
Health 

Sciences

EPiC Series in Health Sciences

Volume 8, 2026, Pages 109–113

Proceedings of The 25th Annual Meeting of the Interna-
tional Society for Computer Assisted Orthopaedic Surgery

Machine learning-based automatic implant size prediction

for total knee arthroplasty using bone dimensions

Sandeep Katragadda1 and Kevin de Souza2

1 Stryker UK, sandeep.katragadda@stryker.com
2 Stryker UK, kevin.desouza@stryker.com

Abstract

Predicting suitable implant sizes from 3D radiographic images of joint anatomy can be
accomplished using templating methods. Automatic templating, which eliminates the need
for manual intervention, is especially valuable for speeding up the creation of computer-
or robot-assisted surgical plans. In our previous work, automatic templating for total knee
arthroplasty was achieved through automatic bone segmentation, followed by matching a
set of anatomical landmarks with corresponding points on candidate implants of various
sizes. This paper introduces a novel approach that eliminates the reliance on point corre-
spondences and matching, instead leveraging bone dimensions for implant size prediction.
An experimental analysis on a dataset of 3261 knee cases demonstrates that the proposed
method improves the performance of implant size prediction.

1 Introduction

Incorrect selection of femoral and tibial implants in total knee arthroplasty (TKA) can lead to
various post-operative complications [1]. Moreover, precise and early prediction of implant sizes
offers several advantages to operative field preparation, inventory control, and resource opti-
mization [2]. Templating-based approaches use implants templates (of all sizes) along with bone
radiographs [3, 4, 1]. A limitation of existing templating-based methods is the reliance on man-
ual intervention to complete the process. They often manually compute bone dimensions such
as the anterior-posterior (AP) width and the medial-lateral (ML) width [4, 5]. The “auto-knee”
algorithm in TraumaCAD, a commercial digital templating system, automates the process but
achieves significantly lower accuracy in size prediction compared to manual templating [6]. Our
previous works [7, 8] achieve automated digital templating by matching anatomical landmarks
on segmented bones with their corresponding points on candidate implants. However, these ap-
proaches rely on manually predefined correspondences between points on the bone model and
those on all candidate implants, limiting their scalability and introduces potential for human
error.

In this paper, we propose a novel approach that eliminates the need for predefined landmark
correspondences. Instead, the method automatically extracts key bone dimensions from the
segmented bone model. Only one dimension per bone is used to predict the size of each implant
component. Intraoperatively, surgeons typically assess femoral size using the AP dimension.
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Figure 1: Block diagram of the proposed algorithm, with the three main steps distinguished by
color: purple, green, and red.

Although some manufacturers provide narrow implant options, the ML measurement of the
femur is generally less reliable for accurate sizing. In contrast, the ML dimension of the tibia
is the most commonly used metric for intraoperative tibial sizing [5]. Based on these clinical
practices, two linear regressors are trained using the femoral AP and tibial ML dimensions
to predict the corresponding implant sizes. These regressors leverage the correlation between
the extracted bone measures and the implant sizes selected by surgeons, resulting in a fully
automated and scalable prediction pipeline.

2 Proposed approach

Given a 3D radiographic image of the knee (e.g. CT image), the objective is to identify the
most suitable femur-tibia implant size pair from the set of available candidate pairs. Figure 1
shows the block diagram of the proposed approach. It consists of three main steps.

(1) Auto-segmentation: Similar to our previous works [7, 8], each given knee image is
processed using a trained segmentation model to produce osteophyte-free (OF) surfaces of the
femur and tibia bones. The model is built via active appearance modelling [9]. The surfaces are
3D meshes having a constant number (Mb) of corresponding vertices meaning that the same
anatomical region on the bone surfaces of different patients has vertices with the same indices.
Here, b ∈ {F, T} (F: Femur and T: Tibia).

(2) Computation of bone dimensions: Indices of a set of Kb landmarks on the bone model
are identified in advance. The landmarks are chosen such that they well represent the bone
dimensions. KF = 4 and KT = 2. Two of the femur landmarks are on the posterior side (F1
and F2) and the other two landmarks are on the anterior side (F3 and F4). The two tibial
landmarks are on the medial and lateral sides of the tibial plateau (T1 and T2). Based on these
indices, coordinates of the landmarks are extracted from the OF surfaces. The femur AP width
is represented by the average of the F1-F3 distance and F2-F4 distance. The tibial ML width
is represented by the T1-T2 distance.

(3) Linear regression: The dimensions undergo linear regression that models the correlation
between the bone dimensions and the surgeons’ implant size choices. The regression model for
each bone b is: implant size = mb × bone dimension + cb, where mb and cb are regression pa-
rameters (scalars) that are computed via supervised learning in advance. Finally, the candidate
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size pair that is close to the regression output pair is selected using the Euclidean distance.

3 Experimental analysis

The performance of the proposed approach is evaluated by training the linear regressors using
a dataset comprising 292 knee CT images, including 152 right and 140 left cases. Multiple
surgeons performed the TKA procedure on these cases using Stryker Triathlon PS and CR
implants, which are available in 8 discrete sizes. The implant sizes selected by the surgeon
are used as the ground truth for this evaluation. The dataset covers a comprehensive range
of implant sizes. In line with established clinical practice, when using Stryker Triathlon im-
plants, the size difference between femoral and tibial implants should not exceed one size. This
recommendation is grounded in medical expertise rather than being dictated by algorithmic
constraints or technical limitations. Hence, the candidate size pairs of femur-tibia implants
used in the dataset are (1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3), (3,4), (4,3), (4,4), (4,5), (5,4),
(5,5), (5,6), (6,5), (6,6), (6,7), (7,6), (7,7), (7,8), (8,7) and (8,8).

