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Abstract

This paper gives a brief overview of the new features introduced in the latest version of the tool

Flow*. We mainly describe the new efficient scheme for integrating linear ODEs. We show that

it can efficiently handle the challenging benchmarks on which, to the best of our knowledge, only

SpaceEx works. Moreover, it is also possible to extend the method to deal with unbounded initial

sets. A comparison between Flow* 1.2 and SpaceEx on those benchmarks is given. Besides, we also

investigate the scalability of Flow* 1.2 based on our non-linear line circuit benchmarks.

1 Introduction

Nowadays Cyber-Physical Systems (CPSs) are ubiquitous in various areas such as automotive,
biology, medicine, electrical engineering and etc.. A wide class of CPS are hybrid systems which
exhibit both continuous flow and discrete jumps. Since hybrid systems are often safety-critical,
we are interested in answering the problem of whether a hybrid system can reach an unsafe
state or not. To do that, we need to explore the state space of the system, and determine
whether a given state or a region is reachable. It is already known that there is no decision
procedure to answer the reachability problem for general hybrid systems [1], people thereby
resort to approximation techniques.

In safety verification, we could compute a superset of the exact reachable set. If there is no
unsafe state included, then the system is safe. In the past two decades, a great amount of work
was devoted to investigating new techniques for over-approximating the reachable sets of hybrid
systems whose dynamics are defined by linear expressions. Such systems are also called linear
hybrid systems. The popular over-approximate representations are convex polytopes [9], ellip-
soids [18], zonotopes [14] and support functions [19]. Along with their computation techniques,
the tools CheckMate [23], Ellipsoidal Toolbox, PHAVer [11] and SpaceEx [12] are developed.
On the other hand, few reachable set representations other than intervals (boxes) [21] are suc-
cessfully applied to non-linear hybrid systems. The typical tools are Ariadne [2], iSAT [10],
dReach [13] and HyCreate [17]. Since interval representation suffers from bad scalability, han-
dling systems with more than 4 variables is still a difficult task in general.

In [4], we proposed a method of using Taylor models as the over-approximate representation
for a reachable set segment which is also called flowpipe. It has good performance on both

152 G.Frehse and M.Althoff (eds.), ARCH15 (EPiC Series in Computer Science, vol. 34), pp. 152–159



Flow* 1.2: More Effective to Play with Hybrid Systems Chen, Sankaranarayanan and Ábrahám

linear and non-linear hybrid systems. We later released a tool named Flow* [5] which mainly
focuses on safety verification of non-linear hybrid systems. Our experimental results show that
the technique provides a very promising way of using higher-order over-approximations for
hybrid system reachable sets.

In this paper, we give a brief introduction to the new enhancement of Flow* in the version
1.2. It mainly consists of (1) an efficient scheme of computing Taylor model flowpipes for linear
Ordinary Differential Equations (ODEs), (2) scalability improvement, and (3) improving the
intersection and aggregation algorithm. We address (1) and (2) in the rest of the paper.

2 Preliminaries

In this section, we give the basic definitions of Taylor model arithmetic as well as the standard
algorithm of Taylor model integration.

Interval arithmetic. A (closed and bounded) interval is represented in the form of [a, b]
wherein a, b are rational numbers and a ≤ b. It defines the set of reals between a and b.
The operations on reals can be extended to handling intervals. For example, [a, b] + [c, d] =
[a + c, b + d], and [a, b] · [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}]. Intervals can also be
organized as vectors or matrices. Given an n×m interval matrix M , we have that M ′ ∈M for
a real matrix M ′ of the same size iff M ′ij ∈Mij for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, such that Aij
denotes the entry of a matrix A in the i-th row and j-th column.

Taylor models are introduced as over-approximate representations for continuous functions
which are not necessarily of closed form. A Taylor Model (TM) is denoted as a pair (p, I) such
that p is a polynomial over a finite set of variables each of which ranges in an interval, while I
is an interval which is an enclosure of the remainder part.

Given a continuous function f(~x) with ~x ∈ D, we say that f is over-approximated by a TM
(p, I), denoted by f ∈ (p, I), iff f(~x) ∈ p(~x) + I for all ~x ∈ D. TMs can also be organized as
vectors to over-approximate vector-valued functions. Here, we also call them TMs. To recognize
that a TM (p(~x), I) with ~x ∈ D defines a convex set of continuous functions over D, we pick
any functions f, g ∈ (p, I), then all continuous functions between f, g also belong to (p, I), i.e.,
for any h such that h(~x) is between f(~x), g(~x) for all ~x ∈ D is also in (p, I). For simplicity, we
call (p, I) a TM of f when f ∈ (p, I).

