
Verification of Multi-Party Ping-Pong Protocols via

Program Transformation∗

Antonina Nepeivoda

Program Systems Institute, Pereslavl-Zalessky, Russia
a nevod@mail.ru

Abstract

The paper describes a verification technique based on program transformation with unfolding. The

technique allows to find short attacks on multi-party ping-pong protocols in the Dolev–Yao intruder

model. Protocols are modelled by prefix grammars, and questions of model optimization and complexity

are considered. Examples of model programs for protocols were written in a functional language and

were analyzed by a general-purpose supercompiler.

1 Introduction

It is known that, even in the case when algorithms of message encryption themselves are consid-
ered as completely secure, some existing cryptographic protocols that use them may be insecure.
Ideed, some vulnerabilities of the protocols are due to the fact that an intruder has access to
the communication channel used by the legal participants of the interaction. Although the
problem of automatic verification of such interactions is undecidable in general [1], some mod-
els of protocols have been described for which the verification task has a decision procedure.
In particular, Dolev and Yao presented a ping-pong model of cryptographic protocols [4]. In
a ping-pong protocol a message is a single data item encrypted by a sequence of keys. Two
principals can apply a finite number of operations to the message. Dolev, Yao, and Karp showed
that the safety of this this protocol can be verified in the case that an intruder can listen tot
the channel and can put messages on the channel at every phase of the interaction [3]. The
verification procedure was generalized for multi-party ping-pong protocols in the paper [5].

In our previous work [9] we showed a way to construct Dolev–Yao models of ping-pong
protocols via the language of prefix grammars and described how to verify the models by a
general purpose program transformation technique with unfolding. The methods presented in
[9] can be also applied to the case of Dolev–Yao models with more than two legal parties but
the computational complexity of the verification process grows exponentially with the number
of parties [5]. In this paper we generalize the results from the paper [9] and show some methods
to decrease the complexity of the verification process.

Our contributions are the following:

1. We refine the method described in the paper [9] in such a way that the notion of time
indexing becomes unnecessary in the model.

2. We show how to model multi-party ping-pong protocols by prefix grammars and how to
represent the prefix grammars by programs in a functional language. Unfolding a semantic
tree of these program models constructs a set of all short attack models. We discuss some
ways to decrease the computational complexity of the unfolding process.

∗The reported study was partially supported by RFBR, research project No. 14-07-00133 a, and by Program
No. 16 for Basic Research of Presidium of Russian Academy of Sciences.

84 A. Lisitsa, A. Nemytykh (eds.), VPT 2014 (EPiC Series, vol. 28), pp. 84–98

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

3. We show that a short attack length has an exponential upper bound over the number of
rules in the corresponding prefix grammar.

The examples presented in the paper were tested by the supercompiler SCP4 [8].

2 Multi-Party Ping-Pong Protocols

A cryptographic protocol is a set of rules that determine the behavior of the parties of a message
exchange in a network (for instance, the message exchange may be an authentication process,
or a transmission of secure data). Let us describe a model of a cryptographic protocol formally.

Consider a data exchange process between several participants via a common network.
Transmitted messages are represented by strings in a finite alphabet; the set of the strings is
denoted by S. The set of all users of the network is denoted by U . Let ΣA be a vocabulary of
some participant A — i.e. the set of functions from S → S that are available to a participant
A; let Λ be the identity operator (that has the meaning of doing nothing); and let the set of
all possible users of the network be denoted by U . A composition of two functions fA ∈ ΣA

and gB ∈ ΣB is denoted by fAgB (note that this means gB is applied before fA). Let x be a
variable from U ; a var-operator fx from U × S → S is a function form which becomes fA if x
takes some A as a value and fA ∈ ΣA.

Definition 1. A var-operator fx consists of an operator form and a variable x ∈ U . The set
of all var-operators is denoted F .

Some standard examples of operators from Σx are: Ex — an encryption of a message by
a public key of x; Dx — a decryption of a message by a key of x. Dx is inverse to Ex (that
can be expressed as a conjunction of DxEx = Λ and ExDx = Λ). ax denotes concatenation of
the name of a user x to a message, dx denotes deletion of the name of x from a message; dx is
a left inverse to ax (such that dxax = Λ). It is assumed that a user can apply the encryption
key of every other user and can add and remove the name of every other user, but can apply
only his own decryption key, more formally ∀x ∈ U∀y ∈ U(ax ∈ Σy & dx ∈ Σy & Ex ∈ Σy) and
∀x ∈ U(Dx ∈ Σx) but ∀y ∈ U(y 6= x ⇒ Dx /∈ Σy).

There may be other operators in Σx. In the original work [5] the set of operator forms
is restricted to {Ex, Dx, ax, dx, fx, gx} where fx and gx are permutation operators with the
following properties: fxgx = gxfx = Λ and ∀x, y(fx ∈ Σy & gx ∈ Σy). In accordance to
the terminology of [5], we call an operator algebra generated by Σx an algebra with a freeness
assumption if elements of Σx satisfy no word equations other than equations of the form A1A2 =
Λ. In this case, A1 also is denoted as A−1

2 (and vice versa). The freeness assumption is an
important stipulation which facilitates the construction of a model of a protocol. In the paper
below we do not take the freeness assumption for granted but explicitly underline all the cases
where this assumption allows to construct a simpler model.

Some operators from Σx, such as an encryption, a decryption, an appending of a single
letter, etc, are elementary; actions that correspond to these operators are not decomposable,
and the operators are denoted by single letters. Other operators from Σx can be presented
as compositions of elementary operators that are not present in Σx. This can happen, for
example, if a participant of an interaction is a user of some specific cryptographic program,
and this program does not allow the user to apply the encryption algorithm without adding
his/her personal information to a message to be encrypted. The composite actions from Σx are
represented as sequences of letters denoting corresponding elementary operators.

