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Abstract

The exploitation of solar power for energy supply is of increasing importance. While technical devel-

opment mainly takes place in the engineering disciplines, computer science offers adequate techniques

for optimization. This work addresses the problem of finding an optimal heliostat field arrangement

for a solar tower power plant. We propose a solution to this global, non-convex optimization problem

by using an evolutionary algorithm. We show that the convergence rate of a conventional evolutionary

algorithm is too slow, such that modifications of the recombination and mutation need to be tailored

to the problem. This is achieved with a new genotype representation of the individuals. Experimental

results show the applicability of our approach.

1 Introduction

The contribution of renewable energy to our global energy use has significantly increased over
the past ten years. Completely new industry branches have developed in the field of solar, wind,
and biomass energy. Among the renewable energy technologies, concentrated solar power (CSP)

Figure 1: Solar tower plant PS10 in An-
dalusia, Spain (source: [4]).

plants are a promising option for power generation in
regions with high direct solar irradiation. In a CSP
plant, a field of hundreds or thousands of large mir-
rors (heliostats) are used to reflect rays of sunlight
onto a receiver placed at the top of a tower (see Fig-
ure 1). At the receiver, the concentrated sunlight is
absorbed and the resulting thermal energy is used to
heat a transfer fluid, which in turn can either be used
directly to produce electricity through a conventional
thermodynamic cycle or be stored. Today four large
tower plants are already operating in the US (Ivan-
pah 1-3 and Crescent Dunes), three in Spain (PS10,
PS20 and Gemasolar) and one is under construction
in South Africa (Khi Solar One). Additionally, nu-
merous small-scale plants exist around the world for
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demonstration and research purposes, for example the Solarturm Jülich in Germany, and the
facilities CESA-1 and SSTS-CRS in Spain.

The layout of the heliostat field, i.e., the arrangement of the heliostats around the receiver,
affects not only the construction costs (the heliostat field is the most expensive sub-system of a
CPS plant) but also the efficiency of the plant, due to several reasons. Firstly, the irradiation
energy that a single heliostat can contribute to energy generation depends on its position.
Secondly, a heliostat can cast a shadow over other heliostats, reducing the amount of sunlight
reaching them. Last but not least, a first heliostat can be blocked by a second heliostat if the
second one is positioned between the first one and the receiver.

Thus the layout of a CSP plant should be optimized carefully before construction. This
layout optimization problem is a highly complex global, non-convex optimization problem [2].
As constraints on the placement we need to assure, e.g., that all heliostats are placed inside an
allowed area and that there is a minimum distance between neighboring heliostats such that
they cannot touch each other. As objective function usually the annual performance, received
irradiation energy, thermal energy, or levelized costs of efficiency in Euro/kWh (LCOE) should
be maximized.

Most layout optimization approaches use simulation tools to compute the objective function
value for a fixed layout [3]. Such simulations use (1) a sun irradiation model based on meteo-
rological data, (2) a heliostat model for light concentration and reflection, and (3) models for
the interaction (shading/blocking) of heliostats. Using these models, the irradiation energy at
the receiver is computed for, e.g., each hour of a year to estimate the annual energy generated
by the plant. For further details, the interested reader is referred to [7, 9].

Several approaches were proposed to solve the layout optimization problem, using different
concepts [6]:

• The field growth method is a concept where the heliostats are added step by step on
predefined points of the field. The algorithm terminates when the system requirements
(e.g. minimum power output) are met. The efficiency and the runtime of this algorithm
highly depends on the number of the predefined points of the field. Additionally, due to
the successive approach each heliostat allocation depends on the preceding allocations,
such that the optimization can hardly be parallelized.

Sánchez and Romero [10] employed this concept by using a greedy heuristic. The algorithm
starts with an empty field. The whole field is discretized in a set of possible points for
placing heliostats. Each point in the field is evaluated, such that the points can be rated
by their energy contribution. The best point is chosen as position for placing the next
heliostat. Due to shading and blocking effects of the new heliostat, all free points in the
field have to be evaluated again. Sánchez and Romero called this algorithm YNES, an
abbreviation for yearly normalized energy surfaces.

