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Abstract: Multi-object tracking in videos is an important task in various domains, such as traffic 

engineering and construction management. This paper proposes two methods, Grid Mean State and 

InCo-Skip, to improve multi-object tracking performance, particularly under frame-skipping scenarios. 

The study focuses on traffic flow counting, using YOLOv8 for vehicle tracking. Initial tests show that 

while car tracking remains accurate, motorcycles suffer a significant accuracy degradation when 

homogeneous frame skipping is applied. Grid Mean State addresses the issue by utilizing velocity 

vectors from earlier frames, and InCo-Skip provides an alternative skipping strategy to balance 

computational efficiency and accuracy. The combined methods show a substantial enhancement in 

counting accuracy, achieving up to 28.2% improvement for motorcycles under challenging conditions. 
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1. INTRODUCTION  

Object tracking is a critical task in various fields, including traffic analysis (Chen et al., 2020), 

construction safety management (Lin et al., 2021), infrastructure inspection (Wang et al., 2021), and 

mixed reality (Kinoshita et al., 2022). Accurately tracking objects, especially in real-time, presents 

challenges in achieving a balance between computational resources and accuracy. 

In traditional Multi-Object Tracking (MOT) algorithms, such as ByteTrack (Zhang et al., 2022), 

the Kalman filter is widely used for motion prediction, where the state vector includes parameters such 

as position, aspect ratio, and velocity. However, the assumption of zero initial velocity during the first 

few frames can lead to unsuccessful tracking, particularly under Homogenous frame-skipping scenarios. 

This issue is amplified when tracking smaller objects like motorcycles, where motion dynamics change 

rapidly. 

As a result, this study aims to address the limitations of the zero initial velocity assumption by 

proposing a method that improves the Kalman filter's initial velocity estimation. At the same time, this 

study hopes to introduce better frame-skipping strategies to mitigate the amplification of initial velocity 

inaccuracies during frame skipping. 

 

2. LITERATURE REVIEW 

2.1  Introduction to Kalman Filter 
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The Kalman Filter (Kalman, 1960), first introduced in the 1960s, was originally applied in 

spacecraft navigation and signal processing to estimate system states with noise and uncertainty. Its 

principle lies in modeling the motion of a target through a state-space model, which helps to predict 

future states while reducing noise interference by continuously updating the Kalman Filter through 

measurements. This method is most effective under the assumption that both the system model and the 

noise follow Gaussian distributions. 

The Kalman filter is based on two primary equations: the prediction and the update. 

 

(1) Prediction 

𝑥̂𝑘 = 𝐹𝑘𝑥𝑘−1 + 𝐵𝑘𝑢𝑘                                                                          (1) 

𝑃𝑘 = 𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘                                                                         (2) 

Equation (1) predict the state 𝑥̂𝑘 at the next time step based on the previous state 𝑥̂𝑘−1 and 

control inputs 𝑢𝑘. In equation (2), 𝑃𝑘is the covariance matrix that reflects the uncertainty in the state 

prediction, with 𝐹 representing the state transition matrix and 𝑄𝑘 representing the process noise. 

 

(2) Update 

𝐾𝑘 = 𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑅𝑘)−1                                                                (3) 

𝑥̂𝑘 = 𝑥̂𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘)                                                                   (4) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘                                                                                 (5) 

From Equation (3) and (4), 𝐾𝑘 is the Kalman gain, which determines how much the predictions 

should be adjusted based on the new measurements 𝑧𝑘. H represents the measurement matrix, and 𝑅 

accounts for measurement noise. At last, Equation (5) updates the covariance matrix 𝑃𝑘 by applying the 

𝐾𝑘. 