85

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

Definition 2. A p-party ping-pong protocol P [x1, . . . , xp] (over F) is a sequence of pairs
((y1, α1[x1, . . . , xp]), (y2, α2[x1, . . . , xp]), . . . , (yl, αl[x1, . . . , xp])) where yi is a variable with the
range of values U and αi[x1, . . . , xp] is a sequence of var-operators in the vocabulary of yi.

This definition can be explained as follows. Let several participants U1, U2, . . . , Un exchange
some data using an open network. Let us denote an initial secure data item to be transmitted
as M . If U1, U2, . . . , Un use a multi-party protocol P [x1, . . . , xp] (where p ≤ n) then they
organize their interaction as follows.

U1 starts a transmission by sending U2 the message α1(M) where α1 ∈ Σ∗
U1
. Then U2 sends

the message α2α1(M) (where α2 ∈ Σ∗
U2
) to U3 and so on until the transformed message reaches

Up. After that, Up applies the sequence of operators αp (αp ∈ Σ∗
Up

) to αp−1 . . . α1(M) and
transmits the result to all of the users U1, U2, . . . , Un.

Example 1. Consider the following 2-party ping-pong protocol, which describes a safe protocol
from [4] in the terms of Definition 2

P2[x1, x2] = ((x1, Ex2
ax1

), (x2, Ex1
ax2

dx1
Dx2

))

Recall that dxax = Λ and DxEx = ExDx = Λ. So x2 first cancels the operations applied by x1

to the initial message and then applies Ex1
ax2

to the result.

Informally P2[x1, x2] may be presented as the following graph, where figures in the circles
denote user variables and arrows are marked by strings of var-operators that are applied to M
(var-operators which are canceled are not written):

?>=<89:;x1

Ex2
ax1

(M)

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

?>=<89:;x2

Ex1
ax2

(M)

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

?>=<89:;x1

Now consider a 3-party analogue of the protocol P2[x1, x2].

P3[x1, x2, x3] = ((x1, Ex2ax1), (x2, Ex3ax2dx1Dx2), (x3, Ex1ax3dx2Dx3))

Informally P3[x1, x2, x3] can be presented as follows:

?>=<89:;x1

Ex2
ax1

(M)

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

?>=<89:;x2
Ex3

ax2
(M)

��
?>=<89:;x3

Ex1
ax3

(M)

OO

Ex1
ax3

(M)

BB

Is P3[x1, x2, x3] as safe as P2[x1, x2]? To answer this question we need to formalize an in-
truder’s behavior in the case of multi-party message exchange.

86

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

To formalize the notion of an attack on a protocol we must take into account the fact that
the protocol can be played many times in parallel by the same set of users (or sets of users with
a non-empty intersection). So every user playing a protocol is associated by the two entities:
his/her unique identifier, which is constant for all interactions, and a temporary ”party role“,
which is assigned in accordance with the protocol and restricts actions of the user as the protocol
party.

Definition 3. Let u = (U1, U2, . . . , Up) be a sequence of p elements in U , and P [x] be a p-party
ping-pong protocol. A u-instance of the protocol P [x1, . . . , xp], denoted P [U1, . . . , Up], is the
result of substituting the variable xj in P [x1, . . . , xp] by the user Uj for every 1 ≤ j ≤ p. The
operator word αj [U1, . . . , Up] is called a u-instance of the protocol word αj [x1, . . . , xp].

A u-instance of a p-party ping-pong protocol is called proper if u consists of p distinct ele-
ments in U .

Definition 4. Let P [x1, . . . , xp] be a p-party protocol consisting of the words
α1[x1, . . . , xp], α2[x1, . . . , xp], . . . , αl[x1, . . . , xp]. Let u = (U1, U2, . . . , Up) be an arbitrary se-
quence of p distinct users and U ′ be the set of these users.

For every J , J ⊆ U , let ΣJ denote the union of the vocabularies of users in J ; that is,
ΣJ =

⋃
j∈J Σj.

For every J , J ⊆ U , let INST (P, J) denote the set of all proper instances of protocol words
of P in which the users are from J .

Protocol P [x1, . . . , xp] is strongly insecure in the Dolev–Yao intruder model if there exists a
set S ⊆ U \ U ′ and an operator string ξ ∈ (ΣS ∪ INST (P,U))∗ such that ξα1[U1, . . . , Up] ≡ Λ.

Example 2. P2[x1, x2] is safe in the Dolev–Yao intruder model, and it may look plausible that
P3[x1, x2, x3] is also safe. But consider the following attack scheme (the index I stands for an
intruder, A and B stand for the principals). The intruder plays the role of the third participant
x3, and B encrypts the message by the key Ex3

= EI (not knowing that x3 is an intruder).

?>=<89:;A

EBaA(M)

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

?>=<89:;B

EIaB(M)

xxqqq
qq
qq
qq
qq
qq
qq

?>=<89:;I

The intruder’s vocabulary contains dB and DI , and I is able to construct Λ from EIaB.
P3[x1, x2, x3] appears to be strongly insecure.

The authors of [5] also define a notion of weak insecurity. The weak insecurity admits not
only proper instances in an attack but all instances (thus, an instance can contain substitutions
of a single user to different roles in the single var-operator string αi[x]). If a protocol is insecure
in the weak sense this does not imply that the protocol is insecure in the strong sense. This is
shown in Example 3 below from the paper [5].

