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Abstract 

Although building performance simulation using physical models is frequently 

utilized for performance prediction, its significant computational demands pose 

challenges to its implementation in the early design stage. Surrogate models have been 

proposed to replicate computationally expensive physics-based simulation models, but 

existing surrogate models for sustainable residential block design are limited in scope, 

focusing on specific cases. Graph neural network (GNN) could be a solution to enhance 

the generality of the surrogate models for residential block design. However, the 

optimal architectures of the surrogate model and the time costs compared with physics-

based simulation models have not been discussed yet. To fill these gaps, this study 

explores the development of GNN-based surrogate models for multi-objective 

sustainable performance predictions of residential blocks. Firstly, we introduce a graph 

schema to represent the general geometric features and relations, and a regional dataset 

for training and testing of the surrogate models. Secondly, we propose two kinds of 

architectures (individual architectures for specific indicators and an integrative 

architecture) for the surrogate models. Thirdly, we train and optimize the models 

utilizing the graph schema, regional dataset and architectures. Finally, the optimized 

surrogate models are evaluated in two aspects: 1) the optimized models using the 

individual architectures for specific indicators and the ones using the integrative 

architecture are compared in terms of prediction accuracy and time costs; and 2) the 

time costs of the optimized model are analyzed by comparing with physics-based 

simulations. The results showed that surrogate models based on individual architectures 

outperform the model using the integrative architecture in terms of prediction accuracy 

and time costs for all sustainable performance indicators. Although the model 
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preparation time of the surrogate models exceeds that of the physics-based simulations, 

the surrogate models reduce the calculation time from 6.346 min to 1.565 ms per case 

compared with the physics-based simulations. 

 

Keywords: Surrogate model, Graph neural network, Building performance 

prediction, Sustainable building design, Residential block 

1 Introduction 

The subject of sustainable design for residential blocks is progressively gaining significance 

within the realm of global urbanization and the escalating demand for ecologically conscious habitats. 

In 2022, residential energy consumption accounted for 20.96% of the total energy utilized in the 

building sector worldwide (International Energy Agency, 2023). Incorporating sustainable 

performance considerations during the initial design phase requires performance prediction, a 

fundamental process enabling the measurement of the level of sustainability achievable by designs. 

Building performance simulation using physical models is frequently utilized for performance 

prediction, such as structural and energy performance (Wong et al., 2023). However, its significant 

computational demands and time-intensive modeling pose challenges to its implementation in the 

early design phase (Attia et al., 2012). For example, in Natanian and Wortmann’s study (Natanian & 

Wortmann, 2021), the time taken for full energy simulation using EnergyPlus for a nine-block district 

was 40 min and 30 s per iteration (500 iterations in total). The extended computational duration would 

not be viable during the initial design phase, where it is preferable for the feedback time of the 

program to remain under the threshold of 10 seconds. (Miller, 1968). 

Surrogate models have been proposed to replicate computationally expensive physics-based 

simulation models (Westermann & Evins, 2019). Two studies (Hu et al., 2023; Wang et al., 2021) 

have developed surrogate models to predict multiple indicators of sustainable performance in the 

early design stage of residential buildings at block levels. These models offer substantial reductions in 

computational time (e.g., 500 times faster than physics-based simulation modeling (Z. Hu et al., 

2023)), while preserving an acceptable level of accuracy during the optimization process in the early 

design stage. However, these surrogate models are based on artificial neural networks (ANNs) in 

which the input structures are fixed. Hence, the models are case-specific and cannot represent general 

residential block design. 

