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Abstract

We describe the implementation of first-order terms, the central data structure of most
modern automated theorem provers, as perfectly shared immutable term DAGs in E. We
demonstrate typical gains possible with this structure (reducing the number of term nodes
typically by orders of magnitude) and discuss some of the side benefits of such a represen-
tation. One of these benefits is the ability to easily implement cached rewriting, improving
the performance of rewriting-based simplification. We discuss lessons learned and some
potential future work.

1 Introduction

Shared terms seem to have become a staple among high-performance automated theorem
provers, but this is rarely mentioned outside the source code. In particular, it is hard to
find descriptions of their implementation and performance. In this paper, we try to allevi-
ate this situation and describe the implementation of shared terms and cached rewriting in
E [Sch02, SCV19]. E is a mature theorem prover, written in ANSI C, and continually devel-
oped for about a quarter of a century.

First-order terms, such as f(X, a) or f(g(g(a)), f(X, b)), are the most central element of
most automated first-order theorem prover. Their implementation is probably the most critical
data structure in particular for saturating systems, which generate new terms in prodigious
numbers during proof search. Such systems, like e.g. E, Vampire [KV13], SPASS [WDF+09],
Prover9 [McC10] and Twee [Sma21] have dominated the field of automated theorem proving
for the last decades. They are typically based on variants of the superposition calculus [BG94]
(or its unit-equational counterpart, unfailing completion [BDP89]), employ resolution [Rob65]
and/or superposition (an ordering-constrained form of paramodulation [RW69]) as the main
inference rules to create new clauses, and rewriting (sometimes called demodulation) and sub-
sumption as the major mechanisms to simplify and remove clauses.

There are several different ways to implement terms, from simple trees as e.g. in the
completion-based prover DISCOUNT [DKS97] and many early provers, to flat terms [Chr93]
or string terms as used in Waldmeister [LH02]. When we started the development of E, one of
the core ideas was to structure the prover around shared terms, i.e. a term structure in which
every term (and subterm) was represented only once, and different occurrences of the same
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term simply point to the one copy stored in a term bank. Such a term bank represents a forest
of term trees as a single directed acyclic graph (DAG).

The first implementation of this idea in E was realised as a dynamic term bank with mutable
terms. Rewriting, one of the core simplification techniques, would actively change terms in
the term bank. Changes were propagated to superterms, possibly leading to large, non-local
changes as the result of a single rewrite step. Memory management of term cells was handled
via reference-counting garbage collection. We did a comparative evaluation of shared and
unshared (flat) terms by comparing the performance of E and Waldmeister, both tuned to
behave as similar as possible [LS01]. The result was somewhat disappointing - while shared
terms represented the proof state using much fewer term cells, the propagation of rewriting to
superterms nearly exactly cancelled out the benefits gained by rewriting each subterm at most
once.

Since the dynamic term bank implementation did not result in performance benefits, but sig-
nificantly complicated overall system design and in particular proof reconstruction, we changed
the implementation. The new version uses the same basic DAG structure, but terms themselves
are now immutable. Rewriting of terms in clauses is always triggered from the clause level (so
no complex notification or bookkeeping of changes is needed). To speed up rewriting, we cache
the result of rewrite steps, i.e. we add an annotated link to a rewritten term, pointing the
resulting term and giving a justification for the rewrite (normally the clause that was used to
perform the rewrite). Term cell memory is still handled by garbage collection, but now using
a mark-and-sweep garbage collector that is only triggered at strategic locations in the code
(e.g. after axiom selection and clause normal form transformation), or if there is active memory
pressure.

In this paper, we describe this second implementation for the first time in some detail,
and we report on some experiences and measurements. In an ideal world, theorem provers
would use an abstract interface to all major data types, and it would be possible to just plug
different data structures in to get perfect performance comparisons. However, despite some
attempts this has never been achieved for high-performance theorem provers. This is especially
true for the term data type, for two reasons: First, the term data type is so central that its
design imposes significant constraints on overall system design and architecture. And secondly,
theorem proving has been (and is) an ongoing research field, and new ideas often require new
methods for accessing and manipulating terms. However, we believe that the statistics we
present below provide some insight into the value of shared terms and cached rewriting.

