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1 Introduction

Irrespective of the many different implementation paradigms, it is important that client level
specifications allow to balance freedom from implementation bias and properly restricting the
possible implementations to the ones that the client desires. Algebraic specification of the
black-box behavior of a system provides just this, if a careful choice of what comprises desired
output is made. We propose a new notion, canonicity, to achieve this.

We take as client specification an algebraic one, in terms of operators from the client’s
problem domain. Such a specification generally has multiple algebras as semantics. Rather
than designating a specific one, e.g., the initial one, as implementation, we stay at the level of
abstraction of the client specification: input and output are in terms of combinations of oper-
ators from the algebra. We use that each algebra determines which combinations of specified
operators are equal to others as a first criterion that input/output combinations have to satisfy
to qualify as an implementation. Then we argue that for a client only certain combinations of,
in a sense, basic operators are acceptable to occur as output. We then investigate a notion of
canonicity to make this precise.

We thus provide a novel syntax and semantics for client specifications. The semantics
matches the client’s view of the implementation as a black box.

The paper is structured as follows. We concentrate on looking at algebraic specifications
from the perspective of the client and the specifier. In Sect. 2.1, we give a brief overview of first-
order logic, on which algebraic specifications are based. In Sect. 2.2, we discuss and formalize
algebraic specifications. We introduce a syntax and semantics of algebraic specifications that
regards the implementation as a black box, and that is independent of the implementation
language. After this, we briefly consider the step towards OO implementations, in Sect. 3.
Sect. 4 contains some thoughts about the consequences of the approach and about future work.

We first discuss the meta-level notation that is used.

Functions. f : A ã→ B introduces a partial function from A to B . Function is the set of
partial functions. Functions are treated as single-valued relations. Given a property P(a, b),
we write ’f (a) = b if and only if (iff) P(a, b)’ to define f as the smallest single-valued relation
such that ∀a ∈ A, b ∈ B • (a f b iff P(a, b) holds). f : A→ B introduces a total function from
A to B . Domain(f ) and Range(f ) denote the domain and range of (partial or total) function
f .
f [a 7→ b] is the function like f , but with a mapped to b. If f is a partial function, then this can be
used whether or not a ∈ Domain(f ). f [a 7→ b, . . . , c 7→ d ] is shorthand for f [a 7→ b] . . . [c 7→ d ].

Sequences and sets. We use n as the typical element of the set of natural numbers N (which
includes 0). A sequence A1, . . . ,An can be the empty sequence, whereas sequence A0, . . . ,An

has at least one element. A record is a tuple indexed by names. When a record Record with
tuple in A1× . . .×An is indexed by names f1, . . . , fn , we write Record : f1 ∈ A1× . . .× fn ∈ An .
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Record .fi denotes the value of the field with name fi of Record . Given a sequence Σ, Σ[i ], Σ[i , j ]
and Σ[i ..] denote element, consecutive subsequence and postfix. 〈〉 denotes the empty sequence.
Σ0 .Σ1 denotes the concatenation of sequences Σ0 and Σ1. We write x ∈ Seq(x ) to denote that
x is a sequence of elements from X . Given a set X , we write xSet ∈ Set(X ) to denote that
xSet is a set of elements from X . |A | denotes the length of sequence or set A.

Equality. ’A is B ’ denotes that A and B are syntactically the same. A = B (strong equality)
denotes that A and B are both defined and have the same interpretation, i.e., that both evaluate
to a value, and that these values are syntactically the same.

2 Specifier’s Perspective

In this section, we look at algebraic specifications from the perspective of the client and the
specifier.

(1) In Sect. 2.1, we give a brief overview of first-order logic, on which algebraic specifications
are based.

(2) In Sect. 2.2, we discuss and formalize algebraic specifications. We introduce a novel syntax
and semantics of algebraic specifications that views the implementation as a black box, and
that is independent of the implementation language.