A graph is a data structure representing a set of nodes interconnected by edges (Zhou et al., 2020) 

that has been introduced to the architecture, engineering and construction (AEC) industry (Jia, Wang, 

Shou, et al., 2023) (e.g., building energy simulation (Wu, Cheng, & Wang, 2023; Wu, Cheng, Wang, 

et al., 2023), generative design of sustainable buildings (Wu, Wang, et al., 2024a, 2024b), and 

compliance checking (Tao et al., 2024)). Graph neural networks (GNNs) are a class of neural 

networks specifically designed to operate on graph-structured data (Zhou et al., 2020) and have been 

adopted in surrogate models for building performance prediction (Y. Hu et al., 2022; Jia, Wang, 

Hosseini, et al., 2023; Lu et al., 2022). However, there is a lack of research examining GNN-based 

surrogate models in the context of sustainable residential block design. Using GNNs in surrogate 

models has two advantages, which may address the issues found in the current surrogate models for 

sustainable residential block design. Firstly, GNNs can not only consider the impacts from the 

building itself but also incorporate the influences from the surrounding buildings. Secondly, GNNs 

can handle inputs with varying numbers of nodes or edges without requiring extensive modifications 

to the network architecture, and hence GNNs can enhance the generality of surrogate models. 

In our previous study (Wu, et al., 2024), we developed a surrogate model for multi-objective 

sustainable performance prediction based on GNN. Firstly, a graph schema is proposed to represent 
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the general topological relations among components in residential block layout design. Secondly, a 

dataset is established based on parametric design models of residential blocks and simulations of 

sustainable performance, including energy consumption, daylighting, and thermal comfort. Finally, an 

architecture using graph attention network (GAT) is proposed for multiple sustainable performance 

predictions. The results showed that the proposed model (GAT) outperforms the benchmark models 

(GCN and ANN) in terms of prediction accuracy, indicating that the inclusion of neural networks with 

message passing mechanisms that consider the impact of surrounding buildings leads to accuracy 

improvement. However, this is the preliminary study exploring GNN-based surrogate models for 

sustainable residential block design. Two issues remain to be solved. For one thing, the current 

surrogate models for predicting multiple indicators of residential blocks (Z. Hu et al., 2023; Wang et 

al., 2021) were trained for each performance indicator individually. In contrast, in some studies on 

GNN-based prediction of multiple indicators (Li et al., 2023; Lu et al., 2022), one integrative model 

was trained for all the indicators. Consequently, when introducing GNN to the development of 

surrogate models for predicting multiple indicators of residential blocks, the adoption of architectures, 

the individual one or the integrative one, is an important issue to be addressed. For another, to 

facilitate smooth and efficient interaction between the designers and the simulation tool, the 

computational time needs to be short. However, the time costs of the GNN-based surrogate models 

for sustainable residential block design have not been discussed yet. 

To solve these two issues, this study further explores the development of surrogate models for the 

early-stage design of residential blocks by leveraging GNN. Firstly, we introduce graph schema and 

regional dataset proposed the previous study (Wu et al., 2024). Secondly, we propose two kinds of 

architectures (individual architectures for specific indicators and an integrative architecture) for the 

GNN-based models. Thirdly, we train and optimize the GNN-based models utilizing the graph 

schema, regional dataset and architectures. Finally, the optimized surrogate models are evaluated in 

two aspects: 1) the optimized surrogate models using the individual architectures for specific 

indicators and the integrative architecture are compared in terms of prediction accuracy and time costs; 

and 2) the time costs of the optimized surrogate model are analyzed by comparing with physics-based 

simulations. 

2 Method 

2.1 Graph representation and dataset 

A graph schema was developed to represent the general topological relations among components 

in residential block design (Wu et al., 2024). In the graph schema, nodes represent individual 

buildings within a residential zone and bi-directional edges represent positional relationships among 

the buildings. There is no edge connection between two buildings if these two buildings are 

completely obstructed by other buildings. Figure 1 shows the proposed graph model using one 

example of a residential zone with nine buildings. Nine nodes are used to represent the nine buildings. 

