
EPiC Series in Computing

Volume 97, 2024, Pages 72–80

Proceedings of 36th International Conference on
Computer Applications in Industry and Engineering

Peer-to-Peer Data Transfer Evaluation in SmartSSD-based

Multi-devices System

Luka Daoud∗, Gongjin Sun†, and Hingkwan Huen‡

Samsung Semiconductor, Inc., San Jose, California, USA
Data Center Device Solutions, Memory Solutions Lab

Luka.Daoud@ieee.org, Gongjin.S@samsung.com, Kwan.Huen@samsung.com

Abstract

Due to the growing demands on big data, data centers are expanding their systems to
improve their capacity and capability. Common expansion techniques are: adding more
memories, increasing the storage capacity, and attaching hardware accelerator devices.
Benefit aside, such expansion puts a higher demand on the host system due to the increasing
amount of data movements. It quickly consumes the available system bandwidth and sets a
heavy burden on data transfers among the devices. To ease this situation, recent advanced
solutions have appeared to optimize the data flow. These include peer-to-peer data transfer,
allowing direct device-to-device data exchange without involving host memory. This paper
evaluates the system performance for peer-to-peer (P2P) data transfer among connected
devices. The results show that P2P data transfer between two devices in the system is 2x
- 6x faster than non-P2P cases via bypassing the host memory. Not only does it reduce
the memory occupancy but also the system power cost.

1 Introduction

Big data has been expanding tremendously. This demands data centers be properly supported
to handle such a huge volume of data. Data centers are mainly formed of many system servers
that are full of storage devices, memories, and accelerating engines. Solid-state drive (SSD) is a
popular choice due to its performance, power, and lifespan potential. Modern data centers were
designed to store relational data and support accelerating applications and processing stored
information. Nowadays, data centers are assembled with storage elements and accelerating
cards attached to nearby servers. This allows more efficient data flow for processing as the
conventional CPU processing model cannot keep up with the massive data growth. This has
led to the concept of near-storage computation, where data are processed close to the storage
components.

Near-storage computing is often used in modern data centers to accelerate data-intensive
applications, including machine learning, databases, computer vision [5, 6] data analytics, graph

∗IEEE Member, PhD in Electrical and Computer Engineering.
†Senior Engineer at Samsung Semiconductor, Inc.
‡Principal Engineer at Samsung Semiconductor, Inc.

K. Kambhampaty, G. Hu and I. Roy (eds.), CAINE 2023 (EPiC Series in Computing, vol. 97), pp. 72–80



P2P Data Transfer Evaluation in SmartSSD®-based System L. Daoud, G. Sun, and H. Huen

analytics, and data security [4, 3] by reducing the overhead of data movement [1, 2]. These
applications are widely deployed on heterogeneous computing systems equipped with various
hardware accelerators such as Field-Programmable Gate Arrays (FPGA), Graphics Processing
Units (GPU), Tensor Processing Units (TPU), and others. Such accelerators are often connected
to the host system as a PCIe-attached expansion card. Although they can deliver very high
performance by offloading computing-intensive tasks from the host CPU, the large-scale dataset
used as input often has to be read first into host-side memory from external storage devices
(e.g., SSD) and then sent to on-board memory attached to the accelerators. Once the tasks are
completed, the results must be returned to the external storage via the host again. As a result,
significant data movement overhead degrades the performance of the whole system.

To overcome this issue, many existing systems [11, 12, 16, 15, 13, 8] use a technique called
”Peer-to-Peer” (P2P) to let the external storage communicate with the accelerator directly.
With P2P, a large dataset stored in the storage can be streamed into onboard memory in the
accelerator without much involvement from host memory. Commands from the host trigger this
transaction. P2P transfer not only eliminates the redundant data flow between the host and its
attached devices but also reduces the usage of host memory, effectively freeing up host system
bandwidth. This opens up the potential of accelerators further. This paper tries to evaluate
the potential of P2P and provide valuable insight for state-of-the-art P2P deployment.

In this work, we target a Samsung-pioneered product near-storage accelerator, Samsung’s
SmartSSD®, and evaluate its P2P performance with various transfer patterns. Unlike tra-
ditional SSDs, Samsung’s SmartSSD is a computational storage device (CSD) that contains
two discrete functions: a high-performance NVMe SSD and Xilinx’s Ultrascale FPGA used for
hardware acceleration. An internal DDR memory buffer is also available and shared between
the SSD and FPGA, allowing data exchange between the two functions. This way FPGA can
process the dataset directly under the P2P mode and avoid the bottlenecks that are often
caused by heavy data movement between the SmartSSD and the host, thus achieving higher
performance and energy efficiency.