2.1 The Formalism: First-Order Logic

Many-sorted first-order logic is at the basis of many program specification and verification
techniques. In this section, we give a brief introduction to many-sorted partial first-order logic
with equality to fix the notation and terminology that we use. More thorough treatments can
be found in, e.g., (CMR98; ST99). Note that operations in the problem domain are often partial
(consider e.g. the division operation i/j , which is undefined when j = 0). The use of partial
logic allows to specify such operations more directly.

2.1.1 Syntax

Here, we formalize the syntax of multi-sorted first order logic.

Sorts, variables and operators. In this paragraph, we introduce the primitive elements of
(the syntax of) a first-order logic.

Definition 2.1. Sort is the set of sorts

Definition 2.2. Var is the set of variables. Each variable has associated with it a sort S . VarS
denotes the set of variables of sort S . We write vS to denote that vS ∈ VarS .

The function VarSort (Def. 2.3) yields the sort of a variable.

Definition 2.3. VarSort : Var → Sort
VarSort(vS ) = S .

In Def. 2.4 we define a notion of an operator.

Definition 2.4. Op is the set of operators. Every operator has associated with it a tuple
of domain sorts 〈S1, . . . ,Sn〉 and a range sort S0, where S0, . . . ,Sn ∈ Sort . We write o :
S1 × . . .× Sn ã→ S0 to denote an operator with domain sorts 〈S1, . . . ,Sn〉 and range sort S0.
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The functions DomainSorts (Def. 2.5) and RangeSort (Def. 2.6) yield the domain sorts and
the range sort of an operator.

Definition 2.5. DomainSorts : Op → Seq(Sort)
DomainSorts(o : S1 × . . .× Sn ã→ S0) = 〈S1, . . . ,Sn〉.

Definition 2.6. RangeSort : Op → Sort
RangeSort(o : S1 × . . .× Sn ã→ S0) = S0.

Definition 2.7. A constant is an operator o such that DomainSorts(o) = 〈〉. Constant is the
set of all constants.

Signatures. A signature fixes a set of symbols that are used to construct terms. Every
signature contains three sets of special-purpose operators (that come with a predefined meaning,
see Sect. 2.1.2).

We first introduce the three sets of predefined operators (Def. 2.8-2.11). Then we formally
define signatures (Def. 2.12).

Definition 2.8. BoolOp is the set that consists of the two constants true : ã→ Bool and
false : ã→ Bool .

Definition 2.9. LogConOp is the set that consists of the usual logical connectives (e.g. ∧ :
Bool ×Bool ã→ Bool). LogConOp also includes, for every S ∈ Sorts, the operator =S : S ×S ã→
Bool .

Definition 2.10. QuantOp is the set that consists of, for every S ∈ Sorts, the operators
∀S : S × Bool ã→ Bool and ∃S : S × Bool ã→ Bool .

Definition 2.11. PredefinedOp is the set BoolOp ∪ LogConOp ∪QuantOp.

A signature sig (Def. 2.12) is a record that consists of three parts: a set of sorts sig .sorts, a set
of operators sig .ops, and a subset sig .tOps of sig .ops, the subset of total operators. sig .tOps
contains every predefined operator which has all domain sorts in sig .sorts. Note that this
includes the set BoolOp. Furthermore, for every operator o in sig .ops, every domain and range
sort of o is a sort from sig .sorts. Note that therefore Bool ∈ sig .sorts, as BoolOp ∈ sig .ops.

Definition 2.12. A signature is a record sig : sorts ∈ Set(Sort) × ops ∈ Set(Op) × tOps ∈
Set(Op) such that

sig .tOps ⊆ sig .Ops, and
{o ∈ PredefinedOp | DomainSorts(o) ⊆ sig .sorts} ⊆ sig .tOps, and
for every o ∈ sig .ops,

DomainSorts(o) ⊆ sig .sorts, and
RangeSort(o) ∈ sig .sorts.

Sig is the set of all signatures.

SigUnion(sig0, sig1) (Def. 2.13) returns the signature that unites sig0 and sig1 in the obvious
way.