Bi-directional edges are established to represent the positional relationships among them, excluding 

buildings that are completely blocked by others (e.g., building 1 and building 3). The self-impact of a 

building on its sustainable performance is determined by building shape, building height, orientation, 

building volume, floor area, envelope area, window area, etc., while the impact of its surrounding 

buildings is determined by positional relationships (e.g., distances and relative angles) and 

obstructions between the two buildings. Accordingly, floor plan type, building height, window-to-

wall ratio (WWR), north-south (N-S) projected length, west-east (W-E) projected length, shape factor 

and heat loss form factor are adopted as the node features, and relative angle, distance and visibility 

ratio are adopted as the edge features in the proposed graph schema. 
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The classification of floor plan types differs between regions. In this study, we take residential 

buildings in Hong Kong as an example and classify the floor plan type into six categories (Linear, L-

shape, Y-shape, X-shape, Cruciform and Double-cruciform). To define the orientations of residential 

buildings, we introduce N-S projection length and W-E projection length to describe the building 

lengths along the north-south and west-east direction respectively (Figure 2 (a)). In addition, the shape 

factor (or shape coefficient) (determined by Eq. (1)) (Depecker et al., 2001) and heat loss form factor 

(determined by Eq. (2)) (Andrew, 2021) are introduced as node features to incorporate the influence 

of building volume, floor area and envelope area. 

𝑆𝐹 =
𝐴𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒

𝑉
 (1) 

𝐻𝐿𝐹𝐹 =
𝐴𝑓𝑙𝑜𝑜𝑟

𝐴𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒

 (2) 

where 𝑆𝐹 is the shape factor, 𝐻𝐿𝐹𝐹 is the heat loss form factor, 𝑉 is the building volume, 𝐴𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 is 

the envelope area, and 𝐴𝑓𝑙𝑜𝑜𝑟  is the total floor area. 

Figure 2 (b) defines the two edge features, distance and relative angle, which describe the 

positional relationships between two buildings. The centroids of the footprints of the two buildings 

are used to settle the distance and relative angle. To determine the obstruction conditions between two 

buildings, we propose a visibility ratio representing the portion of one building that can be “seen” by 

another. The visibility ratio is calculated by Eq. (3). 

𝑉𝑃𝐴←𝐵 =
∑ (

∑ 𝟙(𝑗 𝑖𝑠 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑡𝑜 𝑖)𝑁
𝑗=1

𝑁
)𝑀

𝑖=1

𝑀
, 

(3) 

where 𝑉𝑃𝐴←𝐵 is the visibility ratio from building B to A (the portion of B that A can “see”), 𝑖 is the 

sampling point on the exterior surface of building A, 𝑗 is the sampling point on the exterior surface of 

building B, 𝑀 is the number of sampling points on building A, 𝑁 is the number of sampling points on 

building B, and 𝟙(𝑗 𝑖𝑠 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑡𝑜 𝑖) is the indicator function that equates to 1 if there is no obstruction 

on the straight line from point 𝑗 to point 𝑖, and 0 otherwise. Figure 2 (c) is a visualization of the 

visibility ratio in which building C is the obstruction between building A and B, the red point is one of 

the sampling points on building A, and the area in grey represents the area visible to the red point. 

The grid size of the sampling points adopted in this study is 10 m. 

 

 
 

Figure 1: Graph representation of residential block layout design 
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(a) N-S projection length and 

W-E projection length 

(b) Distance and relative angle 

from building B to A 

(c) Visibility ratio 

Figure 2: Definitions of N-S projection length, W-E projection length, distance, relative angle and visibility ratio 

 

To enhance the generality of the surrogate model for residential block design, it is essential to 

collect comprehensive data that spans an entire region, where shared common patterns or frameworks 

in the design of residential blocks exist. In the previous study (Wu et al., 2024), we took residential 

blocks of public housing in Hong Kong as an example to generate a dataset for the training and testing 

of the GNN-based surrogate models. The dataset was generated based on parametric design models 

and performance simulation, considering the schedules and behaviors (such as window opening for 

natural ventilation (Wu, Zhang, Mai, et al., 2023)) of the local residents. We used energy use intensity 

(EUI), annual comfort hours (ACH) and useful daylight illuminance (UDI) as the performance 

indicators of energy consumption, indoor thermal comfort and daylighting respectively. The dataset 

contains 9962 graphs, and each graph represents a residential zone, containing node features and 

performance indicators of each building and edge features. In this study, we introduce the dataset for 

the training and testing of the GNN-based surrogate models. 