Example 3. Consider the following 2-party protocol

PWI [x1, x2] = ((x1, Ex2
ax2

), (x2, dx1
Dx2

))

87

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

which can be represented by the following diagram

?>=<89:;x1

Ex2
ax2

(M)

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

?>=<89:;x2

dx1
Dx2

(M)

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

?>=<89:;x1

This protocol is secure in the strong sense since the value of the var-operator dx1
ax2

is an
error. But PWI [x1, x2] is insecure in the weak sense: if the user substituted in x2 coincides with
the user substituted in x1 in dx1

Dx2
then the result of α2[U2, U2]α1[U1, U2] is Λ.

The authors point out that the notion of the weak insecurity is unnatural as opposed to the
notion of the strong insecurity [5]. Surely, Example 3 gives us an example of an “unnatural”
attack: the second party of the protocol, who is meant to be a principal, substitutes themselves
to x1 (or this attack can be considered as ”sending a message from one to himself“).

If we narrow the definition of weak attack to the one that admits only instances that:

1. do not substitute an active principal to any other position, and

2. do not substitute any other party to the position of an active principal

the notion of a weak attack becomes more relevant to practical needs. In particular, this weak
model of an attack coincides with the model of an attack on a classical 2-party ping-pong
protocol. Like the generic notion of a weak attack, this weak model allows to reduce the set
of intruders to a singleton (and the reduction allows to construct models of protocols with
significantly less number of rules). And this notion is still strictly wider than the notion of a
strong attack.

Example 4. Consider the multi-party ping-pong protocol PD[x1, x2, x3, x4, x5] with the follow-
ing var-operator sequences.

α1 = Ex2
ax3

ax4
ax4

ax1
Dx1

α2 = Ex3
ax2

ax4
ax5

ax1
Ex1

dx1
dx5

dx4
dx3

Dx2

α3 = Ex1
dx1

dx5
dx4

dx2
Dx3

In the strong attack model PD[x1, x2, x3, x4, x5] is safe but if u1 = (U1, U2, U3, U4, U5) and
u2 = (U1, U3, U2, U4, U5) then α3[u

2]α1[u
1] = Λ. This is an attack on PD[x1, x2, x3, x4, x5] in

the weak attack model with no self-substitutions of an active user.

In the sequel we use the term ”a weak attack model“ in the restricted sense described above.
An attack model plays a significant role in the algorithm of modelling a multi-party protocol
by a prefix grammar.

In can be noticed that in some cryptographic protocols the initial data item M is not the
only secure information. For example, in the Needham–Shroeder protocol PNS [x1, x2] (which
also can be verified by supercompilation [2]) the fact of the intruder receiving the initial random
number generated by x1 does not point to an attack on the protocol. In PNS [x1, x2], an attack
is a sequence of transmissions that allows an intruder to get the random number generated

88

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

by x2 in response to x1. So there appears a natural generalization of an attack on a ping-
pong protocol: having a protocol P [x1, . . . , xp], an intruder I and an insecurity set INSEC,
which consists of operator words from {Σx1

∪ Σx2
∪ · · · ∪ Σxp

}∗, a generalized weak attack
on P [x1, . . . , xp] exists if there exist ξ ∈ (ΣI ∪ INST (P, I ∪ U))∗ and β ∈ INSEC such that
ξα1[U1, . . . , Up] ≡ β[U1, . . . , Up].

3 Prefix Grammars and Empty Word Problem Solution

It was shown in [10] how to model a two-party ping-pong protocol by a prefix grammar if
we want to verify safety of the protocol by program transformation. The case of multi-party
ping-pong protocols can be handled in a similar way. We now briefly introduce the notion of a
prefix grammar and informally show how a protocol can be modelled by a prefix grammar.

Let us denote letters of an alphabet Υ by the small Latin letters a, b, c, . . . , p, q, r and the
capital Latin letters A,B,C,D,E, F, S, T, U (maybe with subscripts or superscripts), variables
by x, y, z, w; and let us denote words from Υ∗ by the Greek capitals Γ,∆,Φ,Ψ,Θ.

Definition 5. Consider a tuple 〈Υ,R,Γ0〉, where Υ is an alphabet, Γ0 ∈ Υ∗ is an initial word
and R ⊂ Υ∗ ×Υ∗ is a set of rewrite rules. If the rewrite rules are applied only to word prefixes
R : Φ −→ Ψ

ΦΘ
R

−→ ΨΘ
then the tuple 〈Σ,R,Γ0〉 is a prefix rewriting grammar.

We call a trace of a prefix rewriting grammar G = 〈Υ,R,Γ0〉 a sequence {Φi} (finite or
infinite) s.t. Φ1 = Γ0 and ∀i∃R(R : Rl → Rr & R ∈ R & Φi = RlΘ & Φi+1 = RrΘ).

Example 5. Consider the following 3-party protocol P3a[x1, x2, x3], which is a slight modifica-
tion of the insecure protocol from Example 1.

α1[x1, x2, x3] = Ex2
ax3

ax1

α2[x1, x2, x3] = Ex3
ax1

dx1
dx3

Dx2

α3[x1, x2, x3] = Ex1
dx1

Dx3

The set of insecure operators INSEC = {Λ}.
Let us try to model some rules of this protocol (and the intruder behavior) by a prefix

grammar. In the weak attack model we can use {A,B,C, I} as the set U of all network users
without loss of generality (the strong attack model requires not one but at least seven intruders
[5]). We place Λ in the left-hand side of a rule if the rule is applicable to any word and does
not change letters of the word to which it is applied.