Definition 2.13. SigUnion : Sig × Sig → Sig
SigUnion(sig0, sig1) = sig2 iff

sig2.sorts = sig0.sorts ∪ sig1.sorts, and
sig2.ops = sig0.ops ∪ sig1.ops, and
sig2.tOps = sig0.tOps ∪ sig1.tOps.
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Terms. Terms are constructed from variables and operators.

Definition 2.14. A term t (and its sort) is inductively defined as one of the following:
(1) A variable v of a sort S . In this case, the sort of t is S .
(2) A tuple 〈o, 〈t1, . . . , tn〉〉 of (i) an operator o : S1 × . . .× Sn ã→ S0, and (ii) a tuple of terms
〈t1, . . . , tn〉 such that

for every i ∈ [1,n], ti has sort Si , and
if o ∈ QuantOp, then t1 is a variable.

In this case, the sort of t is S0 (the range sort of the operator).
Term is the set of all terms.

We usually write a term 〈o, 〈t1, . . . , tn〉〉 as o(t1, . . . , tn). Additionally, when o ∈ QuantOp,
we know that n is 2 and t1 is a variable vS , and we usually write the term as o v : S • t2.
Furthermore, we usually write o() as o if it is clear from the context that o is a used as an
term and not as an operator. E.g., we often write true instead of true() and 1 instead of 1().
Finally, we often write certain well-known operators using infix notation. E.g., we may write
4 + 2 instead of +(4, 2).

An application (Def. 2.15) is a term that is not a variable, and in which no predefined
operators occur (the latter is for technical reasons and does not essentially limit the expressive
power).

Definition 2.15. An application is a term o0(t1, . . . , tn) in which no o1 ∈ PredefinedOp occurs.
Application is the set of all applications.

We conclude this section with several definitions that are used in the rest of the chapter,
most of which are well-known.

Definition 2.16. Variable v0 is free in term t iff (1) t is v0, or (2) t is o v1 : S • t1 and v0 is
not v1 and v0 is free in t1, or (3) t is o(t1, . . . , tn) and o /∈ QuantOp and there is a i ∈ [1,n]
such that v0 is free in ti . Free(t) denotes the set of free variables in t .

Definition 2.17. Term t is closed if it contains no free variables. ClosedAppl is the set of all
closed applications.

Definition 2.18. A predicate is a term of sort Bool . Predicate is the set of all predicates.

Definition 2.19. A sentence s is a closed predicate. Sentence is the set of all sentences.

Terms (Def. 2.20) essentially maps a signature sig to the set of all terms that can be built
from operators and sorts from sig .

Definition 2.20. Terms : Sig → Set(Term)
t ∈ Terms(sig) iff

or there are S ∈ sig .sorts, v ∈ VarS such that t is v,
or there are o ∈ sig .ops, t1, . . . , tn ∈ Terms(sig) such that t is o(t1, . . . , tn).

Definition 2.21. o0 ∈ Op occurs in t ∈ Term iff
there are o1 ∈ Op, t1, . . . , tn ∈ Term such that

t is o1(t1, . . . , tn), and
either o0 is o1, or there is an i ∈ [1,n] such that o0 occurs in ti .

ClosedAppls(sig) (Def. 2.22) is the set of all closed applications (Def. 2.17) in Terms(sig).

Definition 2.22. ClosedAppls : Sig → Set(ClosedAppl)
ca ∈ ClosedAppls(sig) iff ca ∈ Terms(sig) and ca contains no free variables.
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2.1.2 Semantics

In this section we formalize the well-known notions of an algebra and a valuation to define the
semantic meaning of a term. More specifically, we define how to evaluate a term to a value
(Def. 2.31). We then use this evaluation to formalize the notion of a model, which relates
algebras and sentences.

Algebras. Defs. 2.23 to 2.26 define an algebra and its parts. A carrier function associates
certain sorts with non-empty sets of values. An interpretation function associates certain op-
erators with functions. Note that an interpretation function does not associate pre-defined
operations with functions. An algebra has an interpretation function that associates operators
with functions of which the domain and range values are from the carrier sets of the domain
and range sorts of the operator. Also note that the interpretation of an o ∈ PredefinedOp
does not depend on the algebra, but is always the same and is as expected. For example,
interpretation(∧ : Bool × Bool → Bool) is the function and : {T ,F} × {T ,F} → {T ,F} such
that and(a, b) = T iff a = T and b = T .