2.2 GNN architecture 

We propose two kinds of architectures for our GNN-based surrogate models, individual 

architectures for specific indicators and an integrative architecture, as shown in Figure 3. The aim is 

to predict the sustainable performance indicators of each building in a residential zone, which is a 

node regression task (Zhou et al., 2020). The graphs containing node features and edge features of all 

the buildings serve as the inputs of the architecture. The main body of each architecture contains three 

parts: a first cluster of fully connected layers (FC layers) for pre-processing of the node features of the 

target building, a cluster of convolution layers (Conv layers) aggregating the edge features and node 

features from the target building itself and the surrounding buildings, and a second cluster of FC 

layers for post-processing after incorporating the information from the surroundings. In the individual 

architecture (Figure 3 (a)), the output only contains one performance indicator, and one model is 

trained for each of the performance indicators individually. In the integrative architecture (Figure 3 

(b)), the outputs contain all the performance indicators, and one model is trained for all three 

performance indicators. 
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(a) Individual architecture 

 
(b) Integrative architecture 

Figure 3: The two kinds of adopted architectures for the GNN-based surrogate models 

 

Figure 4 shows the detailed architecture for predicting multiple indicators of sustainable 

performance of residential blocks, using the integrative architecture as the example. GAT (Brody et 

al., 2021) is applied to the Conv layers and the GATv2 operator (PyG Team, 2024) is used to 

aggregate the node features and edge features from the target building and the surrounding buildings. 

In GAT, an attention mechanism is employed to assign different weights to the relations between 

nodes in a graph, which allows the network to focus on the most relevant nodes during information 

propagation. Multiple heads are also employed in GAT, which enables the network to capture 

complementary aspects of the graph structure. Each Conv layer is connected to an FC layer before 

passing data to the subsequent Conv layer. At the beginning of the first cluster of FC layers and the 

end of the second cluster of FC layers, the number of channels gradually increases and decreases (12

→n/2→n and n→n/2→3) respectively to ensure a smooth change of the number of channels. The 

rectified linear unit (ReLU) is adopted as the activation function except the last FC layer, where the 

Sigmoid function is used. The architectures are parameterized with five parameters, the number of 

neurons (n), the number of heads in GAT (h), the number of layers in the pre-processing FC layer 

cluster (N1), the number of layers in the Conv layer cluster (N2), and the number of layers in the post-

processing FC layer cluster (N3). 

 

 
Figure 4: Details of the architecture (using the integrative architecture as the example) 

2.3 Model training and evaluation 

The dataset is randomly divided into a training set and a test set at the ratio of 75/25. The training 

data are then divided into smaller subsets and the model’s parameters are updated based on the 

gradient computed from each mini-batch. Dropout is implemented to alleviate the overfitting issue. 
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The training uses Adam as the optimizer and MSE as the loss function. The architecture parameters 

are optimized first, and the hyper-parameters of the models with optimal architectures are optimized 

subsequently. In the cases with the individual architecture, the model that exhibits the lowest 

coefficient of variation of the root mean square error (CV(RMSE)) value for the performance 

indicator in the test set is considered the optimal model. In the cases with the integrative architecture, 

the optimal model is the one with the lowest average CV(RMSE) of the three performance indicators. 

Grid search is used to optimize the architecture parameters and hyper-parameters. The search spaces 

of the parameters are listed in Table 1. To evaluate the performance of the models, the mean absolute 

error (MAE), root mean square error (RMSE), and CV(RMSE) are introduced, as given in Eqs. (4)–

(6). 

