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Abstract 
In recent years, autonomous driving vehicles are attracting growing commercial and 

scientific attention. How to detect and recognize objects in a complex real-world road 
environment represents one of the most important problems facing autonomous vehicles 
and their ability to make decisions on the road and in real time. While color imaging 
remains a rich source of information, LiDAR scanners can collect high quality data under 
different lighting conditions and can provide high-range and high-precision spatial 
information. Expanding object detection by processing simultaneously data collected by 
a color camera and a LiDAR scanner brings new capabilities to the field of autonomous 
driving. In this paper, a 3D object detector is proposed with focal loss and Euler angle 
regression to optimize the detector’s performance. It uses a bird’s-eye view map 
generated from a LiDAR point cloud and RGB images as input. Results show that the 
proposed 3D object detector reaches a speed over 46 frames per second and an average 
precision over 90%. In addition, a more compact detector is also proposed that processes 
the same input data three times faster with only slightly lower accuracy. 

1 Introduction 
Autonomous driving vehicles have been part of people's vision of the future. With the rise of 

artificial intelligence in recent years, autonomous driving received significant investment from 
companies. One of the critical tasks involved in autonomous driving is to detect passing pedestrians, 
vehicles, and other objects on the road, so that the vehicle can make corresponding driving decisions 
and ensure public safety. These requirements lead to the development of efficient object detection and 
recognition technologies. 

The development of deep learning methods brought unprecedented progress in the field of objects 
detection and recognition. Recent research shows that bringing depth information into the detection 
model can increase the detector’s performance and supersede the traditional 2D mapping for 
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autonomous driving. Compared to stereo cameras and active depth sensors, light detection and ranging 
(LiDAR) scanners performance is not significantly affected by ambient lighting conditions, and as a 
result they can provide consistent high-precision spatial information. Hence, they became increasingly 
popular for 3D object detection tasks in outdoor environments. 

While the point cloud collected by LiDAR scanners can reflect the shape and posture information 
of the objects in the real world, it does not carry texture or color information. Therefore, the point cloud 
collected by a LiDAR scanner often needs to be preprocessed and combined with RGB images for the 
detector to fully leverage 3D location, as well as color and texture information. 

The main contributions of this research include the merge of Euler angle’s regression to DarkNet-
53 [1] convolutional neural networks for defining a 3D object detector to classify and localize cars, 
pedestrians, and cyclists from LiDAR point clouds and RGB images in real-world road scenes. To 
reduce calculation and memory usage during training and testing, the LiDAR point cloud is converted 
into a bird’s-eye view (BEV) map using coordinate systems transformation and height thresholding. 
Finally, the proposed architecture is adapted to merge a focal loss [2] and a generalized intersection 
over union (GIoU) loss [3] with the objective to handle biased data and optimize the proposed model. 
The solution is trained, and its object recognition performance is tested on real-world data provided by 
the KITTI vision benchmark suite [4]. 

2 Technical Background and Literature Review 
2.1 LiDAR Technology 

To provide reliable navigation for autonomous vehicles, as well as vision support for safe driving 
and decision-making, on-board sensors are needed to provide highly accurate and informative data 
about the environment as well as precise object positioning. Compared to using RGB cameras to take 
pictures, LiDAR technology is not sensitive to variations in lighting conditions and can work over day 
and night, even with glare and shadows. The LiDAR scanner used to collect point clouds for the KITTI 
dataset [4] and considered in this research is the Velodyne’s HDL-64E. It is a 64 channels multi-beam 
mechanical LiDAR scanner, that continuously rotates the head to achieve dynamic 3D scanning. It 
covers a 360° horizontal and 26.9° vertical field of view [4]. Although the data provided by LiDAR 
reports on accurate 3D location, it does not contain color information. Therefore, in this work, both 
color images provided by a collocated RGB camera and 3D point clouds provided by the LiDAR are 
used. 

2.2 3D Object Detectors using LiDAR Point Cloud 
3D object detection and recognition require not only the traditional RGB or grayscale image, but 

also depth information, that is, the position coordinates of each pixel in space. For this reason, 3D 
detection tasks usually require larger and more complex training and testing datasets, which leads to 
higher requirements in data processing and computing capabilities.  