Definition 2.23. V is the set of values.

Definition 2.24. A carrier function is a function carrier : Sort ã→ Set(V) such that
carrier(Bool) = {T ,F}, and
for every S ∈ Domain(carrier), |carrier(S ) |> 0.

Carrier is the set of all carrier functions.

Definition 2.25. An interpretation function is a function interpretation : Op ã→ Function
such that

for every o ∈ PredefinedOp, interpretation(o) is as usual (see e.g. the interpretation of ∧
above).

Interpretation is the set of all interpretation functions.

Definition 2.26. An algebra is a record A : carrier ∈ Carrier×interpretation ∈ Interpretation
such that for every o : S1 × . . .× Sn ã→ S0 ∈ Domain(A.interpretation),

Domain(A.interpretation(o)) = 〈A.carrier(S1), . . . ,A.carrier(Sn)〉, and
Range(A.interpretation(o)) = A.carrier(S0).

Alg is the set of all algebras.

For convenience, Def. 2.27 defines a notion of inclusion on algebras in the obvious way.

Definition 2.27. ⊆: Alg ×Alg → Bool
A0 ⊆ A1 iff
A1.carrier ⊆ A0.carrier , and
A1.interpretation ⊆ A0.interpretation.

Valuations. Consider Def. 2.28. A valuation (Def. 2.28), sometimes called a variable assign-
ment, maps variables to values.

Definition 2.28. A valuation is a partial function va : Var ã→ V. Valuation is the set of all
valuations.

Definition 2.29. emptyva is the valuation with Domain(emptyva) = {}.

Definition 2.30. va ∈ Valuation is well-sorted forA ∈ Alg iff for every vS ∈ Var , if va(vS ) = ν,
then ν ∈ A.carrier(S ). WellSortedVasA is the set of all valuations that are well-sorted for A.
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Term evaluation. The semantics of terms in total first order logic is well-known (see e.g.
(GH93)). Partial logic in addition has to deal with undefined terms, where for a given algebra
A, the arguments of an application of operator o evaluate to values outside the domain of
A.interpretation(o), or where a variable is not in the domain of the valuation. To deal with
undefined terms, we follow the approach from (CMR98), where logical connectives and quan-
tifiers are total operators that are false when applied to terms that do not evaluate to a value
(sometimes called ‘negative logic’).

Function Sem(t , va,A) (Def. 2.31) evaluates term t in algebra A under valuation va. The
definition of Sem(t , va,A) is straightforward.

Definition 2.31 (semantics of terms). Sem : Term ×Valuation ×Alg ã→ V
Sem(t0, va,A) = ν iff

or t0 ∈ Var and ν = va(t0),
or t0 is true and ν = T ,
or t0 is false and ν = F ,
or there are o ∈ Op, t1, . . . , tn ∈ Term such that

t0 is o(t1, . . . , tn), and
ν = f(Sem(t1, va,A), . . . ,Sem(tn , va,A)) with f is A.interpretation(o),

or there are vS ∈ Var , t1 ∈ Term such that
or t0 is ∃v : S • t1, and

if there is a ν ∈ A.carrier(S ) such that Sem(t1, va[vS 7→ ν],A) = T ,
then ν = T , else ν = F ,

or t0 is ∀v : S • t1, and
if for every ν ∈ A.carrier(S ), Sem(t1, va[vS 7→ ν],A) = T ,
then ν = T , else ν = F ,

or there are t1, t2 ∈ Term such that
t0 is t1 = t2, and
if Sem(t1, va,A) = Sem(t2, va,A), then ν = T , else ν = F .

Models. Def. 2.32 states when an algebra is a model for a sentence. Note that the value of
a sentence s does not depend on the valuation as a sentence does not contain free variables.
So, if there is a va ∈ Valuation such that Sem(s, va,A) = T , then for every va ∈ Valuation,
Sem(s, va,A) = T .