• Much research has been done in the field of pattern-based method, where all heliostats are
arranged in geometric patterns which can be described by certain adjustable parameters.
With this approach the search domain is highly reduced from hundreds or thousands of x
and y coordinates to a handful parameters. So, instead of optimizing the x-y coordinates,
here now the pattern parameters are optimized which though influence the x-y coordinates.
Thus, the pattern method essentially determines the best adaptation of the pattern for
the problem and not necessarily the best x-y coordinates for optimal plant performance
[6]. In literature, several different patterns have been used: rows [11], radial staggered
[5], and biomimetic patterns [7]. The disadvantage of these optimizers is the small search
space by construction.
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• The free variable method follows a more classical optimization approach by directly opti-
mizing the x-y coordinates. Due to the complexity of the problem an appropriate heuristic
is needed. There exists a large variety of optimization approaches which could be used,
such as non-linear programming, general gradient-based methods, to nature-inspired ge-
netic, evolutionary, viral, simulated annealing, and particle swarm algorithms.

So far, we just know from a gradient-based method [6] which was developed for the heliostat
layout optimization problem. This approach starts with a random layout which iteratively
adjusts each x-y coordinate by following the gradient in the direction of a better function
value until a certain objective is achieved. The gradient of the simulation may be obtained
by finding the partial derivatives of the ray tracer function with respect to each variable.
In this optimization concept the heliostats are not limited to a pattern, which means, that
they can freely move through the field during the optimization process.

• The multi-step optimization strategy consists of a combination of two or more optimization
methods. First a meta-heuristic is used, able to search on a huge solution space and to move
towards the global maximum. Afterwards, subordinated methods like a greedy heuristic
or a linear programming refine the solution locally. The work [1] uses a pattern based
optimization method and refined the results with a greedy heuristic by perturbing each
heliostat position locally. This strategy has shown to give better results when compared
to each of the two algorithms alone.

Despite this wide spectrum of achieved results, there is still a strong need for new approaches
to solve the layout optimization problem to further improve the solutions. Because this problem
belongs to the NP-hard class of combinatorial optimization problems, methods from artificial
intelligence may help to successfully find a good solution. In this work, we propose a classical
optimization approach by using an evolutionary algorithm (which belongs to the above intro-
duced class of free variable methods). We show that it is necessary to modify the crossover and
mutation step, to increase the slow convergence rate. The new genetic operators are tailored to
the underlying problem of two-dimensional genes (the x and y positions of the heliostats). We
give a comparison of a pattern-based algorithm with an evolutionary algorithm (with classical
and modified genetic operators) to show the efficiency of our approach.

In [8] we already used a genetic algorithm and combined it with neural networks for pa-
rameter synthesis in a solar thermal power plant. We could reduce the calculation time of the
optimization procedure by around 90% compared to an approach without neural networks. In
[9] we extended the optimizer for a multi-objective optimization: We used smoothing function-
als to disperse the local optima. Within this work we now present the results of using modified
genetic operators which are tailored to the underlying problem of finding an optimal heliostat
field layout.

The rest of the paper is structured as follows. In Section 2 we describe our optimization
algorithm using the evolutionary approach. We show the importance of adapting the classical
operators used in evolutionary algorithms by providing some experimental results in Section 3.
We conclude the paper in Section 4 with an outlook on future work.