 

2.2  Kalman Filter in Multi-Object Tracking (MOT) and ByteTrack 

The Kalman Filter, as introduced earlier, has evolved significantly since its initial application 

in aerospace and signal processing. By the 2010s, it became a cornerstone in MOT algorithms due to 

its ability to estimate and predict the states of objects moving through space (Li et al., 2010; Pathan et 

al., 2009; Weng et al., 2006). In MOT, the Kalman Filter models each object's motion using a state 

vector, which typically represents the object’s position, velocity, and sometimes shape attributes. A 

common form of the state vector in MOT is: 

 

𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 =  [𝑥, 𝑦, 𝑎, ℎ, 𝑥̇, 𝑦̇, 𝑎̇, ℎ̇] 

Where: 

𝑥 and 𝑦 represent the center coordinates of the bounding box. 

𝑎 denotes the aspect ratio of the bounding box. 

ℎ is the height of the bounding box. 

𝑥̇ and 𝑦̇ are the velocities in the x and y directions, respectively. 

𝑎̇ is the rate of change of the aspect ratio. 

ℎ̇ is the rate of change of the height. 
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This allows the Kalman Filter to predict both the object's future position and its motion 

behavior. However, a key challenge in these algorithms is the estimation of initial velocity values, which 

significantly affect tracking performance. Many algorithms often default to a zero initial velocity, which 

may cause either failure of tracking, or tracking delays and inaccuracies until the velocity is correctly 

estimated after several frames. 

Recent advances in MOT, such as ByteTrack, combine the Kalman Filter with IoU 

(Intersection over Union) (Rezatofighi et al., 2019) metrics for object association. As shown in Figure 

1, IoU is used to compare bounding boxes across frames to link detections, while the Kalman Filter 

predicts motion between frames. Although this combination enhances tracking performance, the issue 

of poor initial velocity estimation remains, especially under conditions where frame skipping is required 

to reduce computational load. Frame skipping reduces the number of frames available for updates, 

making accurate initial velocity estimation even more critical for maintaining tracking accuracy. 

 

 
 

Figure 1. IoU Calculation Principle 

 

Numerous studies (Linderoth et al., 2011; Weiner, 1981; Zhao & Huang, 2017) have 

highlighted the importance of accurate initialization of the Kalman Filter. While these studies focus on 

general initialization strategies for the Kalman filter, they do not specifically address initial velocity 

assumptions. Additionally, research on frame-skipping strategies (Park et al., 2020), introduces 

algorithms to determine when to skip frames, which adds computational complexity rather than 

simplifying it. 

In response to these issues, our study focuses on developing methods to improve initial 

velocity assumption and testing new frame-skipping strategies to maintain accuracy while minimizing 

additional computational overhead across various tracking scenarios. 

3. METHODOLOGY 

In this section, we describe two key methods employed in our tracking system: Grid Mean 

State and InCo-Skip Method. These methods serve to enhance accuracy of initial trajectory estimation 

and efficiency in multi-object tracking systems, ensuring that velocity estimations are initialized 

correctly and frame-skipping strategies are optimized. 

 

3.1  Grid Mean State 

The Grid Mean State method is used to initialize the velocity vectors in our tracking system. 

This method is divided into two primary phases, namely the Initial Tracking Phase and Full Video 

Tracking Phase. The process is illustrated in Figure 2. In Initial Tracking Phase, we calculate Grid Mean 

State by leveraging the state vectors of objects being successfully tracked. Then we use Grid Mean State 

to replace the initial zero velocity assumption in subsequent Full Video Tracking Phase.  
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Figure 2. Grid Mean State Calculation Process 
 

The procedure can be broken down into the following steps: 

(1) State vector extraction 

In the Initial Tracking Phase, YOLOv8 is used to detect and track objects in the video frame. 

For each tracked object, the state vector at a given frame t is defined as follows: 

 

𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑡)  =  [𝑥, 𝑦, 𝑎, ℎ, 𝑥̇, 𝑦̇, 𝑎̇, ℎ̇] 

 

(2) Grid division and object assignment 

The entire frame is divided into a grid of predefined size, such as 16x9 (for a 16:9 aspect ratio 

video), where each grid cell corresponds to a specific section of the frame. Each grid cell is represented 

by its coordinates (i, j), where i is the horizontal index, and j is the vertical index. 