𝑀𝐴𝐸 =
1

𝑚
∑ |(𝑦𝑖 − 𝑦𝑖̂)|

𝑚

𝑖=1

 (4) 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑚

𝑖=1

 (5) 

𝐶𝑉(𝑅𝑀𝑆𝐸) = √
1

𝑚
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑚

𝑖=1

1

𝑚
∑ 𝑦𝑖̂

𝑚

𝑖=1

⁄  (6) 

where 𝑚 is the number of all predictions, 𝑦𝑖  is the ith prediction and 𝑦𝑖̂ is the ith ground truth. 

The models are trained and tested using a desktop computer with the following specifications: 

Intel Core CPU i7–12700 at 2.10 GHz and 20 cores, NVIDIA GeForce RTX 3070 GPU, 32 GB RAM, 

and Windows 64 operating system. Python version 3.11.7, CUDA version 12.1 and PyTorch version 

2.2.1 are used. 

3 Results and discussion 

3.1 Accuracy 

Figure 5 shows the loss curves of the training of the GNN-based surrogate models using different 

architectures. All models reach convergence within 2000 epochs during the training. The optimal 

parameters and the optimal architectures are shown in Table 1 and Figure 6 respectively. The optimal 

values of each hyper-parameter (batch size, learning rate and dropout) are the same among the 

different architectures in the search space used in this study. The optimal architectures for EUI and for 

ACH are similar, while the optimal architecture of UDI is different from the ones for EUI and for 

ACH. The different optimal architectures between EUI/ACH and UDI may result from the calculation 

mechanisms of the sustainable performance indicators. EUI and ACH are calculated based on 

thermodynamics while UDI is based on optics. Besides, although the optimal number of layers in the 

Conv layer cluster (N2), number of heads (h), number of layers in the pre-processing FC layer cluster 

(N1), and number of neurons (n) of the optimal individual architectures for EUI and for ACH are the 

same, the number of layers in the post-optimal processing FC layer cluster (N3) are different. The 

above result indicates that the calculations of EUI and ACH are similar in the pre-processing and the 

information aggregation, while the post-processing is different. Environmental parameters such as air 

temperature and relative humidity are calculated first based on thermodynamics for both EUI and 

ACH, while the thermal load is calculated for EUI and the thermal comfort index is calculated for 

ACH respectively later. 
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(a) EUI (b) ACH 

 
(c) UDI 

Figure 5: Loss curves of the training of the models using different architectures 

 

 
(a) Individual architecture for EUI 

 
(b) Individual architecture for ACH 

 
(c) Individual architecture for UDI 

 
(d) Integrative architecture 

Figure 6: Optimal architectures (the numbers of channels are listed under the arrows between two layers). 
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In addition, the number of Conv layers determine the depth of information aggregation, and the 

different optimal numbers of layers in the Conv layer cluster (N2) indicate the different information 

aggregation mechanisms among different sustainable performance. The optimal number of layers in 

the Conv layer cluster (N2) of the optimal individual architecture for UDI is one, showing that the 

daylighting performance of the target buildings is only impacted significantly by their 1-hop 

neighbors. In contrast, the optimal numbers of layers in the Conv layer cluster (N2) of the optimal 

individual architectures for EUI and for ACH are both four, showing that the thermal environment-

related performance of the target buildings is impacted significantly by their 4-hop neighbors. 

According to the definition of edges in this study (Section 3.1), edge connections are established 

between two buildings only if those two buildings are not completely obstructed by other buildings. 

The daylighting performance of the target buildings is impacted by shading and daylight reflectance 

from the adjacent buildings that the target buildings can “see”. Thus, it is reasonable that the optimal 

individual architecture for UDI uses one Conv layer (i.e., only considering influence from 1-hop 

neighbors). In contrast, the thermal conditions of the target buildings may not only be affected by the 

buildings adjacent to the target buildings, but depend on the heat balance among a certain hop pf 

neighbors. Therefore, the optimal individual architectures for EUI and for ACH use multiple Conv 

layers, and 4-hop neighbors are considered to affect significantly on the target buildings. 