2 Layout Optimization using Evolutionary Algorithms

For a fixed tower position (xt, yt) ∈ R2, a number N of heliostats and a given set Ω ⊆ R2 of
possible two-dimensional1 heliostat positions, a layout configuration is defined as a collection

1The third dimension (height) is also relevant, however, for a given parcel of land on which the plant should
be built the coordinate in the third dimension is determined by the coordinates in the first two dimensions.
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of positions I = {(x1, y1), . . . , (xN , yN )} ⊆ Ω for the heliostat centers. To avoid collisions
with neighboring heliostats, valid layout configurations must satisfy the constraints ‖(xi, yi)−
(xj , yj)‖ ≥ d for each 1 ≤ i < j ≤ N , where d is the expansion size (incl. safety distance)
of all heliostats and ‖ · ‖ is the Euclidean distance. The goodness of a layout configuration
I can be measured by some objective function F(I) (e.g. annual performance) which can be
computed by an annual simulation of the sun irradiation. The layout optimization problem can
be specified as follows:

max
I

F(I)

such that I = {(x1, y1), . . . , (xN , yN )} ⊆ Ω and

‖(xi, yi)− (xj , yj)‖ ≥ d for all 1 ≤ i < j ≤ N .

To solve the layout optimization problem, we use an evolutionary algorithm as a free variable
method. That means, our optimizer is not based on any fixed pattern but offers the possibility
to freely position heliostats inside a given area, as long as they have a sufficient distance to
each other. The advantage is that a larger search space might contain more efficient solutions.
If for any reasons a pattern is requested, our approach could be applied to any fixed topology
in a quite straightforward manner.

The functionality of an evolutionary algorithm is inspired by the nature: In our setting,
each layout configuration (individual) is specified by its properties (genotype), each property
(gene) being either the x or the y coordinate value of a heliostat position. A population is
a set of individuals. To measure the goodness of a population, we simulate all of its layout
configurations to determine their fitness values (e.g. efficiency or received irradiation). The
fitness of a population is its highest individual fitness value, which serves as the objective
function for the optimization. The optimization algorithm starts from an initial population and
iteratively derives a new population from the previous one until some termination criterion is
fulfilled. This could either be a maximum number of iterations, the convergence of the last
rounds, or just a time limit. Upon termination, the best individual that was generated during
the whole optimization process is returned.

To not loose the best solutions at the transition from one population to the next and thus
to assure monotonicity of the population fitness, we initialize a new population to contain a
certain number of fittest individuals from the previous population (elitism). Additionally, in
order to avoid settling in a local optimum, it is also possible to introduce a certain number of
new random individuals to each population. Afterwards these steps, we iteratively derive new
individuals from the previous population and add them to the new population if they satisfy
the minimal distance requirements (otherwise they are discarded). This procedure is repeated
until the new population has the same size as the previous population.

To derive a new individual, three major operations are used:

1. Selection: Two or more individuals are randomly selected from the previous population
according to their fitness values.

2. Crossover: The properties of the selected individuals are recombined according to their
fitness values.

3. Mutation: Some genes of the new recombined individual might be modified before adding
it to the new population.

To ensure to find a good solution in appropriate time, some modifications to the classical oper-
ators are needed. In the following we describe the selection, crossover and mutation algorithms
along with the termination criterion that we use in our layout optimization approach.
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Figure 2: Classical crossover operators.

2.1 Selection

Different techniques were proposed in literature for the selection of individuals that should be
recombined. In our work, we utilize one of the most common methods, called the roulette wheel
method. The objective of the roulette wheel method is to select potentially useful individuals
to contribute to a new population with improved fitness. For that purpose, the fitness values
are used in order to associate a probability of selection with each individual. This means that
from a population P an individual I ∈ P with fitness value F (I) is selected with probability

p(I) =
F (I)∑

I′∈P
F (I ′) ∈ [0, 1]. (1)

2.2 Crossover

Using the above selection technique, we choose two parent individuals to be recombined into a
new configuration (child). The classical crossover operators are one-point crossover, two-point
crossover or uniform crossover. All three operators, illustrated on Figure 2, assume that the
genes are stored as an ordered sequence of values. One-point crossover determines a sequence
index, and generates children having genes from one of the parents up to the given index and
from the other parents for larger indices. Two-point crossover works similarly but cuts the gene
sequences at two points; children inherit genes from one of the parents for the indices between
the two points and from the other parent for the remaining parts. Finally, uniform crossover
determines for each gene in the sequence a parent, from which the gene is inherited, randomly
using a uniform distribution (probability 50% for both parents).