First we fix some initial instance P3a[A,B,C] and substitute it into the protocol words. Then
the initial word becomes EBaCaA. The rewrite rules that corresponds to a legal interaction look
like

R1 : EBaCaA → ECaA
R2 : ECaA → EA

If the participants of the protocol initiate another interaction with another party distribution
then there appear more rules such that

R3 : EAaCaB → ECaB
R4 : ECaIaI → EIaI
and, generally, all the rules that are generated by instances containing substitutions of the

set {A,B,C, I} in the positions x1, x2, and x3 (excluding ones where an active participant
substitutes themselves, e.g. ECaCaA → ECaA).

The only word that corresponds to an instance of an insecure operator is Λ. To model an
intruder behavior we also need rules that append (and cancel) operators from ΣI . The rules of
the sort look as R5 : EI → Λ, R6 : Λ → EI , and so on.

89

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

When a prefix grammar model of a protocol is built the question of verification of this
protocol is easily formulated. Namely, to verify the prefix grammar model of the protocol in
the Dolev–Yao intruder model is to find out whether a trace starting from the initial word and
ending by some Φ that models an insecure operator from INSEC exists (the similar proposition
for the equivalent models by finite automata is considered in [4]). If INSEC = {Λ}, these traces
represent sequences of transmissions corresponding to the protocol that allow an intruder to
get an initial message M transmitted by the first party of the protocol. Generally, if there
exists at least one such trace then there is an infinite set of such traces but most of them are
uninteresting from the practical point of view. For instance, in Example 5 we can apply the
rules R6 and R5 consequently to any word without any effect on the word to which they are
applied.

Definition 6. An attack model is a trace generated by a prefix grammar that ends with a word
from a chosen set INSW .

A short attack model is a trace starting with Γ0 and ending with a word Φ from INSW ,
such that no subsequence of the rule sequence generating Φ from Γ0 also generates Φ from Γ0.

So to verify a protocol model in a prefix grammar G it is enough to find out whether words
from INSW belong to the language generated by G.

If INSW is finite then the set of short attack models is finite (this is an auxiliary consequence
of Proposition 2). Our algorithm aims on constructing this set. The algorithm is a part of the
supercompilation technique and is based on the following observations.

Definition 7. A prefix rewriting grammar G is called annotated if every pair of rules either
have the same right-hand side or have no letters shared by their right-hand sides.

Definition 8. Let G be an annotated prefix grammar with an alphabet Υ. Let us say that
Γ ∈ Υ∗ is redundant iff for some a ∈ Υ the number of occurrences of a in Γ is greater than the
number of a occurrences in the left-hand sides of rewrite rules of the grammar G. For every
a ∈ Υ the number of occurrences of a in the left-hand sides is called an erasing limit of a
(denoted by EL(a)).

Example 6. Let us consider G2EXP = 〈{a, b, c, A,B,C, e},R2EXP, e〉 with the following
R2EXP:

R[1] : e → aA R[5] : AA → Λ R[9] : Ba → bB

R[2] : Λ → aA R[6] : BB → Λ R[10] : Cb → cC

R[3] : Λ → bB R[7] : CC → Λ
R[4] : Λ → cC R[8] : c → Λ

The grammar is annotated since every two right-hand sides either coincide or share no
letters. The erasing limit EL(e) = 1; also EL(a) = EL(b) = EL(c) = 1, so the words aAaA
and cCcC are redundant. The word cCC is not redundant since EL(C) = 3.

Proposition 1. Let G be a finite annotated prefix grammar. Every infinite trace generated by
G either contains some Γ and ∆ such that Γ = ∆, or contains a redundant word.

Proof. In an infinite trace a word length is either bounded by some N or grows infinitely. In
the first case in the trace there are two words Γ and ∆ such that Γ = ∆. In the second case
some word Γ reaches the length |Υ| ∗M +1, where M denotes maximal number of occurrences

of a same letter in the left-hand sides R
[i]
l of rewrite rules. Then some letter in Γ must have

more occurrences than its erasing limit.

90

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

Proposition 2. Let G be an arbitrary finite annotated prefix grammar. All short attack models
generated by G contain no Γ and ∆ such that Γ = ∆ or Γ is redundant.

Proof. The case when there is a pair of two equal words in a trace is obvious.
Let some short attack model contain a redundant Γ. Let a be a letter that is to be erased

at least twice by the same rule. Consider the words where a is erased by a same rule. They
look as R̂laΨaΘ0 and R̂laΘ0, where R̂l denotes a prefix of the left-hand side of some rule R
and Θ0 is never modified on the segment from R̂laΨaΘ0 to R̂laΘ0. Now consider the words in
which a were generated. They look as R̂′

raΘ0 and R̂′
raΨaΘ0 respectively where R̂′

r denotes a
prefix of the right-hand side of some rule R′ and Θ0 is the same as in the previous case.

All the considered words together form the following sequence.
. . .
R̂′

raΘ0

. . .
R̂′

raΨaΘ0

. . .
R̂laΨaΘ0

. . .
R̂laΘ0

. . .
Φ
We now can transform R̂′

raΘ0 to R̂laΘ0 by the rule sequence that transforms R̂′
raΨaΘ0 to

R̂laΨΘ0 and get a shorter attack model.

Proposition 2 together with Proposition 1 give a sound criterion of terminating a trace
unfolding if we want to find all the paths that correspond to short attack models.

But to apply these propositions, we must precisely formulate how to build a sound model
of a ping-pong protocol in the terms of a prefix grammar. The example below shows some
difficulties on this way.

Example 7. Let T〈x,y〉 be a secret key that is known only to x and y, U〈x,y〉 be a universal secret
decryption algorithm for T〈x,y〉 that is known only to x, T〈x,y〉U〈x,y〉 = Λ, and U〈x,y〉T〈x,y〉 = Λ,
ExU〈x,y〉 = Λ, U〈x,y〉Ex = Λ.