1.1 Background

We assume that the reader is familiar with the basic design of modern saturating theorem
provers. The proof state is represented by a set of clauses, where each clause is a disjunctively
interpreted multi-set of literals and each literal is a signed atom - in the case of E either an
equation or a disequation between terms. New clauses are created by generating inference rules,
mostly based on unification, with most clauses generated by superposition and/or resolution.
The proof state is reduced using simplification rules, often based on matching - in particular
subsumption and rewriting or demodulation with unit clauses. Provers based on the given-
clause loop split the proof state into a set of processed or active clauses, which is interreduced,
and a set of unprocessed or passive clauses which may be partially simplified, but have not yet
participated in generating inferences. The most important search decision is the selection of
the next of these unprocessed clauses for processing.
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Figure 1: Term bank architecture

2 Term Banks and Shared Terms

In the following, we assume a first-order signature F = {f1/a1, f2/a2, . . .} of function symbols
with associated arities, and a set of variables V . In practice, F is always finite, but may grow
over time, e.g. by introducing Skolem symbols or names for definitions. For our purposes,
we don’t need to distinguish (proper) function symbols and predicate symbols. The set V of
variables is conceptually countably infinite, but we only ever need a finite subset.

In E, and in many other theorem provers, function symbols are encoded as small positive
integers, which serve as indices into a table representing the full signature, including externally
visible names of function symbols and meta-properties such as arities. Variables are encoded as
small negative integers, with a mapping from input variable names to these integers provided by
temporary translation tables during parsing. Since variables are necessarily renamed frequently
during proof search, their names in the input are not typically maintained long-term.

Terms are either variables, or they are constructed from existing terms t1, . . . , tn and a
function symbol f/n ∈ F , yielding f(t1, . . . , tn). Notice that for a symbol c/0 ∈ F (a constant),
c() is a term. In this case, we usually omit the parentheses.

2.1 Basic implementation

A term bank is a data structure that stores terms and allows reasonably efficient access to terms.
In E, terms are represented by pointers to term cells, which are essentially homogeneous. A
term cell contains an encoding of the function symbol or variable (called the f code), the arity
of the term, a set of invariant properties (see the next section), and a dynamic length array of
pointers to subterms. As per the above definition, a term is identified by its f code and the
list of argument terms. These make up the key under which a term can be found in the term
bank.

The main function of the term bank is to return a pointer to a shared term syntactically
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identical to an arbitrary term handed to it, in other words: to convert (potentially) unshared
terms into shared terms, or to find the unique existing equivalent of a given term.

In the definition above we have distinguished two different kinds of terms: Variables, and
composite terms starting with a function symbol. While we represent both of these types using
standard term cells, they are stored differently. Variables are stored in the variable bank of a
term bank. The variable bank is a dynamic array of pointers to (variable) term cells, indexed
by the (negated) f code of the variable. Thus, finding a shared variable can be done in Θ(1).
Variable cells are not garbage collected, since they are reused over and over again, and are quite
low in numbers.

Composite terms, on the other hand, are stored in a term cell store data structure. This
is implemented as a large hash table with collisions resolved externally via splay trees [ST85]
(a self-adjusting variant of binary search trees). Composite terms of the form f(t1, . . . , tn)
are inserted/found bottom up. First, we compute pointers s1, . . . , sn to shared versions of the
argument terms t1, . . . , tn (note that this may involve further recursion). We then consider the
sequence f code, s1, ..., sn as the search key for the term in the term bank. We compute
a hash code from the f code and up to two argument pointers by xoring their (shifted) binary
representations and masking them to 15 bits, selecting one of 32768 possible term cell trees.
Using at most two argument pointers simplifies the hash computation and is sufficient to give
a relatively even distribution of terms over hash values. Since the number of terms is much
larger than the hash table, conflicts are unavoidable, and are resolved by storing not terms,
but term sets (represented by splay trees) at each hash position. We search for a given key key
(using a simple lexicographic order on the components) in the corresponding tree. If a term is
found, we can return it. If not, we create a new term cell from the f code and the argument
terms, and insert that into the tree. During insertion, we compute a number of immutable
properties (see next section) that make many operations more efficient. Figure 1 illustrates the
basic architecture.