3D object detectors can be divided into two-stage or single-stage solutions based on the method they 
use. Popular two-stage detectors include MV3D-Net [5] and AVOD [6]. MV3D-Net uses both RGB 
images and a LiDAR point cloud as input. The model combines a 3D object proposal network and a 
region-based fusion network to efficiently generate 3D candidate boxes over a bird’s-eye view (BEV) 
and a front view, both extracted from the point cloud. AVOD and MV3D-Net hold many similarities. 
The main difference is that MV3D-Net uses a VGG16 based network for feature extraction, while 
AVOD uses feature pyramid networks (FPN), which can prevent the decrease of the resolution in the 
feature maps and keep low-level and high-level information. In this way, AVOD can significantly 
improve the detection accuracy on small objects. 
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One-stage detectors such as PIXOR [7] and PointPillars [8] also contributed to the development of 
3D object detection. PIXOR discretizes the point cloud of a scene with equally spaced units and encodes 
the reflectivity in a similar manner to obtain a regular representation. Then, a fully convolutional 
network (FCN) is used to estimate the position and heading angle of the target with respect to the sensor. 
Its detection speed can reach over 28 frames per second (FPS). Unlike the way that PIXOR manually 
designs features, PointPillar directly stacks the points that fall into each grid and calls it a ‘Pillar’. It 
then maps the learned feature vector back to the grid coordinates to get data similar to the image.  

In summary, LiDAR point cloud-based 3D object detection algorithms mainly vary in the data 
preprocessing method and detector structures. For preprocessing the input data, compared with voxel-
based methods or directly using point cloud, generating different 2D viewpoints from the original point 
cloud would be more efficient and more practical for applications without high computational power 
hardware. Furthermore, fusing the LiDAR point cloud and RGB images can provide the detector with 
both the 3D information and color features, which can improve the detector’s performance. The 
optimization methods of the models include but are not limited to the fusion of various models, 
improvement of the loss function, and adjustment of the model depth. The proposed methodology in 
this work addresses both the data preprocessing and the optimization of the models. 

3 Point Cloud Preprocessing 
A 3D point cloud is the default representation of the data collected by a LiDAR scanner. There are 

two major ways to process a 3D point cloud: one is directly processing a 3D representation; another is 
to convert the 3D mapping into its equivalent 2D representation. In recent work using the LiDAR point 
cloud for object detection and recognition [9, 10, 11], researchers directly train the detector on the 3D 
point clouds [12] with the consequence that convolution operations take more time and memory 
compared to when information is encoded in 2D. Alternatively, some models like MV3D-Net [5] opt 
for converting the point cloud to a front view and a BEV map, which proves more efficient than 
processing the 3D point cloud directly, while not lowering the accuracy. 

The BEV map is a graphical representation of the point clouds from a bird's-eye view. It is obtained 
by projecting the discrete LiDAR point cloud on a plane perpendicular to the height direction. 
Therefore, a BEV map forms an equivalent representation of the 3D location information contained in 
the LiDAR point cloud. The front forward view and color information is provided from corresponding 
RGB images. Therefore, all the required information can be obtained by combining the BEV maps 
converted from LiDAR point clouds and the RGB images. This section explains how the LiDAR point 
clouds and RGB images are preprocessed and converted into BEV maps. 

1. Data Registration  

The 3D point cloud and RGB images are obtained from different sensors and must be registered 
before the two sets of data are used together as input. With the help of the calibration matrices from the 
dataset, the registration of the LiDAR point clouds and RGB images is performed using coordinate 
transformation to align LiDAR axes and origin to the RGB coordinates. 

2. Mapping 3D Points within Region of Interest to 2D Pixels 

In the dataset considered, the point cloud of each scene represents approximately 1.9 MB, which 
increases computation time for both training and testing and reduces detection efficiency. Therefore, it 
is useful to focus on a region of interest (ROI) in the point cloud. To balance the model’s efficiency 
while covering all the annotated target objects in the corresponding RGB image, the ROI over the point 
cloud is manually set as a rectangle that spans 40m on either side of the LiDAR scanner, and 80m in 
front of it.  
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The point cloud data collected from the LiDAR scanner are 3D points with real (x, y, z) values that 
carry depth information. The registered points within the ROI are then mapped into integer values that 
represent the pixel location on the discretized bird’s-eye view (BEV) map. 