Consider the ping-pong protocol PSEC [x1, x2] with the following protocol words:
α1[x1, x2] = Ex2

T〈x2,x1〉

α2[x1, x2] = Ex1
ax2

U〈x2,x1〉U〈x2,x1〉

α3[x1, x2] = T〈x2,x1〉dx2
Dx1

INSEC = {Λ}. The meaning of this protocol is the following. x1 wants to transmit some
secret information to the computer database x2 (which possesses U〈x2,x1〉) and sends an initial
M to x2, applying both public and secret keys. x2 applies the universal decryption key twice,
stores the message M , and returns it to x1, signing it by x2’s name and using the public key
Ex1

. After that, x1 automatically sends x2 a confirmation about the successful interaction.
Let us construct a prefix grammar corresponding to the legal actions of the protocol and an

intruder’s behavior. The legal participants are denoted by A and B. An intruder is I.
Γ0 = EBT〈B,A〉. Some rules of the grammar are straightforward:
R1 : EBT〈B,A〉 → EAaB
R2 : EAaB → T〈B,A〉

Some more rules describe an intruder’s possible interactions with the principals:

91

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

RI1 : EBT〈B,I〉 → EIaB
RI2 : EAaI → T〈I,A〉

And some rules correspond to the actions of the intruder that correspond to their operator al-
phabet ΣI = {EA, EB, EI , aA, aB, aI , T〈I,A〉, T〈A,I〉, T〈I,B〉, T〈B,I〉, DI , dA, dB , dI , U〈I,B〉, U〈I,A〉}
(for every operator f ∈ ΣI there is a rule Λ → f if either f is not a left inverse (e.g. f is ax)
or f is a full inverse for some g (e.g. f is Ex, or Dx, or T , or U), and g → Λ if f is a left
inverse and fg → Λ (e.g. f is dx)).

Are there enough rules? The language generated by this grammar does not contain Λ. But
consider the following interaction:

?>=<89:;A

EBT〈B,A〉(M)

��❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅

?>=<89:;A

T〈B,A〉(M)

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄

?>=<89:;B

EAaBU〈B,A〉(M)

��❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅

?>=<89:;I

?>=<89:;B

EAaB(M)

??⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦ ?>=<89:;I

T〈B,A〉(M)

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧ ?>=<89:;A

M

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

An intruder tackles T〈B,A〉(M) and sends it to the database, where U〈B,A〉(M) (which looks
like a nonsense) is stored. Then the database sends a confirmation to A, and A automatically
replies by the initial message M which corresponds to Λ.

So the model prefix grammar is unsound with respect to the protocol PSEC [x1, x2].

In Section 4 we describe how to construct consistent models of the protocols by prefix
grammars. In Section 5 we briefly describe how to represent prefix grammar models by programs
in a functional language in a way that makes the verification process more efficient.

4 Modeling Ping-Pong Protocols by Prefix Grammars

Given a protocol P , let every instance of an elementary operator be a letter in the initial alpha-
bet of the model prefix grammar. It is shown in [9] that every word c1c2c3 . . . cn corresponding to
an operator string from INST (P,U)∗ can be modeled by the set of rewrite rules corresponding
to representations of all possible cancellations caused by an application of c1c2c3 . . . cn.

R[1] : Λ → c1c2 . . . cn
R[2] : c−1

n → c1c2 . . . cn−1

.

R[n−1] : c−1
n . . . c−1

2 → c1
R[n] : c−1

n c−1
n−1 . . . c

−1
1 → Λ

In the case of multi-party ping-pong protocols, the described modeling algorithm cannot
be applied as is, since the cardinality of the set INST (P, S ∪ U) grows exponentially over
the number of parties. In particular, the model does not take into account the Church–Rosser
property of the ping-pong protocols over the var-operator algebra with the freeness assumption:
in the model presented in [9] an application of a single operator string corresponds to a set
consisting of numerous rules, most of which are redundant. E.g. if Γ0 is c−1

n c−1
n−1 . . . c

−1
2 and

the operator word c1c2 . . . cn is applied to Λ then only an application of Rn−1 can appear in a

92

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

short attack model and all trace segments ending with Λ derived from the applications of R1 –
Rn−2 will contain redundant rule applications.

There are several possible ways to take the Church–Rosser property into account. One of
them is the following. If the var-operator algebra contains operators with no left inverses (e.g.
dx) then in every short attack model applications of the operators correspond to cancellations.
E.g. if αk = a1a2 . . . diai+1 . . . ank

and diai = Λ but aidi 6= Λ then in a short attack model αk

can only be applied to words with the prefix a−1
nk

. . . a−1
i+1ai (for the proof see [5]). If we take

this observation into account the number of rules in the model can be noticeably decreased.

Let us illustrate the above idea and model P3a[x1, x2, x3] from Example 5 by a prefix gram-
mar.

Example 8. The initial non-optimized prefix grammar that models P3a[x1, x2, x3] is

Γ0 = EBaCaA
R1−1 : Λ → ECaAdAdCDB R1−2 : Λ → EBaCdCdBDA . . . R1−24 : Λ → EAaIdIdADC
R2−1 : EB → ECaAdAdC R2−2 : EA → EBaCdCdB . . . R2−24 : EC → EAaIdIdA
. . .

R4−1 : EBaCaA → ECaA R4−2 : EAaBaC → EBaC . . . R4−24 : ECaAaI → EAaI
R5−1 : Λ → EAdADC R5−2 : Λ → ECdCDB . . . R5−12 : Λ → EIdIDA
R6−1 : EC → EAdA R6−2 : EB → ECdC . . . R6−12 : EA → EIdI
. . .