The drawback of these crossover approaches is that many generated children violate the
constraint of minimum distance and need to be sorted out. Additionally, these approaches are
highly sensitive to the order of the heliostats in their genotype representation. Finally, when
applying these approaches for layout optimization, it is meaningful to encapsulate heliostat
positions, represented by two genes (one for the x and one for the y coordinate value). Therefore
we need to adapt both the genotype representation as well as the crossover operators to the
layout optimization problem.

Genotype representation Note that in our setting each gene is either an x or an y coor-
dinate value. The classical genotype representation is an ordered sequence of genes. Instead
of sequences, in our approach, the genotype representation is a set of genes, where a gene is a
position (x, y). Additionally, the set is combined with an order relation: The value of the ob-
jective function of a configuration is determined by an annual simulation of the sun irradiation,
based on meteorological data. Besides the objective function value, the simulation also provides
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(c) A new valid child individual

Figure 3: Recombination of two parent individuals in crossover. The saturation of the color
(red or blue) is a simplified measure for the goodness of the single heliostat.

information for each single heliostat, e.g., its power contribution to the overall received power.
Based on this information, we order the heliostats of a configuration by their goodness. Using
this genotype representation, we define three different crossover operators, which are adapted
to the layout optimization problem.

Zero-step crossover First the genes (the heliostat positions) from the genotype represen-
tations of both parents are sorted in descending order according to their fitness. From this
sorted base list, the heliostats with the highest goodness values are stepwise inserted into the
child individual (and popped from the base list). If an inserted heliostat causes a conflict, it is
skipped and the next heliostat is chosen. If there are no more heliostats left in the base list,
the child configuration is completed with randomly generated heliostats. This way we generate
only valid individuals. Figure 3 illustrates the zero-step crossover, where each of the parent
genotypes contains five heliostat positions.

One-step crossover One weakness of the zero-step crossover operator is that the heliostats
are weighted with their goodness in the parent individual, which does not guarantee to be a
good choice in the child configuration due to new upcoming neighboring effects like blocking
and shading. So, the heliostats’ goodness for the generated child may not correlate to the one
in the parent configuration.

In the one-step algorithm, we tackle this problem by placing all parent heliostats in decreas-
ing goodness order into one field (skipping those which would affect collisions) and compute
a new goodness value for each single heliostat. Based on these values, we select the desired
number of heliostats for the child individual by choosing the best heliostats, similarly to the
zero-step crossover (but now based on more appropriate goodness values).

Multi-step crossover The one-step crossover is based on improved goodness values, however,
as not all the parent heliostats will be contained in the child configuration, these values still
do not fully reflect the unique heliostat contributions to the final fitness value of the child.
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Figure 4: Crossover speed comparison.

1 4 8 12 16 24
0

4

8

12

16

24

CPUs

C
P

U
sp

ee
d

u
p

100% parallel efficiency

75% parallel efficiency

50% parallel efficiency

Simulation

Figure 5: CPU speedup of an optimization
with our evolutionary algorithm using a pop-
ulation size of 100 individuals.

Consequently, with this approach heliostats in densely placed groups could be completely sorted
out due to neighboring effects.

Therefore, we define a third operator called multi-step crossover, which uses several evalu-
ation steps. First the goodness value of each single heliostat is computed as if it would be the
only one on the field, i.e., without considering neighboring effects. Based on this ranking, the
best heliostat is chosen and added to the (initially empty) child configuration. Now for each
remaining heliostat that does not collide with the already added one we re-compute its contri-
bution to the child fitness if it would be added to the current (incomplete) child configuration,
and insert the best one into the child’s genotype. This process is repeated iteratively until the
required number of heliostats is reached. Again, if there are no more parent genes, we complete
the child genotype with random genes.