3. Recording the Height and Intensity Information 

After the coordinates (x, y) that represent each pixel in the BEV map are obtained, the height 
information represented by the values on the Z-axis and the intensity information represented by the 
4th values contained in the source point cloud are extracted. 

Inspired by PIXOR [7], a vertical ROI on the Z-axis is selected to support a height thresholding 
operation that is applied to preserve only data from the point cloud that are within the selected height 
of the ROI. Next, the height coordinates (on Z-axis) within the ROI are rescaled into ]0, 255[, and the 
height coordinates outside the ROI are forced to 0 or 255. Finally, the height values of the points in the 
point cloud that are mapped into the same 2D pixel position on the BEV map are cumulated and 
recorded to the height channel of the BEV map. Compared with using the maximum height of each 
pixel position [13], the cumulation method appears to be less affected by the changes in elevation of 
the objects due to the slope of the road. Unlike MV3D-Net [5] that manually selects multiple ranges on 
the Z-axis and accumulate the values of the points within the ranges to generate multiple height channels 
for each 2D point in the BEV map, the proposed method performs a single height thresholding operation 
to create one height channel. This contributes to make the detection process more efficient. 

Similarly, the intensity information contained in the point cloud as the 4th value for each 3D point 
contained within the selected height ROI and falling within the same 2D pixel position on the BEV map 
is accumulated and recorded to the intensity channel. The resulting preprocessed point cloud data is 
used as part of the input for the proposed 3D object detector.  

4 Model Architecture 
The proposed method for 3D object detection combines a BEV map generated from a LiDAR point 

cloud and the associated RGB image information as a single 5-channel (height, intensity, R, G, B) input 
for every 2D pixel coordinate in the BEV map.  

The BEV map part of the input represents the bird’s-eye view over the detection range, with a 
cumulated height channel and cumulated intensity channel. The RGB image is resized with bilinear 
interpolation and padded with [𝑅, 𝐺, 𝐵] = [128, 128, 128] to match the size of the BEV map. It forms 
the RGB part of the input, which represents the front forward view as found in autonomous driving, 
with three different color channels (R, G, B). Doing so preserves both the 3D information collected by 
the LiDAR scanner in the distribution of feature points over the 2D BEV map and the color information 
collected by the RGB camera.  

The output of the proposed model represents the detection and recognition confidence over a number 
of object classes, with prediction matrices at three different scales. The prediction matrices are used to 
draw B-Boxes around detected target objects and to label their respective classification. 

Given the importance of making quick decisions in autonomous driving, any improvement in object 
detection speed while maintaining high object detection accuracy is valuable. With this in mind, a 
single-stage detection model is proposed in this paper. 

As shown in Figure 1, the backbone of the proposed object detection model is based on DarkNet-
53 [1], modified to include the preprocessing stage of the BEV maps and the RGB images described in 
Section 3. The detection head is based on the YOLOv3 anchor regression method, modified by adding 
BEV variables and rotation angle regression. Inspired by complex YOLO [14], the rotation angle 
encoding uses Euler representation.   
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Figure 1: Proposed 3D object detection model structure: (a) preprocessing converts a 3D point cloud into a 5-

channel 2D BEV map with rescaling of the corresponding RGB image, (b) structure of the backbone of the 
proposed model, (c) structure of feature pyramid network (FPN), (d) detection head which outputs prediction 

matrices at three different scales, and (e) respective structure of CBL (top) and res unit (bottom). 

4.1 Detection Head with Euler Angle Regression 
Through the backbone convolutional neural networks and the FPN, feature maps at three different 

scales are extracted from the input of the proposed model. As shown in Figure 1d, a detection head is 
used to generate the detection and recognition results based on these feature maps.  

Within the detection head, each feature map will be divided into grid cells. For each grid cell, there 
are three anchors at different scales. Anchors are priors for bounding boxes (B-Box). They are 
equivalent to a reference frame for the predicted B-Box. Based on this reference, the predicted B-Box 
generated by the detection head only needs to be fine-tuned based on this anchor. For every anchor, 
there is a prediction matrix that contains the parameters used for regression during training and the 
detection result. The output prediction matrix of the proposed detection head contains the B-Box 
prediction matrix for both the RGB front forward view and the BEV, a confidence score, and 
classification scores over the 3 targeted object classes, namely car, pedestrian, or cyclist. 