Once the frame is divided into grids, the position (x, y) of each successfully tracked object is 

used to determine which grid cell the object belongs to at each time step. Specifically, for an object 

located at coordinates (x, y), we can determine the grid it belongs to by Equation (6). 

 

𝑖 = |
𝑥

𝑔𝑟𝑖𝑑 𝑤𝑖𝑑𝑡ℎ
| , 𝑗 =  |

𝑦

𝑔𝑟𝑖𝑑 ℎ𝑒𝑖𝑔ℎ𝑡
|                                                    (6) 

 

(3) Grid Mean State computation 

For each grid cell (i, j), we compute the Grid Mean State based on the state vectors of all objects 

that appear in that grid during the Initial Tracking Phase. The mean state is calculated for the velocity 

components [𝑥̇, 𝑦̇, 𝑎̇, ℎ̇]. If no objects are tracked in a particular grid, the mean state for that grid is set 

to zero. 
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Figure 3. Visualization of Grid Mean State with Velocity Arrows 

 

(4) Usage of Grid Mean States for full video tracking 
The calculated Grid Mean State is then used to replace the initial zero velocity assumption in 

subsequent Full Video Tracking Phase. This ensures that the initial trajectory estimation is more 

accurate, particularly for small or fast-moving objects. By improving the accuracy of the first few 

frames of tracking, we allow the Kalman filter’s updates to take over and maintain accurate object 

trajectories in later frames. 

 

3.2  InCo-Skip (Inhomogeneous and Counterintuitive Frame Skip) 

In video tracking, reducing computational load is crucial, especially when dealing with real-

time processing or large datasets. A common approach is the Homogeneous Skip method, where 

alternate frames (1, 3, 5, etc.) are processed, skipping every other frame. While this method effectively 

cuts down computation by 50%, it introduces a major drawback related to initial tracking accuracy. 

Specifically, with homogeneous frame skipping, the first frame's position must be used to predict the 

object's position in the third frame. Due to the zero-initial velocity assumption in the Kalman filter, the 

predicted position in the third frame aligns with the position in the first frame, and the comparison for 

object matching is made between the first and third frames rather than the first and second frames. This 

mismatch significantly reduces the success rate of initial tracking, particularly for small or fast-moving 

objects, which might not be tracked at all. 

In response to this issue, InCo-Skip is introduced. Instead of uniformly skipping every other 

frame, this method processes consecutive pairs of frames (e.g., frames 1 and 2), then skips the next two 

frames (3 and 4), and continues by processing frames 5 and 6, skipping frames 7 and 8, and so on. This 

ensures that the tracking system has at least two consecutive frames for comparison which is similar to 

not skipping any frames at all during initial tracking. Once initial tracking is successful, skipping frame 

pairs is less detrimental to accuracy because the Kalman filter updates the object state using its learned 

velocity and direction from the previous frames. Even after skipping frame pairs, the filter can make 

stable predictions and maintain tracking continuity. 

We named this method InCo-Skip, which stands for Inhomogeneous and Counterintuitive 

Frame Skip. The name reflects both the non-uniform skipping pattern and the method’s unconventional 
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approach of skipping consecutive frames while maintaining tracking stability. The Figure 4 shows the 

comparison between Homogeneous Skip and InCo-Skip. 

 
 

Figure 4. (a) Homogeneous Skip and (b) InCo-Skip Method 

 

4. RESULTS AND DISCUSSIONS 

We evaluate the effectiveness of the two methods introduced in Section 3, Grid Mean State and 

InCo-Skip, in improving tracking accuracy, particularly for motorcycles under Homogenous frame-

skipping scenarios. The primary metric we are concerned with is Counting Accuracy, which refers to 

how accurately the tracking system, based on YOLOv8, can count vehicles compared to manual counts.  