In this paper, we studied the P2P data transfer among devices connected through the
common PCIe tree. A simulation environment was built to assess the influence of data transfer
in the system among the attached devices with respect to their size. Additionally, the impact
of the location of the devices in the PCIe bus topology of the system on the data transfer
bandwidth is demonstrated. The rest of this paper is organized as follows: Section 2 discusses
several types of data communication. In Section 3, the SmartSSD and its P2P architecture
are demonstrated. The evaluation of data transfer in different communication conditions is
analyzed in Section 4. Finally, Section 5 concludes the paper and presents future work.

2 Background and Related work

Hardware accelerator-based heterogeneous computing systems have been widely deployed and
typically contain high-performance hardware accelerators for offloading tasks from the host
and large capacity and low latency storage devices such as NVMe-based SSD for storing large
datasets. Although the computing performance of accelerators keeps increasing to benefit more
and more applications, migrating data between the storage and accelerators is increasingly
becoming a bottleneck for improving the overall system performance further, especially for
those data-intensive applications. Traditionally, SSDs and accelerators are connected to the
host as peripheral devices. Before the accelerators are able to work, the data set as input has
to be loaded into host memory from the storage first and then routed to the onboard memory
attached to the accelerators. If DMA is not used, the CPU will be much more involved in this

73



P2P Data Transfer Evaluation in SmartSSD®-based System L. Daoud, G. Sun, and H. Huen

process and significant OS overhead such as context switch, kernel software stack activities, and
cache pollution is caused.

Although DMA can be used to transfer data between SSD and host memory without much
involvement of CPU, intensive data transfer is still bottlenecked by available bandwidth between
host and peripheral devices. The overhead of data movement still cannot be ignored. To reduce
the overhead of data movement, researchers proposed various solutions ranging from optimizing
the data path to designing new computer architectures [16, 15]. One of them, Peer-to-peer
(P2P) based DMA transfer has been widely explored for direct communication between SSD
and accelerators.

2.1 Peer to Peer transfer

PCIe P2P communication is a PCIe feature that enables two PCIe devices to directly talk to
each other without using host memory as intermediate storage. Therefore, many existing works
explored applying P2P to various heterogeneous computing systems. For example, P2P can be
used between SSD and FPGA, SSD and GPU, or GPU and GPU.

Authors in [16] proposed a novel nonvolatile memory management unit that reduces the
overhead of data movement by directly connecting the SSD and the GPU being used as an ac-
celerator. Compared with traditional IOMMU-based transfer that makes multiple data copies
and causes OS-related overhead, NVMMU unifies the stacks of the SSD and the GPU and
enables forwarding data between SSD and GPU without severe CPU intervention. NVMMU
provides an easily-used programming model for applications. Authors in [15] proposed Mor-
pheus, a model that allows applications to move computations to a storage device. With this
model, application objects can be sent directly from a storage device to a coprocessor (e.g., a
GPU) by P2P transfer. They implemented an SSD supporting this model called Morpheus-
SSD that improves the performance of object deserialization, reduces power consumption, and
speeds up the total execution significantly in a heterogeneous computing platform.

In [13], the authors investigated P2P DMA’s potential on Ethernet NICs and NVMe SSDs.
They developed a library called Libpop to manipulate memory on devices for invoking P2P
DMA. In [8], a model of mapping the coprocessor memory to a system memory block of the host
memory was proposed. The CPU can move data from non-volatile memory to the coprocessor
without redundant copies. The authors in [10] applied P2PDMA to TCP-based applications.
The authors proposed IO-TCP that targets I/O-intensive applications and offloads disk I/O
and TCP packet transfer to SmartNIC from the CPU. With IO-TCP, SmartNIC can access
disks via P2PDMA.

