
Kalpa Publications in Computing

Volume 21, 2025, Pages 34–44

Proceedings of the 14th and 15th International
Workshops on the Implementation of Logics

Dataset-Specific Strategies for the E Theorem Prover

Jack McKeown and Geoff Sutcliffe

University of Miami, Miami, Florida, U.S.A.
jam771@miami.edu, geoff@cs.miami.edu

Abstract

The E automated theorem proving system has an “automatic” mode that analyzes the
input problem in order to choose an effective proof search strategy. A strategy includes the
term/literal orderings, given clause selection heuristics, and a number of other parameters.
This paper investigates the idea of creating one strategy for a given dataset of problems
by merging the strategies chosen by E’s automatic mode over all of the problems in the
dataset. This strategy merging approach is evaluated on the MPTPTP2078, VBT, and
SLH-29 datasets. Surprisingly, the merged strategies outperform E’s automatic mode over
all three datasets.

1 Introduction

The core component of many saturation-based Automated Theorem Proving (ATP) systems is
the “given clause” algorithm [11]. This algorithm maintains two sets of clauses: a processed
set that is initially empty, and an unprocessed set that initially contains the clauses from the
axioms and negated conjecture. One at a time, a given clause is selected from the unprocessed
set and brought into the processed set, then inferences are made between the given clause and
other clauses in the processed set. The inferred clauses are added to the unprocessed set modulo
redundancy criteria [8]. This process repeats until the empty clause is derived, the unprocessed
set becomes empty, or a resource limit is reached. The derivation of the empty clause indicates
that the conjecture is a theorem of the axioms, whereas an empty unprocessed set indicates
that the conjecture is not a theorem of the axioms.

The saturation-based ATP system E [9] implements the DISCOUNT version [3] of the given
clause algorithm. E has an automatic mode that analyzes the input problem in order to choose
an effective proof search strategy. Currently, an E strategy consists of 108 key-value pairs,
for the various parameters that influence the proof search. This paper investigates the idea of
merging the strategies chosen by E’s automatic mode for a set of problems into a single merged
strategy, and using that merged strategy for all the problems.

Section 2 briefly summarizes how E performs given clause selection, how its given clause
selection can be controlled by users, and how this control is defined in an E strategy. Section 3
describes how the strategy merging is performed, and describes how the merged strategies
are evaluated. Section 4 describes the datasets used for evaluation, gives details about the
experiments performed, and presents the experimental results. Section 5 summarizes the results,
and concludes the paper.

K. Korovin, S. Schulz and M. Rawson (eds.), IWIL-2024 (Kalpa Publications in Computing, vol. 21), pp. 34–44



Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

2 Given Clause Selection in E

In E, given clause selection is guided by clause evaluation functions (CEFs). Each CEF eval-
uates each unprocessed clause, determining a priority for each clause in a priority queue asso-
ciated with the CEF. E supports a number of different CEFs, each of which is composed of an
instance of a weight function that evaluates the clause, and a priority function that restricts the
scope of the CEF, (Each priority function partitions the clauses in the unprocessed set so that
a certain class of clauses is given preference regardless of the evaluations given by the weight
function). Each weight function has a set of parameters unique to that weight function, which
are provided after the priority function. Figure 1 shows an example CEF with its components
labeled.

weight function︷ ︸︸ ︷
Refinedweight (

priority function︷ ︸︸ ︷
PreferGoals ,

other parameters︷ ︸︸ ︷
3,2,2,1.5,2 )︸ ︷︷ ︸

clause evaluation function

Figure 1: Example of an E clause evaluation function

During proof search CEFs are used to select the given clauses according to a heuristic. A
heuristic is an ordered list of CEFs, each having its own integer heuristic weight that determines
how many clauses should be selected from that CEF’s priority queue before moving on to the
next CEF (or back to the first CEF after the last CEF in the heuristic). Figure 2 shows an
example of an E heuristic, with each line showing a CEF prefixed by its heuristic weight: the
first CEF would be used once to select the given clause, then the second CEF would be used
four times, then the third CEF would be used ten times, etc. This schedule would then repeat
after 1 + 4 + 10 + 3 + 5 = 23 given clause selections. The heuristic is only one part of a full E
strategy. A full strategy with all 108 strategy parameters is shown in Appendix A. E strategies
include a heuristic like the one shown in Figure 2 as the value of the heuristic def key.