A note on higher-order terms This paper focuses on first-order logic. However, E has
recently been extended to higher-order logic [VBCS21, VBS23]. One of the core ideas of this
extension was that “you do not pay for features you do not use”, in other words, higher-order
features should only be visible where strictly necessary. With respect to terms, the two features
that directly affect term representation are partial applications and applied variables. For
partial applications, we used the fortunate fact that each term cell in E stores the number of
arguments of the represented term. In the case of first-order logic that always is the arity of the
symbol, and was just added for convenience. But this allows us to represent partial applications
by just creating a term with fewer arguments. In other words, if f is a binary function symbol,
the term f@t is represented like the first-order term f(t). This corresponds to a flattened spine
notation [CP03]. Only in the case of applied variables do we resort to an explicit app-encoding,
using the special variadic function symbol @ var, adding the applied variable and the other
arguments as proper arguments to the term. Thus, X@s@t is represented as the first-order
term @ var(X, s, t). Finally, λ-terms are supported using a special f code to represent the λ
binder, and de-Bruijn-indices to encode bound variables in a locally nameless notation [Cha12].
Each binder abstracts one variable, and de-Bruijn-indices are encoded as terms with the f code

field overloaded by the index value. De-Bruijn-variables come from a separate variable bank
and are distinguished by a single-bit term property from normal constants.
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2.2 Shared Properties

Having immutable, permanent terms allows us to efficiently pre-compute several term proper-
ties, and store them in the term cell. This is particularly true for properties that are normally
computed bottom-up. In our case this includes groundness (does the term contain any first-
order variables), variable count, function symbol count, and standard weight (computed as two
times function symbol count plus variable count). These are used to make many operations
more efficient. For example, instantiation does not change ground terms, so when an instance
is created we can just return a pointer to the existing term in the term bank for any ground
subterm. Standard weight can be used as a cheap pre-test during matching - any instance of
a term t always has at least the weight of t, so it is impossible for a heavier term to match a
lighter term.

Temporary shared properties of terms are e.g. variable bindings (computed via unification
and matching) and rewrite status (see below).

2.3 Garbage collection

Terms in the term bank are memory-managed via a mark-and-sweep garbage collector. All per-
sistent clause and formula sets are registered with the garbage collector. The system maintains
a single garbage status bit. All new allocations of term cells are marked with that bit in the
current status. If a garbage collection cycle is triggered, the system goes through all registered
clauses and formulas, and marks all used term cells by setting a single bit to the complement of
the current status. It then goes through the term bank, and frees all cells which still have the
current status. Then the global garbage status is flipped. The next collection cycle proceeds
likewise, only with a different value of the garbage bit.

In practice, the system performs garbage collection rarely. The collector is triggered during
and after clausification, and after unprocessed clauses are culled because the proof state reaches
some pre-defined threshold.

3 Cached Rewriting

E uses two different rewrite relations. Both are induced by processed positive unit clauses
(also called (potential) demodulators). The first, corresponding to ⇒R in completion-based
system [BDP89], is based only on orientable unit clauses, i.e. clauses in which one side of
the single equational literal is already bigger than the other in the term ordering used by
the current strategy. Because of the monotonicity of the used orderings, this applies to all
instances. Since we only rewrite from larger to smaller terms, we only need to check if the
maximal term of such an equation matches to be able to rewrite1. The other rewrite relation,
corresponding to ⇒R(E), also considers all orientable instances of unit equations. In this case,
for unorientable equations we first need to check if either side matches, and then check if the
instance generated by the match (possibly after also instantiating unbound variables in the
potentially smaller side [Sch22]) is reducing. The second relation is much more expensive to
compute, because we need to consider both sides for matching, and in the case of a match,
compute a relatively expensive ordering check. Therefore, in most configurations we use the
first relation for simplification of the large set of unprocessed clauses, and the second relation
only once a clause has been selected for processing, and for back-simplification of the processed

1There are some restrictions on rewriting maximal sides of maximal positive literals in processed clauses,
but these are irrelevant to the current discussion.
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clause set. Still, for equational problems, simplification in general and rewriting in particular
takes a significant amount of time.