Besides the above academic work, P2P transfer is also implemented successfully in product-
level acceleration platforms. Typical examples include Samsung’s SmartSSD® [11], Nvidia’s
GPU Direct Storage (GDS) [12], and Xilinx’s P2P FPGA. Figure 1 shows the architecture of
GPUDirect Storage that is similar to SmartSSD’s one. The left and the right show the data
paths with and without using GPUDirect storage, respectively. The blue paths represent PCIe
transfer and the green ones represent GPUDirect transfer between GPU and NVMe devices. For
both SmartSSD and GPUDirect Storage, besides the different accelerator types (GPU) used,
GPUDirect Storage supports network data from remote memory using RDMA (Remote DMA).
That being said, the idea of using P2P transfer to reduce the overhead of data movement is the
same.

74



P2P Data Transfer Evaluation in SmartSSD®-based System L. Daoud, G. Sun, and H. Huen

GPU

Memory CPU

PCIe
Switch

NVMe

(a) Without GPUDirect Storage

GPU

Memory CPU

PCIe
Switch

NVMe

(b) With GPUDirect Storage

Figure 1: GPUDirect Storage

2.2 Why SmartSSD?

This work focuses on the evaluation of P2P performance on SmartSSD Drive. SmartSSD®

is a product-level implementation of a computational storage drive from Samsung. It has
been widely used for extensive research on data-intensive application acceleration and new
heterogeneous computing systems [11, 14, 9]. We believe the evaluation targeting it will bring
valuable insight for future P2P solutions.

3 SmartSSD Architecture

SmartSSD® is a computational storage device composed primarily of two components: an SSD
storage system, and an FPGA accelerating system. Figure 2 shows the internal architecture
of the SmartSSD. It contains a NAND-based NVMe SSD, Xilinx FPGA accelerator (KU15P)
with an attached DRAM and a PCIe switch. The SmartSSD is connected to the host through
PCIe Gen3 x4. The NAND’s controller and the accelerator are connected to the integrated
PCIe switch.

The FPGA DRAM as a common memory area (CMA) is exposed to both the FPGA kernels
and the host memory address space as a PCIe BAR. With the assistance of the PCIe switch, the
internal NVMe SSD can access the CMA for P2P transfer which reduces both Host-SSD and
host-FPGA PCIe traffic significantly. That said, CMA PCIe BAR allows other PCIe devices
under the same root complex to exchange data P2P. For the SmartSSD, the CPU orchestrates

75



P2P Data Transfer Evaluation in SmartSSD®-based System L. Daoud, G. Sun, and H. Huen

NAND

Controller

FPGA 
DRAM

Accelerator

PCIe
Switch

CPU (Host)

P2P  Path

NVMe

FPGA

FPGA 
DRAM

PCIe Address Space

Figure 2: SmartSSD’s Architecture

the system application running on the device and data movement between the SSD and the
FPGA. It initializes the SmartSSD with the computation process and allocates buffer objects in
the CMA. The host not only issues SSD ”read” and ”write” commands to the SSD controller,
but it triggers the FPGA computation as well.

The SmartSSD device supports data movement between the NVMe SSD (storage system)
and the FPGA (computing engine) DRAM through the in-between internal data path. By
utilizing the onboard PCIe switch, the SSD and the FPGA DRAM are effectively connected
allowing peer-to-peer data movement, completely eliminating the data flowing in and out of
the device, and bypassing the host memory. P2P enables near-storage data processing, which
thereby diminishes or eliminates data traffic between host-SSD and host-FPGA. As a result,
the PCIe traffic decreases due to direct data transfer trips from host to device, leading to high
performance.

4 Performance Evaluation

This section exhibits the performance study of the P2P data transfer between devices in the
system. The essential objectives of this study are to illustrate the throughput of P2P data
transfer and to show that data movement bypasses the host memory.

76



P2P Data Transfer Evaluation in SmartSSD®-based System L. Daoud, G. Sun, and H. Huen

4.1 Simulation Environment

To precisely evaluate the impact of P2P data transfer among devices in the machine, we set
a server attached with multiple U.2 SmartSSDs. In this simulation environment, we created
two identical applications to transmit data from one device to another for P2P and non-P2P
options. The application selects the source and destination devices, the block size to move, and
the type of communication. The data transfer performance was evaluated for different data
sizes and for different zones where the devices are connected to the system. The measurements
were collected on a Dell R7515 server with an AMD EPYC processor running Ubuntu 18.04
LTS with a 4.15.0-55-generic kernel.

