and descriptive statistics.  From Figure 5 
and Table 6, we observe that the models trained using EST2 and EST3 have better predictive 
ability to detect the web service anti-patterns as compared to other models. The models 
developed using EST2 achieved 0.98 median AUC, 0.95 mean AUC, 0.99 Q3 AUC, and 1.00 
max AUC. Similarly, the models developed using EST3 achieved 0.98 median AUC, 0.96 mean 
AUC, 0.99 Q3 AUC, and 1.00 max AUC. However, the models developed using the Deep 
learning technique with one hidden layer(DL1) have a low predictive ability compared to other 
methods. 

 
Figure 5: Box-plot for Accuracy and AUC: Classifier Techniques 

 
Comparison  of  Classification  Techniques:  Significant  Test: In  this  study,  the Wilcoxon 
signed-rank test is applied to the AUC and Accuracy for statistically comparing the predictive 
ability of web service anti-pattern detection models using different classifiers. The ideology of 
this test is to find whether the models developed using different classifier techniques are 
significantly different or not. The null hypothesis in this study is “The web service anti-pattern 
prediction models trained using different classification algorithms are significantly same.” The 
considered null hypothesis is accepted if the p-value obtained using Wilcoxon signed- rank test is 
greater than 0.05. Table 7 depicts the results of the Wilcoxon signed-rank test on different pairs 
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of classifiers. From Table 7, we observe that most of the comparison points have a value less 
than 0.05.  Hence, we conclude that the models trained using different classifiers are 
significantly different for most cases. 

8. Conclusion and Future Work 
The primary motivation of this work is to develop an automatic predictive model for the predic- 
tion of web services anti-patterns using static analysis of the WSDL metrics. In this work, we 
empirically investigated the effectiveness of classifier techniques, i.e., ensemble and deep learn- 
ing techniques, in predicting web service anti-patterns. Experimental analysis revealed that the 
model trained using Random Forest Classifier(EST2) and Extra Trees Classifier(EST3) have 
better performance than other models. We observed that the models developed using all the 
WSDL quantitative metrics(AM) and Feature selection using Low Variance (VFST) showed 
similar and high performance compared to the models developed using other feature sets as 
input. It is also observed that the models developed after applying SMOTEOM have better 
performance when compared to the other models. There is much more scope for predicting the 
web service anti-patterns using the WSDL metrics. 
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