Definition 2.32. A ∈ Alg is a model for s ∈ Sentence iff for every va ∈ Valuation, we have
Sem(s, va,A) = T .

Definition 2.33. A ∈ Alg is a model for Sen ∈ Set(Sentence) iff for every s ∈ Sen, A is a
model for s.

If Sen is a set of sentences, then Models(Sen) (Def. 2.34) is the set of all models of Sen.

Definition 2.34. Models : Set(Sentence)→ Set(Alg)
A ∈ Models(Sen) iff A is a model for Sen.

2.2 Algebraic Client Specification

In this section, we discuss client specifications that are based on algebraic specifications. Our
aim is to come up with a flexible, foundational, notion of specification. To this end, we introduce
a novel syntax (Sect. 2.2.1) that incorporates a notion of canonicity, and a novel semantics
(Sect. 2.2.2) that closely matches the client’s view of the implementation as a black box.
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These specifications are particularly suited to situations where the client is interested only
in the input/output behavior of the implementation, i.e., situations where the client has a set of
possible questions that the implementation should compute the answers to. In such situations,
the client wants the implementation to rewrite an input into an equivalent, most basic form.
Note that the client can then use this output as the basis for another input.

In our formalism, a client specification consists of an algebraic specification and a canonicity
function. An algebraic specification consists of 1) a signature that describes the sorts and
operators of the client’s problem domain, and 2) a set of sentences, called axioms in this
context, that formalize the properties that the client desires of the operators in the signature.
The canonicity function determines the required format of the output, i.e., which expressions
are considered by the client as proper answers, a most basic form.

The meaning of a client specification consisting of a signature sig , a set of axioms ax and a
canonicity function isCanonical is the following.

• Every model A of ax provides a notion of equality that is acceptable to the client,
formalized by ax which expresses the desired properties of the operators in the sig-
nature. In particular, two closed applications ca0 and ca1 are equal in a model A iff
Sem(ca0 = ca1, emptyva,A) = T .

• Therefore, every model A of ax induces a division of ClosedAppls(sig), which are the
closed applications that can be formed using only the operators in the signature, into
equivalence classes.

• The canonicity function isCanonical determines for each such set of equivalence classes the
set of class representatives (with a small caveat: our formalism does not forbid multiple
representatives per equivalence class; the representatives of a given class are determined
by the specifier through the canonicity function).

• An implementation satisfies the specification iff for one of these sets of equivalence classes,
given any input in of any equivalence class EqClass, the implementation outputs a rep-
resentative of EqClass.

For example, assume that CS is the specification of a simple calculator with signature
sig . Then sig defines the sort N, constants such as 1,2,... and operators such as + and *.
Any closed application built from the operators of the problem domain, i.e., every element of
ClosedAppls(sig), represents a question from the problem domain and can be used as an input
to the implementation. For example, +(3,5) and *(4,3) are such closed applications.

For the input +(3,5) the client is not satisfied with output +(2,6) or +.+(3,5) or or, for
that matter, +(3,5) itself, which are all in the equivalence class of +(3,5). Only the output 8
is acceptable. This is formalized by the notion of canonicity. More generally, the client expects
the implementation to transform an input in into an output out that is a canonical form of in.
That is,

• like in, out should be expressed using the operators of the client’s problem domain, i.e.,
out should be an element of ClosedAppls(sig).

• out should be canonical, i.e., it should be of a certain basic form. A possible notion of
canonicity for our calculator example is that a closed application is canonical iff it is a
constant. E.g., 8 is canonical, but +(3,5) is not1.

1Having all elements of the domain as constants in the language is then a consequence, which may or may
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• in and out should be equal. Every model A of the axioms of the specification provides a
notion of equality that is acceptable to the client (as explained above). Which of these
notions of equivalence is used by the implementation is up to the implementor. So, in our
example, the specifier should ensure that the axioms for + are such that for every model
A of the axioms, Sem( + (3, 5) = 8, emptyva,A) = T (and that +(3,5) is not equal to
any other constant).