Tracking accuracy is also influenced by the IoU threshold, which is a crucial parameter in the 

tracking process. A well-chosen IoU threshold can enhance tracking performance and improve the 

overall accuracy of vehicle counts. Therefore, in the upcoming tests, we will compare the effects of 

different IoU values on tracking accuracy to understand their influence on our evaluation of traffic flow. 

This study conducts initial testing on a five-minute video at 30 frames-per-second (fps), 

capturing traffic flow as shown in Table 1. The accuracy for cars remains consistent even under 

Homogeneous Skip. However, accuracy of motorcycles drops significantly, likely due to smaller object 

sizes and faster movement speeds. This observation motivates the need for more robust methods to 

ensure that frame skipping, which is essential for real-time processing or large datasets, does not lead 

to substantial accuracy loss. Thus, we test and evaluate the Grid Mean State and InCo-Skip methods to 

see how they mitigate this issue. 
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Table 1. Accuracy comparison of car and motorcycle in No Skip and Homogeneous Skip 

Vehicle 

Type 

 
*IoU threshold 

 Accuracy (%)  
Difference 

  No Skip Homogeneous Skip  

Car  0.20 ~ 0.01  98.6  98.6   0 

Motorcycle 

 0.20  98.5  54.9  ↓43.6 

 0.10  98.5 63.4  ↓35.1 

 0.05  98.5 66.2  ↓32.3 

 0.01  98.5 77.5  ↓21.0 

* In YOLOv8, the value of 1 - IoU is used as the match threshold. 

 
4.1  Effect of Grid Mean State on motorcycle accuracy under frame-skipping scenarios 

This section compares motorcycle counting accuracy using a zero-initial velocity state 

versus the Grid Mean State method under frame-skipping scenarios. As shown in Table 4.2, 

applying the Grid Mean State improves motorcycle accuracy under Homogenous frame-skipping 

conditions, accuracy increases from 54.9% to 60.6% at IoU = 0.20. However, the effect of the Grid 

Mean State diminishes at lower IoU thresholds. 

Conversely, in the InCo-Skip scenario, the Grid Mean State method shows clear 

improvements across all IoU thresholds, with an increase in accuracy of up to 18.3% at IoU = 0.20. 

However, as the IoU value decreases, the increase in accuracy becomes less significant. In 

summary, we observe that regardless of whether in the Homogeneous Skip or InCo-Skip scenario, 

the Grid Mean State has a more significant impact at higher IoU values. 

 
Table 2. Motorcycle accuracy using Grid Mean State vs. Zero Initial Velocity 

Skip Method 

 
IoU 

threshold 

 Accuracy (%)  

Difference 
  

Zero Initial 

Velocity  

Grid Mean 

State 
 

Homogenous 

 0.20  54.9 60.6  ↑5.7 

 0.10  63.4 63.4  0 

 0.05  66.2 64.8  ↓1.4 

 0.01  77.5 77.5  0 

InCo-Skip 

 0.20  39.4  57.7  ↑18.3 

 0.10  78.9 87.3  ↑8.4 

 0.05  88.7 94.4  ↑5.7 

 0.01  95.8 95.8  0 
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4.2  Effect of InCo-Skip vs. Homogeneous Skip on motorcycle accuracy 

In this section, this study compares the performance of the InCo-Skip method against 

Homogeneous Skip in terms of motorcycle counting accuracy, focusing on the impact of different 

IoU thresholds and the initial velocity assumption (zero velocity or Grid Mean State). As shown 

in Table 3, the results highlight some key patterns. 

The InCo-Skip method underperforms compared to Homogeneous Skip at a higher IoU 

threshold (0.20), with a 15.5% and 2.9% decrease in accuracy. However, as the IoU threshold 

decreases, InCo-Skip shows a remarkable improvement, outperforming Homogeneous Skip by up 

to 29.6% at IoU=0.05. This suggests that InCo-Skip is particularly effective in lower IoU value. 
 