(1.ConjectureRelativeSymbolWeight(SimulateSOS,0.5,100,100,100,100,1.5,1.5,1),

4.ConjectureRelativeSymbolWeight(ConstPrio,0.1,100,100,100,100,1.5,1.5,1.5),

10.FIFOWeight(PreferProcessed),

3.ConjectureRelativeSymbolWeight(PreferNonGoals,0.5,100,100,100,100,1.5,1.5,1),

5.Refinedweight(SimulateSOS,3,2,2,1.5,2))

Figure 2: Example of an E heuristic.

E’s automatic mode for choosing a strategy is invoked using the --auto flag, and if invoked
with the --print-strategy flag, E will print out the strategy in the format shown in Ap-
pendix A. Therefore, an E strategy can be saved to a file by invoking E with the --auto and
--print-strategy flags and redirecting stdout to a file. The format of these files is similar to
JSON.

3 Strategy Merging

In this work the strategies chosen by --auto for every problem in a given dataset are saved
without attempting to solve the problems, and these saved strategies are merged in multiple
ways to create other strategies that are used to solve all of the problems. This primarily
means creating merged strategies that are each evaluated on all problems, but it also means

35



Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

creating per-problem strategies via merging. For all 107 strategy parameters other than the
heuristic def, the value used in the merged strategy is the value that was used most frequently
in the individual strategies. The heuristic def is merged in a more sophisticated way, as
follows.

This paper evaluates many ways of merging the heuristic def parameter:

1. MasterAllOnes: The simplest way to merge the heuristics takes the union of the sets of
CEFs used in all the saved strategies, and assigns a heuristic weight of 1 to each of them.
This approach ignores the heuristic weights in the saved strategies as well as the number
of saved strategies that each CEF occurs in.

2. MasterWeighted: The second way to merge the heuristics is to assign to each CEF
a heuristic weight proportional to the sum of its heuristic weights from all of the saved
strategies. The sums are not used directly because having very large heuristic weights
would cause E to repeatedly ignore important clauses that are not preferred by a CEF
being repeatedly used, but are preferred by other CEFs. Therefore the sums are scaled
down by a constant factor and then rounded up using the ceil function. The scaling factor
is determined so that the maximum heuristic weight is 20. This number was chosen as a
middle ground between no scaling and aggressive scaling that would lose more information
about the distribution of CEFs due to the rounding. The ceil function guarantees that
no CEF is removed entirely from the merged heuristic.

3. MasterWeightedRR: To evaluate the impact of MasterWeighted’s repeated use of the
same CEFs, the MasterWeighted strategy is also evaluated using a modified version of E
that attempts to avoid consecutively using the same CEF. It does this by going through
all CEFs in a round-robin fashion. Each CEF gets a counter is initialized at its heuristic
weight, and this counter is decremented when that CEF is used. When the counter reaches
zero, that CEF is skipped until the heuristic resets. Once all counters reach zero, they are
all reset to their heuristic weights. This is easiest to understand by example. Originally,
the heuristic “3*CEF1, 2*CEF2, 1*CEF3” leads to the the following sequence of CEFs
used for selection (before repeating): “1,1,1,2,2,3.” Under the modified version of E, the
same heuristic leads to the following sequence instead: “1,2,3,1,2,1.”

4. MasterSuccess: Lastly, a version of the MasterWeighted strategy is created by using
only the saved strategies for problems that --auto was able to solve. This strategy was
created with the intuition that the strategies suggested by --auto should only be trusted
to contribute to the merged strategy if they were successful on the problem for which they
were suggested.

In all of the strategies, the CEFs in the merged heuristic appear in order of decreasing
heuristic weight so that the “best” CEFs are first. In MasterAllOnes, where all heuristic
weights are set to 1, the order is the same as in MasterWeighted.

3.1 Potential ITP Application

While the strategy merging described above could be helpful when dealing with a fixed dataset of
problems, it would also be useful if a merged strategy could be evolved and applied incrementally
for a growing set of related problems. This situation is encountered when ATP systems are
used as “hammers” in Interactive Theorem Proving (ITP) systems [5]. A well-known example
is the Isabelle [7] ITP system, whose “Sledgehammer” mode [6] submits subproblems to ATP
systems like E.