 
Table 1: Optimal parameters of the individual architectures and the integrative architecture 

Parameter Search space Optimal value 

  Individual 

architecture 

for EUI 

Individual 

architecture 

for ACH 

Individual 

architecture 

for UDI 

Integrative 

architecture 

Architecture 

parameter 

     

Number of layers in 

the Conv layer 

cluster (N2) 

[1, 2, 3, 4, 5, 6] 4 4 1 4 

Number of heads (h) [1, 2, 3, 4, 5, 6] 5 5 5 5 

Number of layers in 

the pre-processing 

FC layer cluster (N1) 

[0, 1, 2, 3] 1 1 0 1 

Number of layers in 

the post-processing 

FC layer cluster (N3) 

[0, 1, 2, 3] 0 2 0 1 

Number of neurons 

(n) 

[32, 64, 128, 256, 

512] 

64 64 128 128 

Hyper-parameter      

Batch size [32, 64, 128, 256, 

512] 

256 

Learning rate [0.0001, 0.0005, 

0.001, 0.005, 0.01, 

0.05, 0.1] 

0.001 

Dropout [0, 0.1, 0.2, 0.3, 

0.4] 

0.2 

 

Table 2 shows the prediction accuracy of the GNN-based surrogate models using different 

architectures. For each sustainable performance indicator, the surrogate model using the individual 

architecture outperforms the model using the integrative architecture, with smaller RMSEs and 

CV(RMSE)s on the test set. The difference in the prediction accuracy between the individual and the 
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integrative architecture is minor for EUI (CV(RMSE) difference of 0.5% (|11.79%-11.85%| / 

11.85%)), slightly higher for ACH (CV(RMSE) difference of 3.2% (|7.63%-7.88%| / 7.88%)), and 

largest for UDI (CV(RMSE) difference of 21.9% (|8.00%-10.14%| / 10.14%)). The optimal 

integrative architecture is close to the optimal individual architectures for EUI and for ACH, and is 

distinct from the optimal individual architecture for UDI, which accounts for the different prediction 

accuracy among the three performance indicators. During the model training, we use the minimal 

average CV(RMSE) of the three performance indicators as the optimization objective of the 

integrative architecture (Section 3.4). Therefore, the optimal result of the integrative architecture is a 

balance among the three performance indicators. The result shows that the balance tends to shift to the 

side of EUI and ACH. In the integrative architecture, the parameters of the model are shared by all the 

sustainable performance indicators, while the parameters in the models using the individual 

architectures are trained specifically for each sustainable performance indicator. Consequently, the 

prediction accuracy of the models using the individual architectures for specific indicators are higher 

than that of the model using the integrative architecture. 

 
Table 2: Prediction accuracy using different architectures 

 EUI ACH UDI 

 MAE RMSE CV(RMSE) MAE RMSE CV(RMSE) MAE RMSE CV(RMSE) 

Training set 
         

Individual 

architecture 

11.88 19.27 10.11% 1.41 2.17 5.48% 1.63 2.21 3.75% 

Integrative 

architecture 

9.65 16.42 8.62% 1.45 2.30 5.80% 3.59 5.71 9.69% 

Test set 
         

Individual 

architecture 

13.77 22.48 11.79% 1.86 3.01 7.63% 2.99 4.73 8.00% 

Integrative 

architecture 

12.98 22.60 11.85% 1.89 3.11 7.88% 3.83 5.99 10.14% 

3.2 Time cost 

Table 3 shows the training time of the GNN-based surrogate models using different architectures. 

For the individual architectures, the training time is proportional to the complexity of the models. The 

individual architecture for ACH has the largest complexity and hence takes the longest time to train. 