Taylor model arithmetic. Given two continuous functions f, g as well as their TMs (p1, I1),
(p2, I2) respectively. A TM for f+g can be computed by adding the polynomial and remainder
parts respectively, i.e., (p1 + p2, I1 + I2), while an order k TM for their product f · g can be
computed as (p1 · p2 − rk, I1 · B(P2) + I2 · B(P1) + I1·I2 + B(rk)) wherein B(p) denotes an
interval enclosure of the range of p, and the truncated part rk consists of the terms in p1 · p2 of
degrees > k. More TM operations are defined in [20].

Taylor model integration. Given an ODE ~̇x = f(~x, t), wherein f is at least locally Lipschitz
continuous w.r.t. ~x, and a TM initial set X0, we want to compute an over-approximation
of the solutions from X0 within the bounded time interval [0,∆]. It is done by computing
a set of TMs F1, . . . ,FN which over-approximate the reachable set over the time intervals
[0, δ], . . . , [(N − 1)δ,Nδ] respectively, wherein ∆ = Nδ. The value of δ is called a step-size,
and it is also unnecessary to use a uniform step-size for all TM flowpipes. The algorithm of
computing TM flowpipes are given as follows.
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1: for i = 1, . . . , N do
2: Compute a Taylor expansion pi(~xi, t) for the ODE solution from ~xi.
3: Evaluate an interval remainder Ii such that (pi, Ii) is a TM for the ODE solution when

~xi ∈ Xi−1 and t ∈ [0, δ].
4: Compute a TM Xi for (pi(Xi−1, δ), Ii).
5: end for

To find a proper remainder interval, we start with a user given estimation I and check the
contractiveness of the Picard operator

Pf (g)(~x0, t) = ~x0 +

∫ t

0

f(g(~x0, s), s)ds

over the TM (pi, I) by TM arithmetic. If it is contractive, by Schauder fixed point theorem, a
fixed point which is the unique solution is contained in (pi, I). Such a remainder can be further
refined by repeatedly applying the Picard operator to the resulting TM.

The most time-costly step in the above algorithm is the remainder evaluation, and we will
see in the next section that it can be replaced by a more efficient method for linear ODEs.

3 Efficient flowpipe construction for linear ODEs

Without loss of Generality, we consider the linear ODE of the form ~̇x = A~x + ~u such that A
is a real-valued square matrix and ~u is a time-varying uncertainty whose range is defined by
a bounded interval U . The flowpipe construction for such ODEs has already been extensively
studied, several representations such as zonotopes [14] and support functions [19] are shown to
be effective to deal with large scale cases. Here, we describe an efficient Taylor model-based
method which also has a good scalability. It can be viewed as a combination of the methods
described in [15] and [22].

The linear ODE has the following closed form solution w.r.t. an initial condition ~x(0) = ~x0.

ϕ(~x0, t) = eAt~x0 +

∫ t

0

eA(t−s)~u ds (1)

However, the matrix eAt is hard to approximate when the time t is large. Therefore, it is more
convenient to use the following recurrence relation to generate flowpipe over-approximations,

Fi = ΦFi−1 ⊕ B for i = 2, 3, . . . , N (2)

such that F1 is an over-approximation of the first flowpipe, i.e., the set {ϕ(~x0, t) | t ∈ [0, δ]}.
Here, ⊕ denotes the operator of Minkowski sum1, Φ = eAδ, and B
= {

∫ δ
0
eA(δ−s)~u(s) ds | ~u(s) ∈ U}. Then Fi is an over-approximation of {ϕ(~x0, t) | t ∈ [(i −

1)δ, iδ]} for i = 2, . . . , N .

Compute the first flowpipe. The purpose is to compute a TM (p1(~x0, t), I1) such that
ϕ(~x0, t) ∈ p1(~x0, t) + I1 for all t ∈ [0, δ]. To do so, we first compute an order k TM matrix
over-approximation (pΦ(t), IΦ) for eAt,

pΦ(t) = I +At+
1

2
A2t2 + · · ·+ 1

k!
Aktk

1X ⊕ Y = {x + y |x ∈ X, y ∈ Y }.
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wherein I is an identity matrix. The remainder interval matrix IΦ can be evaluated base on

the Lagrange remainder Ak+1tk+1

(k+1)! eAξ with some ξ ∈ [0, δ]. That is, we first compute the value

of ρ = e|A|δ wherein | · | denotes the maximum norm. Then the matrix eAξ is contained in the

interval matrix Mρ whose entries are all defined by [−ρ, ρ]. Hence, IΦ = Ak+1tk+1

(k+1)! Mρ contains

the remainder for pΦ. By choosing k sufficiently large, we are able to obtain arbitrarily good
accuracy.