To adapt to the different viewpoints of the predicted output, based on Yolov3 [1], the B-Box 
prediction matrix for the proposed detection head is modified. It is divided into two parts: one for the 
front forward view, another one for the BEV, as shown in Figure 2. The prediction matrix contains 14 
parameters (i.e., N = 14 in Figure 1d). The confidence score 𝑝!  indicates the confidence that the 
predicted B-Box contains an object. If this predicted B-Box corresponds to the background, then this 
value should be 0. The classification scores 𝑝", 𝑝#, 𝑝$ represent the possibility that the category of the 
predicted B-Box falls into ‘car’, ‘pedestrian’ or ‘cyclist’ respectively. For the final output, only the B-
Box with 𝑝! higher than a detection threshold will be kept, and the classification shows max	(𝑝", 𝑝#, 𝑝$). 
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Figure 2: Converting the prediction matrix into B-Box: (a) front forward view B-Box, (b) BEV B-Box, (c) 

prediction matrix of the detector with 14 parameters. 

Objects of primary interest in the context of autonomous driving, such as cars, pedestrians, and 
cyclists can generally be considered as standing or moving on the ground. Therefore, the front forward 
view bounding box surrounding a detected object on the RGB image can be represented by 4 
parameters, that are the center coordinates, 𝑡%& , 𝑡%', and the width and height, 𝑡%( , 𝑡%), of the B-Box as 
shown in Figure 2a. 

As shown in Figure 2b, different from the B-Box on RGB images, the BEV B-Box might not be 
parallel to the BEV map’s coordinate axes. To predict the relative rotation of the B-Box, as inspired by 
complex YOLO [14], a Euler representation of the rotation angle is added to the prediction matrix of 
the proposed model. Hence, the BEV prediction matrix obtained from the regression of the proposed 
model contains 6 variables: Aside from the offsets of the B-Box centre coordinate 𝑡*& , 𝑡*', and the 
scaling of the width and height 𝑡*( , 𝑡*), there is also the Euler representation of the rotation angle of 
the B-Box, 𝑡+, and 𝑡-.. 

4.2 Loss Functions 
The loss function used in the proposed model consists of a combination of classification loss, B-

Box regression loss, and confidence loss. Compared to YOLOv3 [1], the regression loss uses 
Generalized Intersection over Union (GIoU) [3] instead of mean square error (MSE). Moreover, to 
optimize the performance of the detector, the Euler angle is added to the B-Box regression loss. For the 
classification loss, focal loss [2] is added to address the imbalance problem in the training dataset. 

1. Regression Loss 

To match with the Euler angle regression network, a combination of GIoU [3] and Euler angle 
regression is used for the B-Box regression. The GIoU of the predicted B-Box and ground truth B-Box 
is computed as: 

𝐺𝐼𝑜𝑈 =	 !
"!∪""

−	$
#%("!∪"")

$#
	 																						 	 (1) 

Where 𝐵/, 𝐵0 are the ground truth B-Box and the predicted B-Box respectively. 𝐼 is the intersection 
of the ground truth and predicted B-Boxes, and 𝐵/ ∪ 𝐵0 is the union of the two B-Boxes. 𝐴% represents 
the smallest convex shape that encloses both 𝐵/ and 𝐵0.  𝐴% − (𝐵/ ∪ 𝐵0) represents the area that is 
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inside 𝐴% but outside (𝐵/ ∪ 𝐵0). The GIoU loss for the front forward view is represented by 𝐿1+23 =
1 − 	𝐺𝐼𝑜𝑈. 

Since the B-Box prediction matrix contains 4 variables for the front forward view and 6 variables 
for the BEV, the B-Box regression loss is divided into two parts: GIoU loss (𝐿1+23) for the front forward 
view prediction matrix, and Euler GIoU (𝐿1+234 ) for the BEV prediction matrix. 