We formalize the above in more detail in Sections 2.2.1 and 2.2.2.

2.2.1 Syntax of Specifications

In this section, we formalize the notions of algebraic specification, canonicity function and client
specification.

An algebraic specification (Def. 2.35) consists of a signature and a set of sentences, called
axioms. These axioms only contain operators from the signature.

Definition 2.35. An algebraic specification AS is a record sig ∈ Sig×ax ∈ Set(Sentence) such
that

AS .ax ⊆ Terms(AS .sig)
AlgSpec is the set of all algebraic specifications.

Recall that every model of the axioms of the specification induces a notion of equality that
is acceptable to the client. The intention is that given such a model, the canonicity function
(Def. 2.36) of a specification determines whether a given closed application is a representative
of an equivalence class and thus suitable as output of the implementation. In other words,
the canonicity function determines whether a given closed application is ’most basic’. For this
to be the case, there should be no equivalent ’more basic’ closed application. Which closed
applications are equal is determined by the supplied algebra (two closed applications ca0 and
ca1 are equal in an algebra A iff Sem(ca0 = ca1, emptyva,A) = T ).

Definition 2.36. A canonicity function is a function canonFunc : ClosedAppl ×Alg → Bool .
CanonFunc is the set of all canonicity functions.

A client specification CS (Def. 2.38) consists of an algebraic specification as and a canonicity
function isCanonical such that for every model of the axioms, every meaningful closed applica-
tion has a canonical form. The latter is ensured, by IsEachEqClassRepresented(CS .isCanonical ,
CS .as) = T (Def. 2.37). More generally, IsEachEqClassRepresented(canonFunc,AS ) = T iff
for every model A of AS .sig , for every closed application ca0 that 1) is defined by AS .sig , and
2) can be evaluated to a value using A, there is canonical representation ca1 of ca0. In other
words, iff for any given notion of equivalence that follows from AS .ax , canonFunc is such that
every equivalence class has at least one representative.

Note that these definitions reflect the intended separation of concerns. The concern of the
axioms is to capture the desired properties of the operators and thus define the acceptable
notions of equality. Given any such acceptable notion of equality, the concern of the canonicity
function is to determine the representatives of the equivalence class of a given closed application.

not be acceptable (having an infinite number of constants is not always acceptable). Hence a more appropriate
notion for canonicity is to define an operator for decimal representation, δ, and denote it as juxtaposition. Thus,
241 is not a constant, but an abbreviation for δ(1, δ(2, 4)).
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Definition 2.37. IsEachEqClassRepresented : CanonFunc ×AlgSpec → Bool
IsEachEqClassRepresented(canonFunc,AS ) = T iff

for every ca0 ∈ ClosedAppls(AS .sig), A ∈ Models(AS .ax ), ν ∈ V,
if Sem(ca0, emptyva,A) = ν,
then there is a ca1 ∈ ClosedAppls(AS .sig) such that

canonFunc(ca1,A) = T , and
Sem(ca1, emptyva,A) = ν.

Definition 2.38. A client specification CS is a record as ∈ AlgSpec×isCanonical ∈ CanonFunc
such that

IsEachEqClassRepresented(CS .isCanonical ,CS .ax ) = T .
ClientSpec is the set of all client specifications.

Before we present the semantics of algebraic specifications in Sect. 2.2.2, we show three
examples of the syntax (Exmpls. 2.1 to 2.3).

Example 2.1.
(Rationals, specification)
signature and axioms

Below, we use some self-explanatory shorthand. For technical reasons, we write newRat(n, d)
instead of the more usual n/d . Also note that among the omitted operators and axioms
are those that establish that every integer is a rational, which exclude trivial models of the
specification.

sorts Rat , Int
operators

newRat : Int × Int ã→ Rat
add : Rat × Rat → Rat
equals : Rat × Rat → Bool

axioms
∀n0,n1, d0, d1 ∈ Int •

add(newRat(n0, d0),newRat(n1, d0)) = newRat(n0 + n1, d0)
∧ equals(newRat(n0, d0),newRat(n1, d1)) = true ⇔ n0 ∗ d1 = n1 ∗ d0

operators and axioms for Int , the sort that models unbounded integers, are omitted.
A Rat r is canonical iff there are n, d ∈ Int such that 1) r is newRat(n, d), and 2) n and

d are canonical, and 3) the greatest common divider of n and d is 1. A formal definition is
straightforward and is therefore omitted.