The TM for eA(t−s) can be computed similarly, and then by using TM arithmetic, we are
able to obtain a TM (pB(t), IB) for

∫ t
0
eA(t−s)U ds. Therefore, the first TM flowpipe F1 is the

result of computing (pΦ(t), IΦ) · ~x0 + (pB(t), IB).

Lemma 1. For all t ∈ [0, δ], we have that ϕ(~x0, t) ∈ (pΦ(t), IΦ) · ~x0 + (pB(t), IB).

Compute the remaining flowpipes. By expanding the recurrence relation (2), the i-th
TM flowpipe can also be computed as

Fi = Φi−1F1 ⊕
i−2⊕
j=0

ΦjB

In our case, we represent Φ by the interval matrix (pΦ(δ), IΦ) and B by the interval vector
(pB(δ), IB). Hence, we can use TM arithmetic to compute

Fi(t) = (pΦ(δ), IΦ)i−1 · (pΦ(t), IΦ) · ~x0 + (pΦ(δ), IΦ)i−1 · (pB(t), IB)

+

i−2∑
j=0

(
(pΦ(δ), IΦ)j · (pB(δ), IB)

) (3)

wherein t ∈ [0, δ]. Since IΦ can be made arbitrarily small when the order k is large enough, the
main source of the overestimation is IB if we use TM arithmetic to evaluate Fi. To avoid that,
we may use support function to represent IB during the computation, and then obtain a tight
remainder interval for Fi.

Theorem 2. For all 1 ≤ i ≤ N , we have that ϕ(~x0, (i− 1)δ + t) ∈ Fi(t) for t ∈ [0, δ].

Unbounded initial sets. The above flowpipe construction method can be easily extended
to handle unbounded initial sets which are defined by polynomial constraints. Although we
only describe the TM over-approximation method for a forward flowmap, a backward one can
be obtained in a similar way, and the approximation quality will still only depend on the
step-size and the TM order. Then, given an initial set X0 defined by a system of polynomial
constraints, we are able to compute both over- and under-approximations for the reachable sets
by propagating the constraints of X0 via the backward flowmap over-approximation. Some
techniques described in [6] can be used.

4 Experimental results

4.1 Comparison with SpaceEx

We present a comparison between Flow* 1.2 and SpaceEx 0.98 over the benchmarks which are
included by the package of SpaceEx. Since Flow* and SpaceEx use different representations
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Flow* SpaceEx (LGG) SpaceEx (STC)

benchmark var T δ k P time δ
tol.
abs.

box oct
tol.
rel.

box oct

filtered
oscillator

6
6 [0, 4] 0.05 8 128 2.4 0.05 0.01 0.2 3.4 0.05 0.4 6.7

filtered
oscillator

10
10 [0, 4] 0.05 8 128 6.1 0.05 0.01 0.5 55 0.05 1.2 36

filtered
oscillator

18
18 [0, 4] 0.05 8 128 22 0.05 0.01 1.1 815 0.05 3.0 372

filtered
oscillator

34
34 [0, 4] 0.05 8 128 106 0.05 0.01 3.6 T.O. 0.05 8.6 T.O.

helicopter 29 [0, 30] 0.2 70 256 198 0.1 0.001 35 T.O. 0.05 12 340

Table 1: Flow* v.s. SpaceEx on the SpaceEx benchmarks. Legends: var: # of variables,
T : time horizon, δ: time step-size, k: TM order, P: precision, box: box over-approximation,
octagon: octagon over-approximation, T.O.: > 2000 seconds (time out).

for flowpipes, a fair overall comparison on their accuracy is not easy. Thereby we choose the
computation settings for both of the tools such that the last box flowpipe computed by SpaceEx
contains the TM flowpipe(s) over the same time interval. We give the experimental results in
Table 1. We consider both of the LGG and STC algorithms implemented in SpaceEx. It seems
that the advantage of STC becomes clearer when the system scale grows. The time cost of
Flow* is much higher for each test when the standard TM integration is used.

Since it is difficult to exactly implement support functions, SpaceEx computes boxes or
octagons as further wraps. For a system of n variables, a box over-approximation requires to
compute n samples on the approximation boundary, whereas an octagon one requires to com-
pute O(n2) many. Although it is often unnecessary to compute octagon over-approximations
according to the critical directions given by users or unsafe sets, we sometimes still need to do
that for reusing the over-approximations. On the other hand, TM flowpipes are not optimized
for particular directions and can be directly reused with different unsafe specifications.