To improve performance at this bottleneck, we have implemented cached rewriting in E,
i.e. we store information about rewritability of terms directly at the term node, and reuse it
if terms are encountered and need to be simplified more than once. This is similar in spirit
to light normalisation as implemented in iProver [DK20], but both predates it and is more
comprehensive. While iProver caches normal forms for the left hand side of (potential) rewrite
rules, E caches rewrite results not at the rule level, but at the term level. Thus, E caches all
rewrite steps, while iProver memorizes a shortcut for rewriting with uninstantiated rules.

3.1 Implementation and optimisations

Each term cell carries information about possible rewrites. These consist of two pointers, the
replace pointer and the demod pointer. If the replace pointer is not NULL, it points to a term
cell representing the term the original has been rewritten to. In that case, the demod pointer
indicates which clause was used for this rewrite step, thus facilitating proof reconstruction.

If a term with a non-NULL replace pointer is encountered during normalisation, the system
does not try any demodulators, but simply follows this pointer, pushing the clauses indicated
by demod pointers onto the modification stack of the clause being simplified.

There are two more optimisations for rewriting built into the term bank. We maintain
a monotonically increasing abstract time. In particular, this abstract time always increases
when a new clause is added to the set of potential rewrite rules/equations. If a term is found
irreducible with respect to the given rewrite relation and the current set of processed unit
clauses, we annotate the term with this information (i.e. “Term s is irreducible with respect
to all processed orientable unit clauses at time T” or “. . . with respect to all unit clauses. . . ”).
Clauses carry the abstract time they were processed at in their meta-information. If a term is
encountered again, and we know that it is irreducible with all clauses at time T , we don’t need
to try any clauses that have age T or older.

In practice, potential demodulators are stored in indices, trie-like structures where the
clauses are stored at the leaves of the tree. We associate each node of this trie with a) the
age of the youngest demodulator stored in the subtree rooted there and b) the weight of small-
est potentially matching side of demodulators in this subtree. When traversing the tree to find
demodulators for a query term, we can ignore all branches only containing clauses that are too
old to rewrite the query term, and all clauses whose matching sides are too heavy to match this
term.

4 Experimental Results

We ran experiments on all (well-typed, non-arithmetic) first-order problems from TPTP [Sut17],
version 8.2.0, for a total of 18102 problems. We recorded a number of statistics for each prob-
lem successfully solved, including runtime, number of clauses in the final proof state, number
of term nodes assuming unshared terms, number of actual nodes in the shared term DAG rep-
resenting these, and total number of term nodes in the term bank2. Experiments were run on
StarExec [SST14], using the StarExec Miami installation. The machines were equipped with

2Our implementation slightly over-counts active DAG notes, because for technical reasons it also counts
nodes used by clauses archived for proof reconstruction. This is typically a negligible number compared to the
overall proof state, but it leads to some visible noise for very small problems. The set of all term bank nodes
also includes currently unused, i.e. garbage-collectable nodes.
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256GB of RAM and Intel Xeon CPUs running at 3.20GHz. We used a 250 second “soft” CPU
time limit (i.e. the prover will gracefully terminate after completing the current main loop it-
eration, providing statistics) and a “hard” limit of 300 seconds . The prover was the first-order
version of E 3.0.10 Shangri-La, identical to the latest released version of E except for minor
bug-fixes and the addition of a number of optional statistics that can be computed and printed
after proof search.

We use several different sequential search strategies:

• E’s standard automatic mode classifies the problem and then picks parameters that have
performed well on similar problems in the past. The major parameters are the clause
selection heuristic, determining in which order clauses are picked for processing in the
given clause loop, the term ordering, and the literal selection strategy. However, there
are many other (mostly binary) parameters that can be set.

• The second strategy is based on the same automatic mode, but explicitly disables negative
literal selection, i.e. all maximal literals of a clause are used as inference literals. We
chose this option to investigate if the differences in term sharing observed in our 2001
paper [LS01] especially for Horn problems can be confirmed for the current system.