Example 2.2.
(Multiple notions of equality)
This example shows a common pattern for the canonicity function. It also shows how the

canonicity function can determine representatives in the case where several notions of equality
are induced by the axioms.

Below is the definition of the signature and axioms of the algebraic specification (using some
self-explanatory syntactic sugar).

sorts X
operators

zero : → X
succ : X → X
add : X ×X → X

266



Pandora’s Box Middelkoop, Huizing, Kuiper, Luit

axioms
∀x , x0, x1 ∈ X •

add(x , zero()) = x
∧ add(x0, succ(x1)) = succ(add(x0, x1))
∧ succ(succ(x )) =/ succ(x )

Now consider the following two algebras A0 and A1:

1. in A0, the carrier for X is N, zero() is interpreted as 0 ∈ N, succ as the successor function
and add as the + (i.e., the addition function on natural numbers).

2. in A1, the carrier for X is Bool , zero() is interpreted as F , succ as the logical not and
add as the exclusive or.

Note that both A0 and A1 are a model of the axioms.

Next, we define the canonicity function isCanonical of the specification. Roughly, a closed
application ca is canonical iff only zero and succ occur in ca (i.e., ca is one of zero(), succ(zero()),
succ(succ(zero())), . . .), and there is no equivalent closed application with fewer occurrences of
succ. This follows a common pattern for the canonicity function, where a closed application ca
is canonical iff every operator that occurs in ca comes from a set of generators, and there is no
equivalent closed application that consists of fewer applications of these generators.

The definition of the canonicity function uses a helper function sCount that returns the
number of occurrences of operator succ in a closed application in which only succ and zero
occur. It is defined as follows:

sCount : ClosedAppl ã→ N
sCount(ca0) = n iff

ca0 is zero() and n = 0,
or there is a ca1 ∈ ClosedAppl such that ca0 is succ(ca1) and n = 1 + sCount(ca1).

isCanonical(ca0,A) = T iff
only zero and succ occur in ca0, and
for every ca1 ∈ ClosedAppl ,

if only zero and succ occur in ca1, and
Sem(ca0 = ca1, emptyva,A) = T ,

then sCount(ca0) ≤ sCount(ca1).

Assume that ca = succ(succ(zero())). Note that isCanonical(ca,A0) = T , but that
isCanonical(ca,A1) = F as Sem(ca = zero(), emptyva,A1) = T .

Example 2.3.

(the Stack of Int example, specification) Here we present the classic example of an algebraic
specification, that of a Stack, in the setting of our specification technique.

Note that the last 2 axioms essentially define equality on stacks.
sorts Stack , Int
operators

newStack : → Stack
push : Stack × Int → Stack
pop : Stack ã→ Stack
top : Stack ã→ Int

axioms
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∀s, s0, s1 ∈ Stack , i , i0, i1 ∈ Int •
pop(push(s, i)) = s

∧ top(push(s, i)) = i
∧ newStack () =/ push(s, i)
∧ push(s1, i1) = push(s2, i2)⇔ s1 = s2 ∧ i1 = i2

operators and axioms for Int, the sort that models unbounded integers, are omitted.
The canonicity function follows the common pattern shown in Exmpl. 2.2. A closed applica-

tion ca of sort Stack is canonical iff ca only consists of the generators newStack , pop and integer
constants, and there is no equivalent closed application that consists of fewer applications of
these generators. We omit the formal definition.