4.2 Scalability evaluation

Scalability is very important in the applicability of a tool. Here, we investigate the scalability
of Flow* 1.2 based on a non-linear resistor circuit benchmark shown in Figure 1. The model is
originally studied by Chen et al. [8], and then adapted to be interesting hybrid case studies [16].
The circuit is composed of n+ 1 non-linear resistors and the same number of capacitors. Each
non-linear resistor consists of a diode and a unit resistor (r = 1). For simplicity, we assume
that all capacitors have unit capacitance C = 1. For each diode, the I-V characteristic is given
by I = eα·V − 1. The current source i(t) in the figure is the input, and v1 is the single output
of the system. Therefore, the whole circuit system can be described by the following ODE.

v̇1 = −2 · v1 + v2 + 2− eα·v1 − eα·(v1−v2) + i(t)
v̇2 = −2 · v2 + v1 + v3 + eα·(v1−v2) − eα·(v2−v3)

· · ·
v̇n−1 = −2 · vn−1 + vn−2 + vn + eα·(vn−2−vn−1) − eα·(vn−1−vn)

v̇n = −vn + vn−1 − 1 + eα·(vn−1−vn)

In order to avoid the stiffness in the original model, we reduce the value of α from 40 to 5, but
it is still challenging.
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i(t)

r r r

v1 v2 vn

r C C C C

· · ·

· · ·

Figure 1: Transmission line circuit

continuous hybrid
n δ k Ie ε t (s) δ k Ie ε t (s)

2 0.03 3 ∼ 6 [−10−3, 10−3] 10−12 1.4 0.01 3 ∼ 6 [−10−3, 10−3] 10−12 2.3

4 0.01 3 ∼ 6 [−10−5, 10−5] 10−10 56 0.01 3 ∼ 6 [−10−4, 10−4] 10−10 48

6
0.0002
∼ 0.02

4 [−10−5, 10−5] 10−8 73
0.0002
∼ 0.02

4 [−10−5, 10−5] 10−8 243

8
0.0002
∼ 0.01

4 [−10−5, 10−5] 10−8 176
0.0002
∼ 0.01

4 [−10−5, 10−5] 10−8 851

10
0.0002
∼ 0.005

4 [−10−5, 10−5] 10−7 205
0.0002
∼ 0.005

4 [−10−5, 10−5] 10−7 904

12
0.0002
∼ 0.005

4 [−10−5, 10−5] 10−7 402
0.0002
∼ 0.005

4 [−10−5, 10−5] 10−7 1933

Table 2: Scalability evaluation of Flow* on the non-linear line circuit benchmarks. Legends:
δ: time step-size, k: TM order, Ie: remainder estimation, ε: cutoff threshold.

Scalable continuous and hybrid benchmarks can be built based on various types of inputs.
We consider the following continuous and hybrid ones.

continuous: i(t) = sin(5t), hybrid: i(t) =

 2, t ≤ 1
3− t, 1 < t ≤ 2
1, t > 2

The running time of Flow* on different scales are listed in Table 2. More case studies could
be found in our benchmark collection [7].

5 How to make the best use of Flow*?

scheme var degree TM order
poly ode 1 ≤ 3 ≤ 5 ≤ 5
poly ode 2 ≤ 5 ≤ 5 ≥ 6
poly ode 3 any ≥ 6 any

Figure 2: Suggested situations for ap-
plying the integration schemes

It is always tricky to choose a proper computational
setting for a reachability problem in Flow*. We plan
to give a short guide in this section. Except the scheme
introduced in Section 3 and the one for handling non-
polynomial ODEs, Flow* 1.2 provides 3 different inte-
gration schemes for polynomial ODEs. Table 2 summa-
rizes the suggested situations for applying them. Their
details are described elsewhere [3].

It is always tricky to choose the parameters for Flow* to perform a reachability analysis.

157



Flow* 1.2: More Effective to Play with Hybrid Systems Chen, Sankaranarayanan and Ábrahám

An improper setting may easily generate a bad experimental result for a benchmark, but it
does not mean the incapability of Flow*. Our suggestions are as follows.

(i) Since the purpose of using TMs is to provide higher-order over-approximations, a better
performance can usually be obtained by using high TM orders and large step-sizes than
the other way around. When we need to improve the approximation quality of a result, a
higher TM order is often preferred to a smaller step-size.

(ii) When a system has more than 6 variables, computing high order TMs may cost too long
time. If that is the case, we suggest to increase the cutoff threshold.

(iii) The reason to use adaptive techniques is to reduce computation time by omitting “trivially
small” overestimation. Hence, they work well only in the case that the given remainder
estimations are small enough.

6 Conclusion and future work

In the paper, we gave a brief overview of the new enhancement in Flow*. The performance
on linear systems is greatly improved and competitive to SpaceEx. In the future, we plan to
extend the functionality of the tool in the following aspects: (a) Scalable computation of both
over- and under-approximations for linear continuous systems, such that the initial sets are
defined by polynomial constraints; (b) Computing TM flowpipes for time-delay systems; (c) A
better scheme to deal with stiff dynamics.
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