Table 3. Motorcycle accuracy using Homogeneous Skip vs. InCo-Skip 

Initial 

Velocity 

 
IoU threshold 

 Accuracy (%)  
Difference 

  Homogeneous Skip  InCo-Skip  

Zero 

 0.20  54.9 39.4  ↓15.5 

 0.10  63.4 78.9  ↑15.5 

 0.05  66.2 88.7  ↑22.5 

 0.01  77.5 95.8  ↑18.3 

Grid 

Mean 

State 

 0.20  60.6  57.7  ↓2.9 

 0.10  63.4 87.3  ↑23.9 

 0.05  64.8 94.4  ↑29.6 

 0.01  77.5 95.8  ↑18.3 

 

4.3  Combined performance of Grid Mean State and InCo-Skip methods 

In this section, we evaluate the combined effect of using both the Grid Mean State and 

InCo-Skip methods on motorcycle counting accuracy. As observed in previous sections, the Grid 

Mean State method shows better accuracy improvements at higher IoU thresholds, while the InCo-

Skip method performs better at lower IoU thresholds. Therefore, the combination of these two 

methods aims to leverage the strengths of both, mitigating each other's limitations. 

Table 4 demonstrates that when using both methods, the motorcycle counting accuracy 

improves across all IoU thresholds compared to using only the Zero Initial Velocity with 

Homogeneous Skip. At higher IoU thresholds, the improvement is modest, but at lower IoU 

thresholds, the accuracy gains are more pronounced, showing notable improvements in counting 

accuracy of up to 28.2%. 
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Table 4. Motorcycle accuracy with both methods vs. Zero Initial Velocity + Homogeneous Skip 

IoU threshold 
 Accuracy (%)  

Difference 
 Baseline Both Methods  

0.20  54.9 57.7  ↑2.8 

0.10  63.4 87.3  ↑23.9 

0.05  66.2 94.4  ↑28.2 

0.01  77.5 95.8  ↑18.3 

 

To provide a clear recommendation for practical use, our results indicate that setting the 

IoU threshold between 0.05 and 0.10 yields the most consistent improvement in tracking accuracy 

when both the Grid Mean State and InCo-Skip methods are applied. By combining these two 

methods, it effectively balances the strengths of each, reducing the shortcomings observed when 

using either method in isolation. 
 

5. CONCLUSIONS 

In this paper, this study proposed two methods, Grid Mean State and InCo-Skip, to address the 

challenge of maintaining tracking accuracy for motorcycles in frame-skipping scenarios. Our results 

showed that while car accuracy remained high, motorcycle accuracy significantly dropped during 

homogeneous skipping. The Grid Mean State method was more effective at higher IoU thresholds, 

while InCo-Skip performed better at lower IoU thresholds. 

By combining both methods, we achieved improved accuracy across all conditions, 

highlighting the complementary strengths of each approach. These findings suggest that our methods 

provide a practical solution for maintaining high tracking accuracy while accommodating frame 

skipping demands, which is particularly beneficial in real-time applications and when handling large 

datasets. 

 

6. FUTURE WORK 

In this study, the primary focus was on evaluating the effectiveness of the proposed methods 

based on counting accuracy, using a single test video for performance assessment. While this approach 

provided initial insights into the methods' potential, there are several areas for further exploration and 

improvement. 

Future work should involve testing on a wider range of publicly available datasets like MOT17 

and BDD100K to validate the methods' robustness across diverse scenarios. Additionally, while 

counting accuracy was the main metric, future research should incorporate other multi-object tracking 

(MOT) performance metrics, such as ID switch, MOTA (Multiple Object Tracking Accuracy), MOTP 

(Multiple Object Tracking Precision), and Track Fragmentation. These metrics will provide a deeper 

understanding of the proposed methods' strengths and limitations, assessing not only accuracy but also 

stability in more challenging environments. 
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