36



Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

5. To evaluate the potential of strategy merging for a growing set of problems, another set of
strategies was created, collectively referred to as MasterIncremental. These strategies are
created in the order that the problems are added to the set, with the kth problem getting
assigned a merged strategy formed from the --auto strategies of the first k problems.
The strategy assigned to the first problem is the same as its --auto strategy, and the
strategy assigned to the last problem is the same as MasterWeighted. Each merging is
done the same as in MasterWeighted, only with different sets of input strategies.

3.2 Ablation Study

The heuristic def parameter was hypothesized to have a larger impact on the results than
the other parameters in merged strategies because given clause selection is the core of the proof
search. To test this hypothesis, two other methods for strategy merging were evaluated.

6. The first method, called CommonHeuristic, sets the heuristic def parameter to its value
in the MasterWeighted strategy, but keeps the value chosen by --auto for all the other
107 strategy parameters.

7. The second method, called CommonElse, is essentially the converse, keeping the value
chosen by --auto for the heuristic def parameter but setting the other 107 strategy
parameters to their values in the MasterWeighted strategy.

3.3 An Auto-based Baseline

While the strategy merging can produce a strategy that generally outperforms E’s automatic
strategies, it is unclear whether this is due to the merged strategy being better than all of
the --auto strategies, or if E’s --auto mode is assigning suboptimal strategies from its set of
available strategies.

8. To test this, every unique strategy that E’s --auto mode assigns over all problems in a
dataset is evaluated on all problems in the dataset. A baseline method called AutoAll is
created by picking the best performing strategy for each problem in the dataset. Therefore,
if even one strategy solves a problem, then AutoAll solves that problem. This simulates
how good E’s --auto mode could be if it perfectly picked the best strategy for each
problem (from its set of available strategies).

4 Data, Experiments, and Results

All in all, nine methods for solving a set of problems were evaluated: --auto, AutoAll, Mas-
terAllOnes, MasterWeighted, MasterWeightedRR, MasterSuccess, MasterIncremental, Com-
monHeuristic, and CommonElse. MasterAllOnes, MasterWeighted, MasterWeightedRR, and
MasterSuccess each consist of a single E strategy, whereas the other methods have a different
strategy for each problem.

All methods were evaluated on three datasets: MPTPTP2078, VBT, and SLH-29. The
MPTPTP2078 dataset is a TPTP-compliant version of the MPTP2078 dataset [1] that consists
of problems formed from the derivation of the Bolzano-Weierstrass theorem in the Mizar Math-
ematical Library [4]. These problems come in “bushy” and “chainy” variants, with the bushy
variants having only the most immediately relevant axioms and the chainy variants having a
larger set of axioms. The “bushy” variants of the problems were used in this work. The VBT

37



Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

and SLH-29 datasets were both used in the CASC-J11 competition [10], and come from the
Sledgehammer mode of the Isabelle theorem prover. The VBT dataset consists of 8000 prob-
lems generated by Isabelle’s Sledgehammer mode from the Van Emde Boas Trees entry in the
Isabelle Archive of Formal Proofs [2]. The problems are available in multiple logics, and the
typed-first order versions were used here. The SLH-29 dataset is a collection of 8400 higher-
order problems that also come from interactions with the Sledgehammer mode in Isabelle. For
most strategy parameters the --auto setting is largely consistent across problems within each
dataset. For example, in the MPTPTP2078, VBT, and SLH-29 datasets, only 16, 3, and 27
strategy parameters, respectively, had two or more values used in at least 5% of the problems.

The strategy merging and experimental setup are shown in Figure 3. The process is the
same for all datasets:

1. E is used to save strategies for each problem using --auto --print-strategy.

2. The saved strategies are merged in the ways described above to get the strategies for
MasterAllOnes, MasterWeighted, and MasterIncremental.

3. CommonHeuristic and CommonElse strategies are created for each problem by taking
some parameter values from the saved per-problem strategies and others from the Mas-
terWeighted strategy.

4. E is invoked on all problems using the --auto flag. The set of solved problems is used
to select the saved strategies from step 1 that are then used to make the MasterSuccess
strategy.