• To minimize the number of variables, we also run an experiment using a single simple
but well-performing general purpose strategy. This fixes the term ordering to KBO with
weights by inverse symbol frequency rank, precedence by inverse symbol frequency, and
constant weight of 1 for constants [Sch22], It uses clause selection using simple symbol
counting and clause age in a 10:1 ratio [SM16], and literal selection using SelectComplex,
a strategy that will always pick a negative inference symbol if available, preferring, in
that order, pure variable disequations (i.e. literals of the form X ̸≃ Y ), the smallest
(by symbol count) negative ground literal, and finally the literal with the greatest size
difference between the two sides of the literal3. We call this Symbol counting 10:1 or just
SC10:1 below. The term ordering is the one most often used by E in automatic mode
(i.e. the one that has performed best over large problem sets in our testing). The literal
selection strategy is one of the bests ones that always select a negative literal if possible.
And finally, the clause selection strategy performas relatively well, follows a scheme that
most theorem provers support, and depends only on the signature, not on the conjecture.

• Finally, we ran the same simple strategy, but without enabling negative literal selection.

Table 1 shows the performance data for the different search strategies. For this work,
performance is somewhat secondary, but we would like to point out a couple of things. E in
automatic mode solves nearly two thirds of all problems. Disabling literal selection reduces this
by about 2000 problems, to a bit over one half of all problems. The relatively naive homogeneous
strategy with literal selection overall performs similar to auto-mode without literal selection,
but does worse for proofs and better for saturations.

Table 2 gives a characterisation of the data we present here. It has four parts, one for each
of the four strategies. For each strategy, we present the following measures:

• Runtime is the CPU time (in seconds) to completion of the job (either successful or not).
Between approximately 100 and 200 runs did not manage to complete in the 300s hard
CPU time limit, and thus provided no statistic. These are excluded from the analysis.

3E encodes all literals as equations or disequations, using e.g. p(X) ≃ $true to represent the non-equational
literals p(X).
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Strategy Success Proofs Saturations Incomplete
Auto 11453 10268 1185 170
Auto (w/o literal selection) 9406 8734 672 131
Symbol counting 10:1 8935 7825 1110 15
Symbol counting 10:1 (w/o lit.sel.) 7911 7268 643 15

There are 18102 problems in the test set. Incomplete runs are runs where the prover ran out of
unprocessed clauses after deleting some (possibly non-redundant) clauses for lack of memory.
Proof search for problems not covered by the other columns in each row have terminated
unsuccessfully due to timeouts.

Table 1: Performance data for the 4 different strategies

• Clauses is the number of clauses in the final proof state, both processed and unprocessed.

• Term tree nodes is the number of term cells that would be referenced (directly or indi-
rectly) by the final clauses if E would represent terms as unshared trees.

• Term DAG nodes is the number of shared term cells needed to actually represent the
above terms (and a small number of terms referenced by archived clauses, see above).

• All TB nodes is the number of all term cells stored in the term bank at the time the proof
search terminated. In addition to the previous value this includes term nodes that could
be garbage collected because they are currently not used by any clause.

• Sharing factor is the ratio of term tree nodes to term DAG nodes.

• Total rewrites is the number of successful rewrite steps performed during proof search.

• Cached rewrites counts the subset of the previous value that was performed using a cached
rewrite link instead of actually finding a fresh demodulator and applying it.

• Fraction RWs cached is the ratio of the above, i.e. it gives the fraction of cached rewrite
steps relative to all rewrite steps.

• Finally, TB utilization is the fraction of all term bank nodes that are referenced by the
final proof state, i.e. the fraction of all TB nodes and term DAG nodes.

For each value, we provide the minimum, the first, second (median) and third quartile, and
the maximum, as well as the arithmetic mean. For integer values, the average is rounded to
the next integer. Note that all values are described independently, i.e. the median value of
total rewrites does not necessarily result from the same problem as the median value of the
number of cached rewrites, and the median value of the fraction of cached rewrite steps is not
the fraction of the median values of cached and all rewrite steps.