It is obvious that the number of “steps” reflects the computational effort for the different
crossover operators; the multi-step crossover is far more expensive to compute than the zero-
and one-step versions. The differences in the computation time are illustrated in Figure 4.

2.3 Mutation

After the recombination of two parent individuals to one child individual by applying a crossover
operator, some child genes might be modified by random mutation. Mutation leads to additional
diversity of individuals in the new population. The classical mutation would affect single genes
in isolation, which would lead to a modification of either the x- or the y-position of single
heliostats. In our application, we encapsulate the (x, y)-position as one gene, such that in the
case of mutation the whole position is shifted with random distance in a random direction. If
a conflict appears, the mutation is repeated again.

3 Experimental Results

We implemented our evolutionary algorithms with adapted genotype representation and
crossover and mutation operators. For testing the quality of the different crossover opera-
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(b) Corner example
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f(x, y) = x+ y
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Within rectangle

(f) Sphere packing example

Figure 6: Overview of the different test function results.

tors, we first replaced the complex simulation-based fitness evaluation by using more sim-
ple objective functions: For a given individual I with its genotype representation I =
{(x1, y1), . . . , (xN , yN )} ⊆ Ω we need to compute the objective function value F(I). Instead of
using the simulation model we replace it by summing up function values f : R2 → R for each
heliostat:

F(I) =

N∑
i=1

f(xi, yi). (2)

This test was successfully applied to all mentioned crossover operators. Figure 6 shows the
results for the one-step crossover operator.

As the simulation-based fitness value computation is very time-consuming, we parallelized
the optimization algorithm using OpenMP. Because the main workload of our optimization
process is the calculation of the objective function values for every individual, we can apply the
parallelization to this step. Due to the fact that each individual can be processed independently,
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the introduced parallelization overhead due to blocking is negligible. After these parallelized
computations, an additional single-threaded pass over all individuals is performed to compute
global values describing the whole population (e.g. min/max energy). The achieved speed-up
by using parallelization is depicted in Figure 5. For reference, a program with 100% parallel
efficiency scales linearly, i.e., the number of workers (here: CPUs) equals the speed-up factor,
or more intuitively, it runs n times as fast when n times the number of CPUs are available. As
depicted in the aforementioned figure, a typical optimization run with a population size of 100
individuals achieves more than 75% parallel efficiency when using 8 CPUs and still more than
50% when using 24 CPUs.

To show the applicability of our approach, we applied our algorithms to optimize two real
solar tower power plants. As objective function the annual performance is used, which is defined
as the fraction of irradiation energy received at the tower and the total energy reaching the
mirrors without shading,

F(I) =

∫ 8760

0
A ·DNI(t) · η(t) dt∫ 8760

0
A ·DNI(t) dt

, (3)

whereas 8760 is the number of hours in a year, A is the mirror area, DNI(t) the time-dependent
direct normal irradiation, and η(t) the time-dependent efficiency of the field, considering cosine
effects, blocking & shading of neighboring heliostats, interception efficiency and atmospheric
attenuation [7, 9].

Planta Solar 10 (PS10) The PS10 solar tower power plant is placed near Seville, in An-
dalusia, Spain. Since 2007, the 11 megawatt (MW) solar power tower produces electricity with
624 large heliostats. Each heliostat has a mirror surface of 120 square meters, whereas the
receiver is placed on top of a tower at 115 meters height. More details about the configuration
can be found in [7].

We used our evolutionary algorithms to optimize the PS10 power plant, using a random
initial population. As shown in Figure 7, using different crossover operators leads to different
convergence rates for the optimization. Whereas the zero-step crossover shows a convergence
behavior similar to the standard crossover operators, the one-step crossover shows a very fast
convergence rate. The multi-step crossover converges, against our expectations, much slower.
We suspect that this phenomenon is due to the fact that the multi-step crossover prefers highly
efficient heliostat positions in the context of the current incomplete child genotype. Such he-
liostats are usually free-standing without other heliostats in their neighborhood. Whereas it
pays off for the first few heliostats, this heuristics possibly reduces the possibilities for adding fur-
ther efficient heliostat positions. According to the convergence rate of the multi-step crossover,
we expect that problems with smaller fields show better convergence rates in optimization time.