5. E is invoked on all problems using the MasterAllOnes, MasterWeighted, MasterSuccess,
MasterIncremental, CommonHeuristic, and CommonElse methods.

6. Every strategy suggested by --auto is used for every problem to get the AutoAll results.

Strategies are loaded into E using the --parse-strategy flag, and every call to E includes
the flags --soft-cpu-limit=60 and --cpu-limit=65, which limit CPU time.

The results are shown in Tables 1 and 2. Table 1 shows the number of problems solved by
each method. Table 2 shows the median number of given clauses selected before finding a proof,
for only problems solved by all methods and excluding problems solved during presaturation
interreduction (which is not guided by a strategy). In both tables the best result for each dataset
is bolded. Because AutoAll is the clear winner in terms of solved problems and processed clauses
for all datasets, the second best results are also bolded.

Dataset --auto
Auto
All

Master
AllOnes

Master
Weighted

Master
W RR

Master
Success

Master
Incr.

Common
Heuristic

Common
Else

M’2078 1151 1438 1219 1210 1201 1199 1199 1170 1086
VBT 2637 3596 2701 2841 2858 2806 2785 2710 2521
SLH-29 3396 4203 3642 3743 3565 3505 3556 3430 3371

Table 1: Problems solved by each method

An additional perspective on the results is given by Figures 4, 5, and 6. The vertical
lines in these figures show the same information as Table 1. Each row of the black and white
background represents one strategy, and each column represents one problem. The rows and

38



Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

Figure 3: Strategy merging and experimental setup

Dataset --auto
Auto
All

Master
AllOnes

Master
Weighted

Master
W RR

Master
Success

Master
Incr.

Common
Heuristic

Common
Else

M’2078 104 51.5 92 103.5 119.5 117 112 97 105
VBT 1794.5 693.5 1475 1565 1524 1600.5 1558 1531 1878
SLH-29 1431 492 874.5 751 827.5 760 757 932 1038

Table 2: Median number of clauses processed before finding a proof.
(For only problems solved by all methods)

columns are sorted such that the strategy that solves the most problems appears on top and the
problems that are solved by the most strategies appear on the left. For instance, the fact that
the transition from black to white occurs earlier in Figure 5 than in Figure 4 suggests that the
problems in the VBT dataset are harder on average than the problems in the MPTPTP2078
dataset.

The MasterAllOnes and MasterWeighted strategies both improve upon --auto in terms of
number of problems solved and processed clauses on all datasets. The MasterWeighted strategy
solves more problems than the MasterAllOnes strategy on the VBT and SLH-29 datasets, but
not on the MPTPTP2078 dataset. Perhaps this is because the MPTPTP2078 problems are

39



Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

Figure 4: MPTPTP2078 Experiment Results

Figure 5: VBT Experiment Results

solved in fewer given clause selections on average. The MasterAllOnes strategy uses more
unique CEFs in the short-term, but the MasterWeighted strategy ostensibly uses the CEFs in
better proportions in the long-term. Even if many CEFs agree that an important clause should
be selected, the repeated use of a single CEF in the MasterWeighted strategy could delay the
clause’s selection. In such a case, the MasterAllOnes strategy would select the important clause
more quickly. As problem difficulty increases, however, this potential delay would represent a
smaller proportion of the total selections needed to find a proof. This was the motivation behind
the MasterWeightedRR method. The results were mixed, however, with MasterWeightedRR
solving fewer problems than both MasterWeighted and MasterAllOnes on the MPTPTP2078
and SLH datasets, but more than both the VBT dataset.

The AutoAll results suggest that E’s auto mode could be improved by selecting a more
effective strategy for each problem without modifying the underlying set of candidate strategies
that E’s --auto mode uses. Additionally, the AutoAll result provides context that merged
strategies are not universally better than the individual strategies, although they are better on
average than the particular ones chosen by E’s --auto mode.

The MasterSuccess strategies perform worse than both the MasterWeighted strategy and
MasterAllOnes strategy in terms of both number of problems solved and processed clauses.
This is surprising because this strategy is constructed by merging only the strategies that were
successful in solving their associated problem. Perhaps failure to solve a problem is more of

40



Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

Figure 6: SLH Experiment Results

an indication that the problem is difficult than it is an indication that the strategy chosen by
--auto is bad.