R8−1 : ECaADA → Λ R8−2 : EBaCDC → Λ . . . R8−12 : EAaIDI → Λ

R9−1 : Λ → EA R9−2 : Λ → EB R9−3 : Λ → EC R9−4 : Λ → EI
R10−1 : Λ → aA R10−2 : Λ → aB R10−3 : Λ → aC R10−4 : Λ → aI
R11−1 : Λ → dA R11−2 : Λ → dB R11−3 : Λ → dC R11−4 : Λ → dI
R12−1 : DA → Λ R12−2 : DB → Λ R12−3 : DC → Λ R12−4 : DI → Λ

R13−1 : aA → Λ R13−2 : aB → Λ R13−3 : aC → Λ R13−4 : aI → Λ

R14 : Λ → DI R15 : EI → Λ

If the non-existence of left inverses of dx is taken into account, the rewrite rules R1−1

– R1−24, R2−1 – R2−24, R3−1 – R3−24, R5−1 – R5−12, R6−1 – R6−12, and R11−1 – R11−4

disappear. All the rules from the blocks R4−1 – R4−24, R7−1 – R7−12, R8−1 – R8−12 with EI

in the left-hand side or DI in the right-hand side are also redundant since their applications are
the compositions of the applications of the rules from the blocks R9–R13 and the rules R14–R15.

If the participants A, B, C cannot play any role in the protocol then the number of rules in
the grammar also decreases. For instance, if A is a user who only can initiate an interaction
but cannot reply, and B and C cannot initiate (but can reply), then the model grammar G3a

for P3a[x1, x2, x3] becomes as follows:

Γ0 = EBaCaA
R1a : EBaCaA → ECaA R1b : EBaAaC → EAaC R1c : EBaIaA → EIaA R1d : EBaAaI → EAaI
R1e : EBaCaI → ECaI R1f : EBaIaC → EIaC R1g : ECaBaA → EBaA R1h : ECaAaB → EAaB
R1i : ECaIaA → EIaA R1j : ECaAaI → EAaI R1k : ECaIaB → EIaB R1l : ECaBaI → EBaI
R2a : ECaADA → Λ R2b : ECaIDI → Λ R2c : ECaBDB → Λ R2d : EBaADA → Λ

R2e : EBaCDC → Λ R2f : EBaIDI → Λ

R3a : ECaA → EA R3b : ECaI → EI R3c : ECaB → EB R3d : EBaA → EA
R3e : EBaC → EC R3f : EBaI → EI
R4a : Λ → EA R4b : Λ → EB R4c : Λ → EC R4d : Λ → EI
R5a : Λ → aA R5b : Λ → aB R5c : Λ → aC R5d : Λ → aI
R6a : DA → Λ R6b : DB → Λ R6c : DC → Λ R6d : DI → Λ

R7a : aA → Λ R7b : aB → Λ R7c : aC → Λ R7d : aI → Λ

R8 : Λ → DI R9 : EI → Λ

Note that if we want to use Proposition 2 then the same letters generated by different rewrite
rules must be counted as distinct ones. But aC in Γ0 is equal to, e.g., aC generated by R5c, so
the generated grammar is not annotated. Annotating, i.e. forbidding a program transformation
tool to treat these letters as equal, is made in the corresponding program model.

5 Constructing a Program Model for a Prefix Grammar

Having a grammar that models a protocol, a program to verify the protocol is constructed

as follows. Every rewrite rule R
[i]
l → R

[i]
r is supplied by a unique identifier i. Every letter c

93

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

generated by R[i] is represented as a pair 〈c, i〉. Φ[last] denotes the last letter of the word Φ.

The program line that corresponds to an application of R
[i]
l → R

[i]
r looks as

f(〈R
[i]
l [1], x1〉〈R

[i]
l [2], x2〉 . . . 〈R

[i]
l [last], x[last]〉Ψ, cons(i,Hist), EL1) =

f(〈R
[i]
r [1], i〉〈R

[i]
r [2], i〉 . . . 〈R

[i]
r [last], i〉Ψ, Hist, EL2)

The second parameter Hist (a history) and the initial word Γ0 (with all letters supplied by
the index 0) are input parameters of f. The history is added to the model to make the program
deterministic — this method was successfully used in verification of cache-coherence protocols
via supercompilation [6].

The third parameter in f(Φ, Hist, EL), EL, lists the number of occurrences of every c from
Υ in the first parameter Φ (i.e. in the current word in the trace). This parameter is used to
provide termination with accordance to Proposition 2. If some counter in the list EL reaches
the erasing limit of the corresponding letter, then the trace is terminated independently of the
value of Hist.

Example 9. Let us construct a prefix grammar and the corresponding modeling program for
P2[x1, x2] = ((x1, Ex2

ax1
), (x2, Ex1

ax2
dx1

Dx2
)).

The prefix grammar G2 is the following.
Γ0 = EBaA.

R1 : EBaA → EAaB R2 : EAaB → EBaA R3 : EBaI → EIaB R4 : EAaI → EIaA
R5 : Λ → EA R6 : Λ → EB R7 : Λ → EI

R8 : Λ → aA R9 : Λ → aB R10 : Λ → aI
R11 : aA → Λ R12 : aB → Λ R13 : aI → Λ R14 : EI → Λ

Then let us assign erasing limits. EL(EA) = EL(EB) = EL(aA) = EL(aB) = 2; EL(EI) =
1; EL(aI) = 3.