4.2 Evaluation Results

In this experiment, we performed data transfer from one device-SSD to another device com-
puting engine memory in the server connected through a PCIe bus. The host code application
was developed in C++ language using the Xilinx runtime (XRT) API and OpenCL APIs [7].
A buffer object was allocated in one SmartSSD device to receive data from another device’s
SSD connected to the same server. We measured the time it takes a block size to move from
one device to another. The experiment was replicated for multiple block sizes and the transfer
time was captured each time. For every test, the transfer process was repeated 100 times and
the average time was calculated. Figure 3 shows the data transfer bandwidth of moving data
from one device to another for both P2P and non-P2P data transfer for different block sizes.

In this Figure, both P2P and non-P2P data transfer bandwidths are monotonically increas-
ing with the block size until they are saturated with the system capability. P2P data transfer
meets the maximum possible PCIe bus bandwidth, within 4 GB/s. As shown in the figure,
P2P bandwidth is always higher than the case for non-P2P no matter what the data size is.
For transferring small data sizes, P2P is 6x faster compared to the non-P2P method. This is
due to the time overhead to initiate the DMA with the transfer process. Though the transfer
speed decreases with the data size, it saturates at 2x faster speed for the P2P mode.

The reason for this performance ratio is that the transfer throughput is associated with the
data movement trip. In regular non-P2P data movement, the system allocates a subset of the
main host memory, where data is moved up from the sender device to this memory subset, and

0

1

2

3

4

5

6

7

0

500

1000

1500

2000

2500

3000

3500

4000

P
e

rf
o

rm
an

ce
 R

at
io

(p
2

p
/n

o
n

-p
2

p
)

D
at

a 
B

an
d

w
id

th
(M

B
/s

)

Data Size

non-p2p p2p ratio

Figure 3: Average Bandwidth of P2P and non-P2P data transfer for different block sizes.

77



P2P Data Transfer Evaluation in SmartSSD®-based System L. Daoud, G. Sun, and H. Huen

(a) Time Trace of data movement in non-P2P architecture.

(b) Time Trace of data movement in P2P architecture.

Figure 4: Time Trace of data transfer in non-P2P (a) and P2P (b) architectures.

then it is moved down to the receiver device. However, for P2P communication, data is directly
moved from one device to another bypassing the main host memory.

In order to indicate the memory usage in the system during the transfer process, we provoked
the XRT to capture the data profiling of the application. The application was designed with
OpenCL events to trace various phases of the application layer. Vitis Analyzer was used to view
and analyze trace data. Figure 4 visualizes the event trace of data transfer for P2P and non-
P2P communication modes. As it is indicated in Figure 4(a) data is migrated from the memory
to the device as in the write event. However, for the same application with the P2P technique,
the memory is not involved in the transaction process, as shown in Figure 4(b). Therefore,
transferring big chunks of data in non-P2P mode requires enough space in the memory to
smooth the data communication out.

With respect to the physical place of the pair devices in the system and its influences on
the p2p data movement, different PCIe slot connections in the server were tested with p2p
communication. In this experiment, ten SmartSSDs were connected in ten different PCIe slots,
and 100 GB of data was p2p transferred between each pair of devices. The average bandwidth
was reported. Figure 5 demonstrates the P2P data transfer bandwidth from one device to
another in different slots in the server. This Figure shows that the P2P data transfer bandwidth
is not affected by the physical location of the devices in the system. It reaches the maximum
limit of the PCIe bus bandwidth, 3 ∼ 4 GB/s. This experiment was performed on a Dell R7515
server with an AMD EPYC processor. This system is a highly scalable single-socket 2U rack
and all the PCIe slots are connected to the same root complex. Therefore, each pair of devices
share the same bus emphasizing the direct P2P connection.

5 Conclusions and Future Work

In this paper, we demonstrated the benefit of the P2P data transfer between devices including
storage elements and accelerating engines over the non-P2P approach. The results showed that

78



P2P Data Transfer Evaluation in SmartSSD®-based System L. Daoud, G. Sun, and H. Huen

 

Figure 5: P2P data transfer bandwidth between multiple devices (GB/s).