The MasterIncremental strategies perform worse than MasterWeighted and MasterAllOnes
on all datasets in terms of both number of problems solved and processed clauses. In light
of the general success of strategy merging, this was unsurprising because fewer strategies are
being merged to create each MasterIncremental strategy than were merged in MasterAllOnes
or MasterWeighted. That being said, MasterIncremental solves more problems than --auto on
all three datasets and uses fewer processed clauses (median) on the VBT and SLH-29 datasets,
suggesting that incremental strategy merging could be useful within ITP “hammers”.

The CommonHeuristic strategies outperform the --auto strategies on each dataset, whereas
the CommonElse strategies do not, except for in terms of the number of clauses processed on the
SLH-29 dataset. This suggests a coupling between the 107 merged non-heuristic def strategy
parameters and the merged heuristic def parameter. The merged non-heuristic def param-
eter values are beneficial, but only when used in conjunction with the merged heuristic def

parameter. (It cannot be the case that the merged heuristic is the only helpful merged param-
eter, because MasterWeighted outperforms CommonHeuristic.)

5 Conclusion

This paper demonstrates that, at least for the three datasets used here, it is possible to im-
prove upon E’s automatic strategy by merging the strategies that E automatically chooses, and
then using the merged strategy for all of the problems. While this approach would likely be
less effective over a very diverse dataset, this strategy merging seems to be a helpful way to
inject helpful bias for a homogenous dataset. Additionally, incremental strategy merging shows
promise for incorporation into ITP tools like Sledgehammer.

References

[1] J. Alama, D. Kühlwein, E. Tsivtsivadze, J. Urban, and T. Heskes. Premise Selection for Mathe-
matics by Corpus Analysis and Kernel Methods. CoRR, abs/1108.3446, 2011.

[2] T. Ammer and P. Lammich. van Emde Boas Trees. Archive of Formal Proofs, November 2021.
https://isa-afp.org/entries/Van_Emde_Boas_Trees.html, Formal proof development.

41

https://isa-afp.org/entries/Van_Emde_Boas_Trees.html


Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

[3] Jürgen Avenhaus, Jörg Denzinger, and Matthias Fuchs. DISCOUNT: A System for Distributed
Equational Deduction. In Rewriting Techniques and Applications: 6th International Conference,
RTA-95 Kaiserslautern, Germany, April 5–7, 1995 Proceedings 6, pages 397–402. Springer, 1995.

[4] G. Bancerek, C. Bylinski, A. Grabowski, A. Kornilowicz, R. Matuszewski, A. Naumowicz, K. Pak,
and J. Urban. Mizar: State-of-the-art and Beyond. In Intelligent Computer Mathematics - In-
ternational Conference, CICM July 13-17, 2015, Proceedings, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer, 2015.

[5] J. Blanchette, C. Kaliszyk, L. Paulson, and J. Urban. Hammering Towards QED. Journal of
Formalized Reasoning, 9(1):101–148, 2016.

[6] Jia Meng and Lawrence C. Paulson. Translating Higher-Order Clauses to First-Order Clauses.
Journal of Automated Reasoning, 40(1):35–60, 2008.

[7] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic,
volume 2283. Springer Science & Business Media, 2002.

[8] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–41,
1965.

[9] S. Schulz, S. Cruanes, and P. Vukmirovic. Faster, Higher, Stronger: E 2.3. In Proceedings of
the 27th International Conference on Automated Deduction, number 11716 in Lecture Notes in
Computer Science, pages 495–507. Springer-Verlag, 2019.

[10] G. Sutcliffe and M. Desharnais. The 11th IJCAR Automated Theorem Proving System Competi-
tion - CASC-J11. AI Commun., 36(2):73–91, 2023.

[11] A’ Voronkov. Algorithms, Datastructures, and Other Issues in Efficient Automated Deduction.
In R. Gore, A. Leitsch, and T. Nipkow, editors, Proceedings of the International Joint Conference
on Automated Reasoning, number 2083 in Lecture Notes in Artificial Intelligence, pages 13–28.
Springer-Verlag, 2001.

A Example Strategy

Here is the strategy chosen by E for the MPT0001+1.p problem from the MPTPTP2078 dataset,
given as an example of a strategy file. The whitespace around the heuristic has been adjusted
for readability, so it might not work within E without edits.