2. Classification Loss 

In YOLOv3 [1], cross entropy loss [15] is used for classification. Ideally, a non-biased training 
dataset helps the model to learn the features for multi-class object detection and recognition, and cross 
entropy loss would be suitable. However, among the three classes considered in this research (car, 
pedestrian, cyclist), the training data provided by KITTI [4] contains 82% of the total objects in the class 
“car” and less than 5% of cyclist, which represents a bias. Inspired by [2], focal loss is used to replace 
cross entropy loss, which represents a first usage of focal loss on BEV maps to the best of our knowledge.  

𝐿()*+ = ∑ ∑ I,,.
/0. ∑ [�̂�((1 − 𝑝()1log(𝑝() + (1 − �̂�()�̂�(

1log(1 − 𝑝()]2∈2456676
"
.89

:$
,89   (2) 

𝐼,,.
/0. = 61, if		object ∈ the	𝑗

;<	anchor
0, otherwise	

     (3) 

 Where 𝛾  is the relaxation parameter. The higher value of γ, the more “focus” will be given to 
misclassified examples, and the less loss will be propagated from examples. 𝑆# represents the number of 
grid cells, which is equal to the size of the feature map. In the proposed experiment, 𝑆# has three sizes: 
19 × 19, 38 × 38, 76 × 76. 𝐵 represents the B-Box. I5,7

2*7 is a binary value that indicates whether the 
𝑗8) B-Box of the 𝑖8) grid cell’s GIoU value is larger than the GIoU threshold. 𝑝% and �̂�% are the ground 
truth and the prediction classification score for class c. 

3. Confidence Loss 

The confidence loss is used to measure the objectiveness of the B-Box. The proposed model uses 
focal loss for confidence loss, as follows: 

𝐿(/= 	= 	∑ ∑ 𝐼,.
/0."

.89
:$
,89 H𝐶J,(1 − 𝐶,)1 log(𝐶,) + K1 − 𝐶J,L𝐶J,

1 log(1 − 𝐶,)M + 𝜆=//0. ∑ ∑ 𝐼,.
=//0."

.89
:$
,89 H𝐶J,(1 −

𝐶,)1 log(𝐶,) + K1 − 𝐶J,L𝐶J,
1 log(1 − 𝐶,)M       (4) 

𝐼,,.
/0. = 61, if		object ∈ the	𝑗

;<	anchor
0, otherwise	

          (5) 

𝐼,,.
=//0. = 61, if	the	𝑗

;<	anchor	is	background
0, otherwise	

        (6) 

𝐶J, =	 �̂�,(𝑐) × (𝐺𝐼𝑜𝑈 + 𝐺𝐼𝑜𝑈>)     (7) 

𝐶, = 61, if		object ∈ the	𝑗
;<	anchor

0, otherwise	
     (8) 

If an object is detected in the B-Box, the confidence loss is ∑ ∑ 𝐼,.
/0."

.89
:$
,89 H𝐶J,(1 − 𝐶,)1 log(𝐶,) +

K1 − 𝐶J,L𝐶J,
1 log(1 − 𝐶,)M. 𝐶F5 is the confidence score of the 𝑗8) prediction B-box in 𝑖8) grid cell, and 𝐶5 is 

the ground truth, that is whether the B-Box contains an object. 

In a real-life situation, most B-Box do not contain any object. This causes an imbalance problem 
where the background or negative samples are more frequently detected by the model than the objects or 

3D Objects Detection and Recognition from Color and LiDAR Data... L. Kang and P. Payeur

48



some positive samples. To address this, the confidence loss is weighted down by a factor 𝜆922*7, which 
if no object is detected in the box (detected background only), the confidence loss will be 
𝜆=//0. ∑ ∑ I,.

=//0."
.89

:$
,89 H𝐶J,(1 − 𝐶,)1 log(𝐶,) + K1 − 𝐶J,L𝐶J,

1 log(1 − 𝐶,)M, where 𝐼57
922*7 is the complement of 

𝐼57
2*7 	and	𝜆922*7 weighs the loss down.  

In summary, the loss function of the proposed detector combines the two GIoU regression losses 
(𝐿1+23 on the front forward view and the Euler angle loss 𝐿1+234  on the BEV view), the focal classification 
loss (𝐿%:;< ), and the confidence loss (𝐿%29). The combination of all components leads to the general loss 
function: 

𝐿	 = 	𝛼?𝐿()*+ 	+ 𝛼@𝐿A!/B + 𝛼C	𝐿A!/B> 	+ 𝛼D	𝐿(/=    (9) 

Where 𝛼", 𝛼#, 𝛼$, 𝛼= are the weights for each part of the loss function, which are optimized based 
on experimental results. 