P2P data transfer bandwidth is always higher than the case for the non-P2P method. The P2P
to non-P2P performance ratio is double for transferring large block sizes and up to 6 times for
small block sizes. In P2P architecture, the data directly moves between devices skipping the
system memory, which reduces the trip time of the transferred data. In non-P2P cases, read
and write operations share the physical PCIe v3 x4 interface with the host. This is the real
reason that the P2P is 2X the improvement as it eliminates host reads/writes to SSD and, at
the same time eliminates host reads/writes to CMA, too. In addition, the P2P data transfer
bandwidth is independent of the physical location of the paired devices in the system as long
as they are connected to the same root complex of the PCIe bus. For future work, moving data
between multiple devices at the same time will be considered and the congestion of the PCIe
bus will be evaluated.

References

[1] Luka Daoud and Hingkwan Huen. Performance study of software-based encrypting data at rest.
Proceedings of 37th International Confer, 82:122–130, 2022.

[2] Luka Daoud, Fady Hussein, and Nader Rafla. Real-time bitstream decompression scheme for fpgas
reconfiguration. In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems
(MWSCAS), pages 1082–1085. IEEE, 2018.

[3] Luka Daoud, Fady Hussein, and Nader Rafla. High-level synthesis optimization of aes-128/192/256
encryption algorithms. International Journal of Computers and Their Applications, 29:129–136,
2019.

[4] Luka Daoud, Fady Hussein, and Nader Rafla. Optimization of advanced encryption standard (aes)
using vivado high level synthesis (hls). 2019.

79



P2P Data Transfer Evaluation in SmartSSD®-based System L. Daoud, G. Sun, and H. Huen

[5] Luka Daoud, Muhammad Kamran Latif, HS Jacinto, and Nader Rafla. A fully pipelined fpga
accelerator for scale invariant feature transform keypoint descriptor matching. Microprocessors
and Microsystems, 72:102919, 2020.

[6] Luka Daoud, Muhammad Kamran Latif, and Nader Rafla. Sift keypoint descriptor matching algo-
rithm: A fully pipelined accelerator on fpga. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 294–294, 2018.

[7] Luka Daoud, Dawid Zydek, and Henry Selvaraj. A survey of high level synthesis languages, tools,
and compilers for reconfigurable high performance computing. In Advances in Systems Science:
Proceedings of the International Conference on Systems Science 2013 (ICSS 2013), pages 483–492.
Springer, 2014.

[8] Myoungsoo Jung. Computing device, data transfer method between coprocessor and non-volatile
memory, and computer-readable recording medium, July 3 2018. US Patent 10,013,342.

[9] Ji-Hoon Kim, Yeo-Reum Park, Jaeyoung Do, Soo-Young Ji, and Joo-Young Kim. Accelerat-
ing large-scale graph-based nearest neighbor search on a computational storage platform. IEEE
Transactions on Computers, 72(1):278–290, 2022.

[10] Taehyun Kim, Deondre Martin Ng, Junzhi Gong, Youngjin Kwon, Minlan Yu, and KyoungSoo
Park. Rearchitecting the tcp stack for i/o-offloaded content delivery. In 19th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2022. USENIX, 2023.

[11] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoorthy, Xiaodong Zhao, and
Yang Seok Ki. Smartssd: Fpga accelerated near-storage data analytics on ssd. IEEE Computer
architecture letters, 19(2):110–113, 2020.

[12] Mellanox. Nvidia gpudirect™ technology – accelerating gpu-based systems, 2010.

[13] Ryo Nakamura, Yohei Kuga, and Kunio Akashi. How beneficial is peer-to-peer dma? In Proceedings
of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems, pages 25–32, 2020.

[14] Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang, and Jason Cong. Fans: Fpga-
accelerated near-storage sorting. In 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 106–114. IEEE, 2021.

[15] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven Swanson. Morpheus:
Creating application objects efficiently for heterogeneous computing. ACM SIGARCH Computer
Architecture News, 44(3):53–65, 2016.

[16] Jie Zhang, David Donofrio, John Shalf, Mahmut T Kandemir, and Myoungsoo Jung. Nvmmu:
A non-volatile memory management unit for heterogeneous gpu-ssd architectures. In 2015 In-
ternational Conference on Parallel Architecture and Compilation (PACT), pages 13–24. IEEE,
2015.

80


	1 Introduction
	2 Background and Related work
	2.1 Peer to Peer transfer
	2.2 Why SmartSSD?

	3 SmartSSD Architecture
	4 Performance Evaluation
	4.1 Simulation Environment
	4.2 Evaluation Results

	5 Conclusions and Future Work
	References