We will visualise several of the data distributions in the form of distribution diagrams. These
diagrams show the values observed in a population of test runs sorted by size - the smallest
ones on the left, the biggest ones on the right. Note that because of the great scope of difficulty
and run time, in many cases we had to pick a logarithmic y-axis to adequately represent the
data.
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a) Auto Min 1st q. Median 3rd q. Max Mean

Runtime 0.0 0.04 1.01 250.92 299.67 91.35
Clauses 0 301 18585 1132492 3094248 521457
Term tree nodes 0 4658 476289 34841300 7393888760 40213831
Term DAG nodes 2 1167 16399 659293 8665762 471810
All TB nodes 2 1554 20948 772362 11615296 605027
Sharing factor 0 3 15 53 13080680 2285
Total rewrites 0 53 6866 1323619 2350108946 3075329
Cached rewrites 0 35 5754 1201231 2348276767 2822675
Fraction RWs cached 0.0 0.579476 0.862697 0.972625 1.0 0.715044
TB utilization 0.000015 0.747881 0.890252 0.965839 1.0 0.832692

b) Auto w/o lit.sel. Min 1st q. Median 3rd q. Max Mean

Runtime 0.0 0.06 30.94 251.35 290.25 122.05
Clauses 0 706 511220 1301428 3037819 692984
Term tree nodes 0 12268 17398621 47747811 7437234556 49428700
Term DAG nodes 2 1874 35424 365138 7200828 330910
All TB nodes 2 2254 40074 393308 10918291 416376
Sharing factor 0 7 42 243 13080680 2880
Total rewrites 0 68 16919 731660 2350108946 2223361
Cached rewrites 0 43 15645 700882 2348276767 1999820
Fraction RWs cached 0.0 0.666667 0.92072 0.989583 1.0 0.750739
TB utilization 0.000015 0.82482 0.942162 0.994384 1.0 0.877701

c) SC 10:1 Min 1st q. Median 3rd q. Max Mean

Runtime 0.0 0.05 249.95 251.13 283.02 130.72
Clauses 0 757 538654 1464193 2929585 777191
Term tree nodes 0 12515 15874006 42004063 9297406274 47137260
Term DAG nodes 2 2179 259782 2216163 9123313 1163082
All TB nodes 2 2680 324531 2365703 12303650 1286958
Sharing factor 0 5 11 26 617798 1071
Total rewrites 0 208 42766 1901498 285140568 4513105
Cached rewrites 0 111 36574 1718916 277525335 4148014
Fraction RWs cached 0.0 0.600037 0.867287 0.97038 1.0 0.723709
TB utilization 0.002204 0.820367 0.940815 0.995384 1.0 0.877509

d) SC 10:1 w/o lit.sel Min 1st q. Median 3rd q. Max Mean

Runtime 0.0 0.11 250.74 251.46 296.54 144.05
Clauses 0 2348 998417 1492407 2986997 875239
Term tree nodes 0 56315 32810594 61388806 9447774986 64101714
Term DAG nodes 2 2936 86396 703796 9123314 549414
All TB nodes 2 3558 93611 729518 11051673 639408
Sharing factor 0 11 57 241 3032020 1800
Total rewrites 0 276 106863 1163220 285140568 3084820
Cached rewrites 0 193 97326 1085361 276724411 2811925
Fraction RWs cached 0.0 0.724032 0.942955 0.988776 1.0 0.781862
TB utilization 0.002204 0.883698 0.97377 0.996761 1.0 0.905721

Table 2: Overview of result data
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Figure 2: Distribution of clause number and different term nodes counts for auto-mode (left)
and auto-mode without literal selection (right)

4.1 Data structures and sharing

Figure 2 shows distribution diagrams for various counts of real or theoretical data structure
measures: The number of clauses, number of term tree nodes represented by these clauses, actual
term DAG nodes needed to represent them in the shared representation, and nodes actually
present in the term bank. The diagram on the left shows data for the normal automatic mode
of E (corresponding to Table 2a), the one on the right to automatic mode with negative literal
selection disabled (Table 2b).

In both cases we can see that the distribution of clauses and term tree nodes tracks quite
well, but that for non-trivial examples, the value for term tree nodes is about two to three
orders of magnitude greater than the corresponding number of clauses. This supports the claim
about the central role terms play for saturating automated theorem provers.

When we consider shared term cells in the term bank, we can see that both the number of
shared cells in the term DAG and of all cells in the term bank again track very closely, with
only a relatively small difference between them. They also very roughly track the number of
clauses, but with a lot more variation. However, especially for harder problems (i.e. problems
for which the prover needs a longer time to complete) with greater number of both clauses and
term cells, we can see that shared term counts often are lower than clause counts.