5 Experimental Results 
The performance of the proposed model is compared with other popular 3D object detectors that 

also use KITTI evaluation metrics with KITTI LiDAR data as input. The testing results show that the 
proposed model achieves a framerate of 46.4 frames per second (FPS) using a single NVIDIA Tesla 
V100 GPU while maintaining a high detection accuracy, computed as mean average precision (mAP). 
 

Table 1: Comparative evaluation of existing 3D detectors and the proposed detector on KITTI dataset. 

On cases annotated as “easy” according to the KITTI evaluation metrics, the proposed full detector 
performs best among the listed detectors in Table 1, leading the second best by over 3%. Compared 
with other detectors that use both the LiDAR point cloud and RGB images, such as MV3D-Net [5], 
AVOD [6], PIXOR [7], MMF [19], F-PointNet [16] and F-ConvNet [17], the proposed detector shows 
higher mAP on moderate and hard samples. As shown in Table 1, some models that use only a LiDAR 
point cloud as input reach better detection results on hard tasks compared with models that combine a 

 Method Data Speed 
(FPS) 

mAP 
Easy Moderate Hard 

Two 
Stages 

MV3D-Net [5] LiDAR + RGB 2.7 86.49 78.98 72.23 
AVOD [6] LiDAR + RGB 10 89.74 84.81 78.12 

F-PointNet [16] LiDAR + RGB 5.7 91.16 84.61 74.77 
F-ConvNet [17] LiDAR + RGB 1.9 91.44 85.84 76.11 

Fast Point R-CNN [18] LiDAR 15.3 90.87 87.71 80.51 
MMF [19] LiDAR + RGB 12.2 86.81 76.75 68.41 
STD [20] LiDAR 10 89.93 86.20 79.42 

Single 
Stage 

VoxelNet [9] LiDAR 4.2 87.95 78.39 71.29 
SECOND [10] LiDAR 19.7 89.33 82.87 78.51 
PointPillars [8] LiDAR 41.9 90.07 86.56 82.81 
SA-SSD [11] LiDAR 24.4 88.75 79.79 74.16 
PIXOR [7] LiDAR + RGB 2.8 86.78 80.75 76.77 

Proposed detector LiDAR + RGB 46.4 94.71 87.33 81.52 
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LiDAR point cloud and a RGB image. Sample experimental results are presented in the appendix 
(Figures 3 and 4) where predicted bounding boxes are displayed over the front forward RGB image 
(upper part) and the corresponding BEV map (lower part) for detected objects belonging to the three 
classes. Although combining with RGB images may weaken the model's ability to adapt to occlusions 
compared with using only a LiDAR point cloud as input, the proposed model demonstrates good 
detection results on testing scenes with occlusion. 

6 Mini 3D Object Detector 
With the continuous development of deep convolutional neural networks and the wide range of 

applications in this field, in addition to pursuing always higher accuracy, researchers also want to 
achieve higher detection speed. Ideally, a detector should be "compact", that is, the memory 
requirements and the amount of calculation involved in the detection must be limited as the availability 
of advanced hardware support is low for applications such as autonomous vehicles. These constraints 
motivate the development of deep convolutional neural networks that are better suited for widespread 
deployment on embedded devices. Therefore, although the detection speed of the full-scale detector 
proposed in Section 5 reaches up to 46.4 FPS, which is 15 times faster than PIXOR [7] and 3 times 
faster than MMF [19], we still want to explore the possibility of designing a lightweight network that 
uses fewer feature matrices to execute the same 3D object detection and recognition tasks. 

6.1 Mini Detector Structure 
The proposed mini detector merges the structure of tiny-YOLO [21] and the proposed full-scale 

detector to generate feature maps at 2 different scales. The mini detector’s detection speed can reach up 
to over 3 times that of the proposed full-scale detector, therefore is more adaptable on mobile devices, 
while reaching a compromise on detection performance. 