{

{

ordertype: KBO6

to_weight_gen: precedence

to_prec_gen: invfreqhack

rewrite_strong_rhs_inst: true

to_pre_prec: ""

conj_only_mod: 0

conj_axiom_mod: 0

axiom_only_mod: 0

skolem_mod: 0

defpred_mod: 0

force_kbo_var_weight: false

to_pre_weights: ""

to_const_weight: 0

to_defs_min: false

lit_cmp: 1

lam_w: 20

db_w: 10

42



Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

ho_order_kind: lfho

}

no_preproc: false

eqdef_maxclauses: 20000

eqdef_incrlimit: 20

formula_def_limit: 24

sine: "Auto"

add_goal_defs_pos: false

add_goal_defs_neg: false

add_goal_defs_subterms: false

heuristic_name: Default

heuristic_def: "(

1.ConjectureRelativeSymbolWeight(SimulateSOS,0.5,100,100,100,100,1.5,1.5,1),

4.ConjectureRelativeSymbolWeight(ConstPrio,0.1,100,100,100,100,1.5,1.5,1.5),

1.FIFOWeight(PreferProcessed),

1.ConjectureRelativeSymbolWeight(PreferNonGoals,0.5,100,100,100,100,1.5,1.5,1),

4.Refinedweight(SimulateSOS,3,2,2,1.5,2)

)"

prefer_initial_clauses: false

selection_strategy: SelectComplexExceptUniqMaxHorn

pos_lit_sel_min: 0

pos_lit_sel_max: 9223372036854775807

neg_lit_sel_min: 0

neg_lit_sel_max: 9223372036854775807

all_lit_sel_min: 0

all_lit_sel_max: 9223372036854775807

weight_sel_min: 0

select_on_proc_only: false

inherit_paramod_lit: false

inherit_goal_pm_lit: false

inherit_conj_pm_lit: false

enable_eq_factoring: true

enable_neg_unit_paramod: true

enable_given_forward_simpl: true

pm_type: ParamodSim

ac_handling: 1

ac_res_aggressive: true

forward_context_sr: true

forward_context_sr_aggressive: false

backward_context_sr: false

forward_subsumption_aggressive: false

forward_demod: 2

prefer_general: false

condensing: false

condensing_aggressive: false

er_varlit_destructive: true

er_strong_destructive: true

er_aggressive: true

split_clauses: 0

split_method: 0

split_aggressive: false

split_fresh_defs: true

rw_bw_index_type: FP7

43



Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

pm_from_index_type: FP7

pm_into_index_type: FP7

sat_check_grounding: ConjMinMinFreq

sat_check_step_limit: 5000

sat_check_size_limit: 9223372036854775807

sat_check_ttinsert_limit: 9223372036854775807

sat_check_normconst: false

sat_check_normalize: false

sat_check_decision_limit: 10000

filter_orphans_limit: 9223372036854775807

forward_contract_limit: 9223372036854775807

delete_bad_limit: 2000000000

mem_limit: 0

watchlist_simplify: true

watchlist_is_static: false

use_tptp_sos: false

presat_interreduction: true

detsort_bw_rw: false

detsort_tmpset: false

arg_cong: all

neg_ext: off

pos_ext: off

ext_rules_max_depth: -1

inverse_recognition: false

replace_inj_defs: false

lift_lambdas: true

lambda_to_forall: true

unroll_only_formulas: true

elim_leibniz_max_depth: -1

prim_enum_mode: pragmatic

prim_enum_max_depth: -1

inst_choice_max_depth: -1

local_rw: false

prune_args: false

preinstantiate_induction: false

fool_unroll: true

func_proj_limit: 0

imit_limit: 0

ident_limit: 0

elim_limit: 0

unif_mode: single

pattern_oracle: true

fixpoint_oracle: true

max_unifiers: 4

max_unif_steps: 256

}

44


	1 Introduction
	2 Given Clause Selection in E
	3 Strategy Merging
	3.1 Potential ITP Application
	3.2 Ablation Study
	3.3 An Auto-based Baseline

	4 Data, Experiments, and Results
	5 Conclusion
	References
	A Example Strategy