Aside. For brevity, we omit a division of its operators into two sets: interface operators
and auxiliary operators. The intuition of such a division is that interface operators are the
verbs of the problem description. Auxiliary operators only serve to axiomatize the interface
operators. For example, the example from Hoare’s classic paper on data abstraction revolves
around sets which are axiomatized using, among others, a size operator. But the paper states
that only the insert , remove and has operators occur in the abstract program. That is, only
these operators are interface operators. The other operators, like size, are auxiliary (only
used to axiomatize the SmallIntSet).
Aside. By interpreting the axioms of an algebraic specification as left-to-right rewrite
rules, it is possible to specify the canonicity function indirectly (where a closed application
is canonical if none of the rules applies to it). For example, Maude (CDE+02; BJM97) is a
program that, given an signature and a set of rewrite rules, allows the user to input a closed
application and outputs a closed application (assuming that the rewrite rules are Church-
Rosser, terminating and sort-decreasing).

2.2.2 Semantics of Specifications

In this section, we present an intuitive semantics of specifications that is independent of the
choice of a programming language.

A client specification intends to capture a set of implementations that are acceptable to the
client. A core assumption of the client specification technique is that the client only cares about
the input/output behavior of the implementation. Roughly, an implementation is acceptable to
the client if, given a meaningful input, the implementation outputs a canonical equivalent. For
example, the implementation may be an executable that takes one command line parameter,
which is a closed application (typed in by the user). Execution returns a closed application
(the answer), and displays it as a string on the screen. Note that the client can use the output
as basis for another input.

An answer function (Def. 2.39, illustrated in Fig. 1) is the obvious semantics that matches
this black box view of the implementation.

Definition 2.39. An answer function is a function answer : ClosedAppl ã→ ClosedAppl .
Answer is the set of all answer functions.

The semantics of an algebraic specification is given in Def. 2.40. Note that given an algebraic
specification CS .as, not every answer function provides the ’right answer’ for any given input
ca0. The intuition is that the semantics of CS determines the set of answer functions that do
provide the ’right answer’ for any given input. Roughly, the semantics of a specification is the
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closed

appl

closed

appl
Answer

Figure 1: Answer function: black box model of implementation

set of those answer functions for which there exists a model of the axioms such that for every
input ca0 that evaluates to a value, there is a canonical output ca1 that evaluates to the same
value. Note that it suffices that there is a model, as every model induces a notion of equivalence
that is acceptable to the client.

Definition 2.40. SemAS : ClientSpec → Set(Answer)
answer ∈ SemAS (CS ) iff

there is an A ∈ Models(CS .as.ax ) such that
for every ca0 ∈ ClosedAppls(CS .as.sig), ν ∈ V

if Sem(ca0, emptyva,A) = ν,
then there is an ca1 ∈ ClosedAppls(CS .as.sig) such that

answer(ca0) = ca1, and
Sem(ca1, emptyva,A) = ν, and
CS .isCanonical(ca1,A) = T .

This semantics is intuitive, as it directly describes the set of (semantics of) black box im-
plementations that are acceptable to the client. Another advantage is that it is independent of
the choice of a programming language. Abstracting the semantics of a program in a concrete
programming language to an answer function can be treated as a separate concern.

3 Opening the black box

In OO the world is not viewed in terms of functional expressions but in terms of objects. There-
fore, an OO semantics does not readily provide closed applications as i/o. As a consequence,
the black box must be opened. Input, a closed application, is translated to a statement
sequence that can be executed by the OO implementation. The implementation computes
for such a statement sequence the result, objects with values, an evaluation context. This
evaluation context then again has to be translated back to a canonical closed application to
display the result to the client. The specifier/implementor contract is therefore extended with
translations of cas to (Translate) and from (Display) the implementation - see Figure 2.
By performing the translations in a fixed way, the contract still applies to the black box: the
business logic.

More on this can be found in (Mid11).

4 Conclusions and future work

.
We provided a detailed new angle on describing the behavior of a black box - and, given

that, made a stab at how to open it. Both the observation that the notion of canonicity may
involve semantics and the introduction of the Translate and Display steps raise issues about
whether and how completeness of a proof system is attainable.
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Figure 2: Opening the black box
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