Three metrics are used to analyze the performance. (1) Mean Absolute Error (MAE): the
mean absolute difference between the predicted and selected implant sizes. Smaller MAE values
indicate better prediction accuracy. (2) P0: the percentage of cases in which the predicted
implant size matches the size selected by the surgeon. (3) P1: the percentage of cases in which
the predicted implant size differs from the surgeon’s selection by at most one size. This metric
is commonly used because it accommodates both inter- and intra-observer reliability. Higher
values of P0 and P1 indicate better prediction accuracy.

To analyze the performance of the linear regression models, 5-fold cross-validation is used.
The data (containing the computed bone dimensions and the corresponding ground truth sizes)
is divided into five subsets, namely F1 − F5 and T1 − T5 for each of the femur and tibia bones
respectively, ensuring that each subset includes a representative distribution of implant sizes
used by the surgeon. During each cross-validation iteration, one subset is reserved for testing,
while the remaining four subsets are combined to train the regressor. The learned parameters
(mb and cb) are then applied to predict implant sizes for the test set samples. These predictions
are compared with the ground truth to compute the MAE, P0 and P1 values on the test set.
Additionally, the correlation coefficient (rb) between the independent variable (regressor input)
and the dependent variable (regressor output) is calculated. Higher rb values signify a better
fit of the regression model to bone b data. Table 1 presents the learned parameters for each
iteration and the corresponding performance metrics on the test sets for femur and tibia data.
The higher rF and rT values highlight the suitability of the regression models for this dataset.

The performance of the trained model is evaluated using an independent dataset (used in [7])
comprising 3261 knee CT images, including 1714 right and 1547 left cases on both the proposed
approach and our previous works [7, 8]. The regression parameters used are mF = 0.27,
cF = −14.0, mT = 0.23 and cF = −12.8. The observations are as follows.

• The MAE values for the proposed approach are 0.51 and 0.56 for the femur and tibia,
respectively. In comparison, the previous approach [8] yields 0.62 and 0.57 for the femur
and tibia, respectively. Another prior approach [7] results in MAE values of 0.8 and 1.23
for the femur and tibia, respectively.

• For the femur bones, the proposed approach achieves P0 and P1 accuracies of 53.33% and
95.86%, respectively, compared to 46.18% and 92.27% for the previous approach [8], and
35.08% and 85.65% for another previous approach [7].
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Training data Testing data Learned parameters No. of cases with absolute error e Prediction accuracy
Sets Size Sets Size mb cb rb e = 0 e = 1 e = 2 e = 3 MAE ↓ P0 ↑ P1 ↑

F1, F2, F3, F4 213 F5 59 0.27 -13.6 0.87 27 30 2 0 0.58 45.2 96.6
F1, F2, F3, F5 214 F4 58 0.26 -13.5 0.87 33 24 0 1 0.46 56.9 98.3
F1, F2, F4, F5 213 F3 59 0.26 -13.5 0.86 32 26 1 0 0.47 54.2 98.3
F1, F3, F4, F5 214 F2 58 0.26 -13.5 0.86 29 29 0 0 0.5 50.0 100.0
F2, F3, F4, F5 214 F1 58 0.26 -13.5 0.87 34 20 3 1 0.5 58.6 93.1

T1, T2, T3, T4 213 T5 58 0.23 -12.75 0.92 37 20 1 0 0.38 63.8 98.3
T1, T2, T3, T5 213 T4 58 0.23 -12.9 0.92 35 23 0 0 0.39 60.3 100.0
T1, T2, T4, T5 214 T3 58 0.23 -12.7 0.92 36 21 1 0 0.39 62.1 98.3
T1, T3, T4, T5 214 T2 59 0.23 -12.8 0.93 36 22 0 1 0.42 61.0 98.3
T2, T3, T4, T5 214 T1 59 0.23 -12.7 0.92 40 18 1 0 0.34 67.8 98.3

Table 1: Cross-validation results. mb, cb and rb are regression parameters for bone b ∈ {F, T}.

• For the tibial bones, the proposed approach achieves P0 and P1 accuracies of 49.19% and
95.09%, respectively, compared to 48.48% and 94.76% for the previous approach [8], and
15.36% and 65.53% for another previous approach [7].

It can be observed that the proposed approach results in higher P0 and P1 and smaller MAE
for both the femur and tibia and thereby demonstrates an improved implant size prediction
accuracy compared to previous works.

4 Conclusion

This paper proposes a machine learning-based knee implant size prediction approach. Femur
and tibia bone dimensions are estimated from the auto-segmented bone meshes, and two linear
regressors utilize these dimensions to predict the implant sizes for femur and tibia bones. The
prediction process is fully automated, requiring no manual intervention. The approach demon-
strates an improved prediction performance compared to our previous works by predicting
implant sizes in above 95% of cases (both femurs and tibias) with at most 1-size error.
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