We also compared the results of our approach to results using two different pattern-based
optimization approaches (Figure 8). The first one is the original PS10 field layout, which was
optimized using the radially staggered grid approach. Additionally we compare our results with
the biomimetic approach that was applied to optimize the PS10 plant in [7]. The original field
layout collects less energy than the biomimetic approach, and even less than our evolutionary
algorithms. Our best approach using one-step crossover collects 0.2927% more energy than the
original layout, and 1.7794% more energy than the biometric “sun flower” approach.

Helio100 The Helio100 solar tower facility is placed near Stellenbosch, South Africa. 120
heliostats are used, each with a mirror surface of 2.2 square meters, whereas the receiver is
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Figure 7: Comparison of crossover operators on PS10, plotting optimization progress vs. opti-
mization steps (left) and vs. optimization time (right).
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(b) Optimized layout using a
biomimetic approach: 67.518%
efficiency.
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one-step crossover: 68.7194%
efficiency.

Figure 8: Comparison of optimization algorithms on PS10.

placed on top of a tower at 12 meters height. The plant is in operation since 2015.

The behavior of different standard and adapted crossover operators is investigated in Figure
9. All three adapted crossover operators perform better than the classical ones. The approach
using the one-step crossover operator reaches the fastest convergence rate. On this Helio100
application the multi-step crossover shows somewhat better performance than on PS10, possibly
due to the smaller number of heliostats.

We compare the layout results of our optimization approaches to pattern-based optimization
approaches and to the classical crossover operators in Figure 10. Our best result using the
one-step crossover collects 7.5335% more energy than the original layout, and 0.0595% more
energy than the biometric “sun flower” approach.
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Figure 9: Comparison of crossover algorithms on Helio100, plotting optimization progress vs.
optimization steps (left) and vs. optimization time (right).

4 Conclusion and Outlook

The heliostat layout optimization problem of solar tower power plants is a global, non-convex
optimization problem with constraints. Usually this kind of problem is solved using pattern-
based optimizers. The drawback of these methods is the small search space by construction, as
the solution is always a regular heliostat field. Within this work we used an evolutionary algo-
rithm to improve the solution of the heliostat layout problem. Because the classical crossover
operators lead to invalid layouts, and additionally are highly sensitive to the order of the he-
liostats, we introduced three new crossover operators. All operators are successfully tested and
applied to two benchmarks, showing the applicability of our approach.

The achieved heliostat layouts still offer space for further improvements. One idea can be
to improve a multi-step strategy, where the result from the evolutionary algorithm is improved
by applying a local optimization strategy as a post-processing step. The latter can either be a
gradient descent method by using algorithmic differentiation, or just a simple greedy heuristic,
which randomly selects heliostats, moves them in random directions for random distances, and
if the new heliostat position yields a higher fitness then leave it there, and undo the modification
otherwise.
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(c) Biomimetic approach
72.8252% efficiency

Evolutionary methods: classical crossover operators

(d) One-point
crossover
67.2945 % efficiency
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(f) Uniform
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Evolutionary methods: adapted crossover operators
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Figure 10: Results for different layout optimization algorithms on Helio100.
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[6] S.L. Lutchman, A.A. Groenwold, P. Gauché, and S. Bode. On using a gradient-based method for
heliostat field layout optimization. Energy Procedia, 49:1429–1438, 2014.

[7] C.J. Noone, M. Torrilhon, and A. Mitsos. Heliostat field optimization: A new computationally
efficient model and biomimetic layout. Solar Energy, 2011.
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