The total training time of the models using the individual architectures is 5,391 s while that of the 

model using the integrative architecture is 8,040 s. If the models using the individual architectures 

were trained in parallel, the training time could be reduced to 2,115 s (determined by the longest 

training time among the individual architectures). The total calculation time of the models using the 

individual architectures is 1.565 ms per case on average, while that of the model using the integrative 

architecture is 2.338 ms. Therefore, the individual architectures outperform the integrative 

architecture in terms of the time costs. If both the prediction accuracy and the time costs are 

considered, we can conclude that the individual architectures should be adopted over the integrative 

architecture when developing GNN-based surrogate models for predicting multiple indicators of 

sustainable performance in the early design stage of residential blocks. 

Table 3 shows the time costs of the sustainable performance predictions using the surrogate 

models and the physics-based simulations. For the surrogate model-based prediction, the most time-

consuming part is the model preparation. It takes approximately one day to manually develop the 

simulation models in the simulation software, while it takes more than 90 days to prepare the 
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surrogate models (i.e., more than 90 times longer than the physics-based simulation modeling). 

However, the surrogate model-based method achieves a dramatically faster calculation speed than the 

physics-based simulation modeling by 243,297 times (from 6.346 min to 1.565 ms) and 104,062 times 

(from 6.346 min to 2.338 ms) when using the individual architectures and integrative architecture 

respectively. The calculation time of the surrogate models are within one second and hence the 

surrogate models are suitable for the early design stage, in which the acceptable feedback time should 

be less than 10 seconds (Miller, 1968). 

 
Table 3: Time costs of indicator predictions using the surrogate models and the physics-based simulations. 

 Surrogate model Physics-based simulation 

Model preparation Dataset generation: ~90 d. 

Model training: 

Individual architectures 

EUI: 2,095 s, 

ACH: 2,115 s, 

UDI: 1,181 s, 

In total: 5,391 s. 

Integrative architecture 

8,040 s. 

Simulation modeling: ~ 1d.  

Calculation (per case) Individual architecture 

EUI: 0.410 ms, 

ACH: 0.751 ms, 

UDI: 0.404 ms, 

In total: 1.565 ms. 

Integrative architecture 

2.338 ms. 

EUI and ACH (using EnergyPlus): 

4.479 min, 

UDI (using Radiance): 1.867 min, 

In total: 6.346 min. 

4 Conclusions 

In this study, we developed GNN-based surrogate models to predict multi-objective sustainable 

performance indicators for residential blocks. The research consisted of several key steps. We 

introduced graph schema and regional dataset proposed the previous study (Wu et al., 2024). We 

proposed two kinds of architectures (individual architectures for specific indicators and an integrative 

architecture) for the GNN-based models. Thirdly, we trained and optimized the GNN-based models 

utilizing the graph schema, regional dataset and architectures. Finally, the optimized surrogate models 

are evaluated in terms of accuracy and time costs. 

The major findings of this study are summarized as follows. 

 Surrogate models based on individual architectures outperform the model using the 

integrative architecture in terms of prediction accuracy and time costs for all sustainable performance 

indicators. Therefore, individual architectures are recommended for developing GNN models for 

predicting multiple performance indicators. 

 Although the model preparation time of the surrogate models exceed that of the physics-

based simulations, the surrogate models reduce the calculation time from 6.346 min to 1.565 ms per 

case compared with the physics-based simulations. This demonstrates that the GNN-based surrogate 

models can significantly accelerate the performance evaluation in the early design stage of residential 

blocks, and therefore facilitate a smoother performance-based design. 

Some limitations have been identified and should be addressed in future studies. 
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 The dataset only includes buildings within a single residential zone, neglecting the potential 

impacts of surrounding buildings outside the site boundary. Future studies should incorporate these 

external factors that may affect buildings within the residential zone. 

 This study focuses solely on three indoor sustainable performance metrics. Future studies 

should encompass a wider range of sustainable performance indicators, representing both indoor and 

outdoor environments. 
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