This great saving in the number of term cells is confirmed if we consider the actual values of
shared term cells relative to unshared tree cells. Figure 3 (left) visualises this data. Each dot
corresponds to a single problem (run in automatic mode), with the x-coordinate determined by
the number of (theoretical) term nodes in an unshared tree representation, and the y-coordinate
representing the number of nodes in the shared representation. This diagram style allows us
to see the wide spread of relative values, but it also confirms that the about 2.5 orders of
magnitude for non-trivial problems is typical.

The right diagram in Figure 3 visualises and compares the distribution of the sharing factor
(i.e. the ratio of term tree nodes to term DAG nodes) for all 4 different search strategies.
This factor tells us how many unshared nodes a shared node typically represents, or in other
words, the relative memory increase an unshared term representation would cause. For non-
trivial and non-extreme problems, the sharing factors vary between ≈10 and ≈100, but for
harder problems, it often reaches the thousands, and in the extreme case several millions.
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Figure 3: Scatter plot of term DAG nodes over term tree nodes for automatic mode (left) and
of sharing factor over runtime (right). Notice that both axes are logarithmic for both diagrams.

There also is a significant number where the recorded sharing factor is well below 1 even for
non-trivial problems. We have investigated some of these cases, and they stem from examples
where the prover produces a very small final clause set (usually a saturation or incomplete
saturation), but with a non-trivial derivation. The most extreme example comes from the
TPTP problem COL125+1.p. The problem has status CounterSatisfiable (i.e. the resulting
clause set is satisfiable) and prover eventually derives the final single-literal clause X1≃X2,
which subsumes all other clauses, leading to a final proof state with just 2 term cells. However,
the derivation of that final clause is highly non-trivial, and there 1684 archived clauses that are
kept to enable proof reconstruction. As noted above, the term cells referenced by clauses in
this set are counted against the shared term cell counts, resulting, in this case, to a significant
overcount.

Another interesting aspect becomes apparent if we compare the distributions for the different
strategies. The two non-literal-selecting strategies behave very similar, as do the two literal-
selecting ones. In general, sharing is a lot higher for the non-selecting strategies. This tracks
with our earlier results [LS01] and seems to indicate that negative literal selection not only
finds more proofs faster, but also that it results in less redundancy in the generated terms. We
can also see the effects in the numerical data in Table 2. We have visualised the distributions
for individual problem classes in Figure 4. As expected, literal selection has no effect (except
for random noise) on unit problems (the blue data points are nearly perfectly covered by the
cyan line). For both Horn and non-Horn problems we can see that literal selection drastically
lowers the sharing factor, but even more so in the Horn case.

4.2 Garbage collection

Figure 5 gives us some insight into the amount of collectable (i.e. not currently referenced) term
cells in the term bank. On the left diagram, we can see that for the vast majority of problems,
the two values - utilized and all term cells - lie very close together, placing the data point on
or just below the diagonal. There are, however, a few clusters of problems where the number
of used nodes is significantly lower than the number of all stored nodes in the term bank. In
theorem proving we sometimes observe that a few critical rewrite rules, once derived, can lead
to a big collapse in the proof state, as very many clauses can suddenly be simplified. Similarly,
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Figure 4: Distribution of the sharing factor for all four search strategies (left) and for Unit,
Horn and non-Horn problems for the symbol counting strategy with and without literal selection
(right)

Figure 5: Referenced term bank nodes over all term bank nodes (left) and distribution of the
utilization fraction (right) for automatic mode

sometimes a key clause can be derived that subsumes a large number of other clauses. Either
of these would explain the outlying clusters.

On the right hand side, we see the distribution of the term bank utilization over all problems.
Only very few problems show a utilization of less than 50%, and for most problems this factor
is over 80%. Table 2 confirms this, with the median term bank utilization between 89% and
97% (depending on the search strategy). Overall, we conclude that our decision to only trigger
garbage collection in specific situations is adequate, and that most term nodes that are created
are in use over a long time.

4.3 Cached rewriting

Finally, Figure 6 visualises some of the data on cached rewriting. On the left, we can see a
scatter plot showing the number of cached rewrites over the number of all rewrites. As we can
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Figure 6: Cached rewrites over all rewrites (left) and distribution of the fraction of uncached
rewrites (right) for automatic mode

see, the “main sequence” follows the diagonal, with the spread of values becoming smaller as
the number of rewrite steps increases. In other words, the more rewrite steps there are, the
higher the percentage of those that are cached, There are, however, a number of outliers.