Now we are ready to construct a model program. In the program, all the names starting with
x denote variables and all the other names (e.g. R4, a, etc.) denote constant data. xL occ

stands for the number of occurrences of the letter L in the current word. The constant a denotes
EA, b denotes EB, and i denotes Ei; similarly, A denotes aA, B denotes aB, and I denotes ai.
To make the program to operate annotated rules we represent letters in the rules by the pairs
(Letter of the initial grammar, Number of the rule applied).

f(Nil,xHist,xa_occ,xb_occ,xi_occ,xA_occ,xB_occ,xI_occ) = An attack found;

f(xWord, xHist, 3, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ) = No short attack;

f(xWord, xHist, xa_occ, 3, xi_occ, xA_occ, xB_occ, xI_occ) = No short attack;

f(xWord, xHist, xa_occ, xb_occ, xi_occ, 3, xB_occ, xI_occ) = No short attack;

f(xWord, xHist, xa_occ, xb_occ, xi_occ, xA_occ, 3, xI_occ) = No short attack;

f(xWord, xHist, xa_occ, xb_occ, 2, xA_occ, xB_occ, xI_occ) = No short attack;

f(xWord, xHist, xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, 4) = No short attack;

f(cons((b, x1),cons((A,x2), xWord))),

cons(R1, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f(cons((a,1),cons(B,1), xWord)),

xHist, xa_occ+1, xb_occ-1, xi_occ, xA_occ-1, xB_occ+1, xI_occ);

f(cons((a,x1), cons((B,x2), xWord))),

cons(R2, xHist), (xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f(cons((b,2),cons((A,2), xWord)),

xHist, xa_occ-1, xb_occ+1, xi_occ, xA_occ+1, xB_occ-1, xI_occ);

f(cons((b,x1), cons((I,x2), xWord))),

94

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

cons(R3, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f(cons((i,3),cons((B,3), xWord)),

xHist, xa_occ, xb_occ-1, xi_occ+1, xA_occ, xB_occ+1, xI_occ-1);

f(cons((a,x1), cons((I,x2), xWord))),

cons(R4, xHist), (xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f(cons((i,4),cons((A,4), xWord)),

xHist, xa_occ-1, xb_occ, xi_occ+1, xA_occ+1, xB_occ, xI_occ-1);

f(xWord, cons(R5, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f(cons((a,5), xWord),

xHist, (xa_occ+1, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ);

f(xWord, cons(R6, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f(cons((b,6), xWord),

xHist, xa_occ, xb_occ+1, xi_occ, xA_occ, xB_occ, xI_occ);

f(xWord, cons(R7, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f(cons((i,7), xWord),

xHist, xa_occ, xb_occ, xi_occ+1, xA_occ, xB_occ, xI_occ);

f(xWord, cons(R8, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f(cons((A,8), xWord),

xHist, xa_occ, xb_occ, xi_occ, xA_occ+1, xB_occ, xI_occ);

f(xWord, cons(R9, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f(cons(B,9), xWord),

xHist, xa_occ, xb_occ, xi_occ, xA_occ, xB_occ+1, xI_occ);

f(xWord, cons(R10, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f (cons(I,10), xWord),

xHist, xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ+1);

f(cons((A,x1), xWord),

cons(R11, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f (xWord, xHist, xa_occ, xb_occ, xi_occ, xA_occ-1, xB_occ, xI_occ);

f(cons((B,x1), xWord),

cons(R12, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f (xWord, xHist, xa_occ, xb_occ, xi_occ, xA_occ, xB_occ-1, xI_occ);

f(cons((I,x1),xWord),

cons(R13, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f (xWord, xHist, xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ-1);

f(cons((i,x1),xWord),

cons(R14, xHist), xa_occ, xb_occ, xi_occ, xA_occ, xB_occ, xI_occ)

= f (xWord, xHist, xa_occ, xb_occ, xi_occ-1, xA_occ, xB_occ, xI_occ);

Note that we do not count letters generated by different rules separately. Theoretically this
can lead to a loss of a trace ending with Λ, but practically we did not see the cases where
the supercompilation results of the program with the common counters differed from the results

95

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

provided by the algorithm of Dolev, Yao, and Karp from the paper [4].

To find out whether the program model generates Λ we must run a supercompilation of
the program on the input f(cons((B, 0), cons((a, 0), Nil))), xHist, 1, 0, 0, 0, 1, 0), which yields
an unfolding process on the indefinite parameter xHist. If the residual program generates the
message An attack found; then the protocol model is unsafe; otherwise the protocol model is
very likely safe, but to guarantee this we must add distinct occurence counters for the same
letters that are generated by distinct rules (e.g. xaR1occ and xaR5occ for a).

Supercompilation of the example extended by distinct counters, as well as supercompilation
of a model program for P3a[x1, x2, x3] with distinct counters, generates no attack models; for
P3[x1, x2, x3] several short attacks are explicitly constructed by the supercompiler.

It can be noticed that the program and the grammar in Example 9 can be constructed in the
reverse order: in this case the initial word is Λ (Nil in the program), the set INSEC is {EBaA}
(cons((b,x1), cons((A,x2),Nil)) in the program), and every rule of the form Rl → Rr is
written in the form Rr → Rl (the similar method of reverse representation was described
in [7]). The reverse trace from Λ to EBaA also satisfies Proposition 2, and in most cases a
supercompilation of a reverse program is faster than a supercompilation of the initial program.
The cause is that the intruder’s alphabet contains more appending operations (that correspond
to the rules of the form Λ → x) than deleting operations (reverses of which correspond to rules
of the form Λ → x), and therefore the semantic tree of the reverse program has less branching.

6 On Complexity of the Verification Process

In this section we analyze bounds on the attack length. It is not difficult to apply the results
[10] together with Proposition 2 to find a rough upper bound for the maximal attack length on
a ping-pong protocol.