The main difference of the mini detector compared to its full-scale version is the backbone and FPN. 
The mini detector uses a DarkNet-19 [22] based backbone, modified to the input of the BEV map and 
corresponding RGB image. Compared to the 53-layers backbone of the full-scale detector, the mini 
detector’s backbone only has 19 layers, that is about 1/3 the depth.  For the mini detector only two 
different scales of feature maps are generated and passed to the detection head, compared to three in 
the full-scale version, to reduce the calculation. The detection head then converts the feature maps into 
prediction result. Otherwise, the detection head uses the same design as in the proposed full model and 
the same loss function, eq. (9), for training. 

6.2 Experimental Results with the Mini Detector 
For a fair comparison of performance with the two proposed detectors, the mini detector is trained 

and tested on the same software and hardware environment as the full detector. Moreover, the training 
and testing dataset remains the same. Table 2 presents the detection and recognition results of both the 
mini detector and the full detector on 1500 pairs of the LiDAR point cloud and the corresponding RGB 
images. 
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Table 2: Detection speed, precision, recall, AP and F1 estimated on each class and mAP on 1500 test samples 
with all three target classes for the mini detector compared with the full detector. 

As shown in Table 2, the mini detector achieves a good performance on detecting cars with AP 
higher than 0.9, but lower reliability on “pedestrian” and “cyclist” targets. This originates from the 
imbalance in the training dataset that contains no more than 20% of positive samples for the pedestrian 
and cyclist classes. Although FPN and focal loss [2] are used to reduce the impact of data imbalance, 
with fewer layers and less features extracted in the mini model, testing results suffer more from the 
imbalance than with the full detector. Conversely, the speed of the mini detector is 3.4 times faster than 
that of the full detector when tested in the same environment, while a 7.5% mAP reduction is observed. 

7 Conclusion 
Recent research shows an outstanding performance of convolutional neural networks in the field of 

computer vision and its potential for 3D image processing. Capitalizing on high-quality 3D point clouds 
collected by a LiDAR scanner and fusing the point clouds with corresponding RGB image contents, 
two deep learning architectures are proposed to further leverage the power of convolutional neural 
networks for 3D object recognition to assist in autonomous driving. 

The input data of the proposed detectors contains a BEV map generated from the LiDAR point cloud 
along with information from a registered and rescaled RGB image that provides a front forward view. 
In the design of the proposed detector model, GIoU loss [3] and DarkNet-53 from a single stage detector 
YOLOv3 [1] are merged. The detection speed of the proposed full-scale model reaches up to 46.4 FPS 
in a single GPU-based implementation, with mAP over 90%.  

To explore faster and lighter detection models better suited for real time and vehicle embedded 
implementations, a mini detector is also proposed by combining a compact 19-layer network model 
with key concepts of the proposed full-scale detector, which reaches mAP over 82%. Experiments 
demonstrate that compared to the full-scale detector, the mini detector takes about 2/3 of the training 
time and 1/3 of the testing time. A reasonable trade-off between processing time and accuracy can 
therefore be achieved for time-critical applications. 

 Class Mini detector Full detector 
Speed (FPS)  158.97 46.4 

Precision 
Car 0.8922 0.9065 

Pedestrian 0.4783 0.6389 
Cyclist 0.6874 0.7951 

Recall 
Car 0.9572 0.9868 

Pedestrian 0.6231 0.9317 
Cyclist 0.8772 0.9524 

AP 
Car 0.9371 0.9794 

Pedestrian 0.6908 0.8272 
Cyclist 0.8544 0.9013 

F1 
Car 0.9247 0.945 

Pedestrian 0.3838 0.758 
Cyclist 0.7832 0.8667 

mAP  0.8274 0.9026 
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Appendix: Experimental Results Visualization 

 
Figure 3: Samples cases  comparing the ground truth (left), with detections from the mini detector (center), and 
from the full-scale detector (right), with B-Boxes (yellow = car; red = pedestrian; blue = cyclist) superimposed 

over front forward RGB image (upper part) and over corresponding BEV map (lower part). 
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Figure 4: Additional samples cases comparing the ground truth (left), with detections from the mini detector 
(center), and from the full-scale detector (right), with B-Boxes (yellow = car; red = pedestrian; blue = cyclist) 

superimposed over front forward RGB image (upper part) and over corresponding BEV map (lower part). 
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