The diagram on the right shows the distribution of the fraction of uncached rewrite steps.
The median of this distribution (for automatic mode) is 13.7%, or about 1 in 8 rewrite steps.
However, as seen above, most of the more difficult problems have a much lower fraction of
uncached steps.

5 Lessons Learned

As E was originally built with the dynamic term banks in mind, we allowed for multiple term
banks to be in use (because e.g. some terms need to be preserved while others are rewritten).
We also allowed for multiple instances of the same term, only distinguished by some single-
bit properties. Both of these features are no longer used with the new immutable terms and
cached rewriting driven from the clause level. By designing a prover around a single term
bank distinguishing terms by structure only, quite a bit of simplification would be possible. In
particular, we could always use pointer identity as syntactic identity for shared terms, without
careful thought about where the terms come from.

Also, strict commitment to have all non-transient terms shared would make most support
for unshared terms, in particular for parsing them, unnecessary. A trivial implementation
improvement would be to include the term bank pointer into the term data structure (for all
shared terms). It is needed nearly everywhere terms are processed, and the pointer could thus
be made easily available, and serve as a marker to distinguish shared terms from temporary
unshared ones when needed.

A number of features of E’s shared terms were either never used, or have long since fallen
into disuse. This included the ability to print and parse terms in an abbreviated fashion (using
node ids to represent shared subterms), and the ability to parse and print Prolog-style lists.
Also, E now supports the old LOP-format, two different TPTP syntaxes for first-order logic,
the later also in a typed variant, and, after extension to higher-order logic [VBS23] the (largely
independent) TPTP syntax for monomorphic higher order logic [SB10]. In a re-implementation,
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it would probably be better to concentrate on the modern TPTP syntax [SSCB12, SB10], and
to keep the parsers for first-order and higher-order logic largely separate.

Indexing with weight and age constraints could be applied more consequently, and would
profit from the lazy approach to update constraints described previously [Sch24].

We consider it an open question if (equational) literals should be represented as shared
terms at the clause level. This would have some advantages, but the greater freedom of adding
useful information at the literal level also has its value. Also, equations are usually unordered
term pairs, so they would still need special handling in many situations.

Managing term memory with garbage collection has been a particularly productive idea. It
frees developers from manually tracking references, and allows them to simply construct and
discard terms as is convenient. Indeed, the impact of garbage collection on term cells was so big
that we replaced E’s native and distinct formula data type with term-encoded formulas (where
logical operators and quantifiers are just special interpreted function symbols). This made the
later move to logics with first class Booleans [SCV19, VBCS21] like TF0 and FOOL [KKRV16],
where formulas and terms become one structure anyways, much easier.

6 Conclusion

The choice to go with a shared term data structures has paid off for E in multiple ways. As
demonstrated in this paper, for hard problems we achieve massive savings in the number of
term cells, typically to a degree that the number of term cells is of the same order of magnitude
as the number of clauses, and hence no longer the limiting factor.

High levels of term sharing can be observed over nearly all problem types and all non-trivial
problems, but it seems to go up with the number of terms and, though with a larger spread,
with runtime. In general, high levels of sharing seem to indicate a lot of redundancy in the
proof state - this is particularly obvious if we compare the (usually) stronger calculus variants
with literal selection to the ones without. There may be a way to utilise this fact to help control
proof search in the future, but so far this remains a vague idea.

Cached rewriting has shown good potential, reducing the number of expensive new rewrites
by orders of magnitude for hard problems. It would be interesting to analyse how often size
and age constraints have cut short the search for demodulators early, but that is beyond the
scope of this paper.

In addition to the reduced memory usage and possible speed-ups, being able to delegate term
and formula memory management to a garbage collector has increased developer productivity
and reduced the number of memory leaks and pointer confusions.

Overall, a substantial amount of experience has been accumulated with shared terms and
cached rewriting in E. We hope that this paper helps future implementations to avoid some of
the pitfalls along the way, and to build on our experience.
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Pascal Fontaine, editor, Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI,
pages 495–507. Springer, 2019.
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