Proposition 3. Let G be an arbitrary finite annotated prefix rewriting grammar. Then the
maximal length of a short attack model is bounded from above by an exponential under card(R)
function.

Proof. For every rule R : Rl → Rr let us add to G EL(Rr[last])− 1 copies of the rule (EL(x)
is an erasing counter of x). Let the classical subsequence relation E distinguish applications
of all these rules and then unfold a computation applying exactly such a copy of a rule that
matches the corresponding set of letter occurrences. The maximal bad sequence length in this

grammar is not more than kN+1−1
k−1 where k is the length of the maximal right-hand side and

N is the total number of rules (with all the copies) [10]. And now we have N ≤ ELmax ∗N0,
where N0 is the number of rules in the initial grammar G.

To build a grammar with a long shortest possible trace ending by Λ, we use the same idea
of the ”ladder” construction as in [10].

Proposition 4. There exists a grammar such that the minimal attack length is exponential in
the number of rules.

Proof. Consider the following grammar GNEXP with the initial word a1A1.

96

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

GNEXP:
RW

1 : Λ → a1A1 RT
1 : A2a1 → a2A2 RD

1 : A1 → Λ
. .
RW

i : Λ → aiAi RT
i : Ai+1Ai → ai+1Ai+1 RD

i : Ai → Λ
. .
RW

N : Λ → aNAN RT
N : aN → Λ RD

N : AN → Λ

In the grammar G1EXP the shortest trace ending by Λ (we call these traces attacks for the
sake of brevity) is a1A1 → A1 → Λ and has the length 3.

Let us denote the minimal attack length in the grammar GNEXP as F (N). Now let us make
a transition to the grammar GN+1EXP. To erase a1 from the initial a1A1 we must come to
A2a1A1, so we must build an attack in the grammar GNEXP (modulo index renaming) without
the last step of erasing A2. Then we apply the rule RT

1 and get the word a2A2A1. Now again
we must repeat an attack on GNEXP (modulo index renaming) to erase a2A2 and at last erase
A1 by RD

1 . The total number of steps in the attack is not less than 2∗F (N)+1. So the formula
for the minimal attack length for GNEXP is 2N+1 − 1.

7 Conclusion

In this paper, we have shown that the method presented in [9] for 2-party ping-pong protocols
is also applicable for multi-party ping-pong protocols; moreover, also this extension can be
implemented with the help of the supercompilation program SCP4. We showed that the initial
condition with erasing distinction can be replaced in the verification algorithm with a simpler
condition, that makes the algorithm applicable not only with SCP4 but also with other program
transformation tools. Finally, we analyzed the worst-case length of a trace that can model an
attack.

Our method is widely applicable (it allows one to verify not only a single protocol, but
also several protocols that share some operators); however, every special case of its application
requires extra modeling efforts due to the high computational complexity of the semantic tree
unfolding. In the paper we presented some methods for building more efficient models of ping-
pong protocols; in spite of existence of successful applications of the verification method on
existing and newly proposed protocol models, it is yet unclear whether the method can be
further refined, so that it can solve verification tasks for protocols with a large number of
rewrite rules and party permutations within a reasonable run time.

8 Acknowledgments

The author is grateful to A.P. Nemytykh who encouraged and directed the study and to anony-
mous referees who helped to improve the presentation of the study.

References

[1] M. Abadi and A.D. Gordon. A bisimulation method for cryptographic protocols. Nordic Journal

of Computing, 5:267–303, 1998.

[2] A. Ahmed, A. Lisitsa, and A. Nemytykh. Cryptographic protocol verification via supercompilation
(a case study). In Alexei Lisitsa and Andrei Nemytykh, editors, VPT 2013, volume 16 of EPiC
Series, pages 16–29. EasyChair, 2013.

97

Verification of Multi-Party Ping-Pong Protocols via Program Transformation A. Nepeivoda

[3] D. Dolev, S. Even, and R.M. Karp. On the security of ping-pong protocols. Information and

Control, 55:57–68, 1982.

[4] D. Dolev and A.C. Yao. On the security of public key protocols. Transactions on Information

Theory, 29:198–208, 1983.

[5] S. Even and O. Goldrich. On the security of multi-party ping-pong protocols. Technical Report,
1985.

[6] A. Lisitsa and A. P. Nemytykh. Reachability analysis in verification via supercompilation. Inter-
national Journal of Foundations of Computer Science, 19(4):953–970, 2008.

[7] A.P. Lisitsa and A.P. Nemytykh. On one application of computations with oracle. Programming

and Computer Software, 36(3):157–165, 2010.

[8] A. P. Nemytykh. The Supercompiler Scp4: General Structure. URSS, Moscow, 2007.

[9] A. Nepeivoda. Ping-pong protocols as prefix grammars and turchin’s relation. In VPT 2013. First

International Workshop on Verification and Program Transformation, volume 16, pages 74–87.
EPiC Series, EasyChair, 2013.

[10] A. Nepeivoda. A refinement of higman embedding for loop approximation. [unpublished], 2013.
http://refal.botik.ru/preprints/Antonina_Nepeivoda-On_Turchin_Theorem-06042013v1.pdf .

98

http://refal.botik.ru/preprints/Antonina_Nepeivoda-On_Turchin_Theorem-06042013v1.pdf

	Introduction
	Multi-Party Ping-Pong Protocols
	Prefix Grammars and Empty Word Problem Solution
	Modeling Ping-Pong Protocols by Prefix Grammars
	Constructing a Program Model for a Prefix Grammar
	On Complexity of the Verification Process
	Conclusion
	Acknowledgments

