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Abstract

We extend epistemic logic S5r for reasoning about knowledge under hypotheses with
distributive knowledge operator. This extension gives possibility to express distributive
knowledge of agents with different background assumptions. The logic is important in com-
puter science since it models agents behavior which already have some equipped knowledge.
Extension with distributive knowledge shows to be extremely interesting since knowledge
of an arbitrary agent whose epistemic capacity corresponds to any system between S4 and
S5 under some restrictions can be modeled as distributive knowledge of agents with cer-
tain background knowledge. We present an axiomatization of the logic and prove Kripke
completeness and decidability results.

1 Introduction

In this paper we take further study a of the logic of hypotheses S5r, enriched with epistemic
operators. In recent work [9] we have studied extension of the logic S5r by common knowledge
operator. In the current work we study enrichment of the logic by distributive knowledge
operator. The logic S5r has been introduced in [7]. It is an extension of the epistemic logic S5
with a modal operator ‘[·]’ that can be parameterized with a hypothesis. The operator can be
described as relative necessity, a notion already used by Chellas to describe conditionality [1].

The modal operator [ϕ] stands to represent the knowledge state where the hypothesis ϕ is
assumed. The formula [ϕ]ψ can be read as ‘under the hypothesis ϕ, the agent knows ψ’. If
ϕ happens to be true at the current world and the agent knows that ϕ implies ψ, then the
agent knows ψ; otherwise, i.e., if ϕ is false, the agent knows only what it would know anyway,
i.e. without any assumptions. This way of reading of the modality [ϕ]ψ is supported by the
following reduction axiom [ϕ]K ψ ↔ [>]K ψ ∨ (ϕ ∧ [>]K (ϕ→ ψ))

For instance, consider a simple dice game, where the game is won if, and only if, a three or a
six has been rolled. The formula ‘[> ] (three∨ six↔ win)’ states that the agent knows this rule.
The parameter ‘>’ of the box-modality stands for the fact that no hypothesis is being adopted
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by the agent. Suppose that the dice is rolled under a cup, so that the rolled number of points is
concealed from the agent. Consequently, as long as the dice remains concealed, the agent does
not know whether or not the game is won. This can be described by the formula ‘¬ [> ]win’.
However, the agent knows that the game is won under the hypothesis that a six has been rolled:
‘[ six ]win’. We can distinguish two situations: one, where the hypothesis is correct, i.e., a six
has been rolled; and another one, where it is false, i.e., the dice shows a number between one
to five. In the former situation, the game is won and we have that the formula holds true. In
case the hypothesis is in fact wrong, the formula is not necessarily true. Irrespective of the
hypotheses held by the agent, the game may still be won provided that a three has been rolled.
In all other cases, the game is lost. This is different to ordinary implications, which are true
whenever the premise is false or the consequent is true.

In this paper, we continue our investigation of S5r. We consider the extension of S5r with
operators for distributed knowledge. Distributed knowledge is a standard notion in epistemic
logic [2]. Distributed knowledge of a group of agents equals what a single agent knows who
knows everything what each member of the group knows. For instance, if agent a knows p
and agent b knows p → q, then the distributed knowledge between a and b includes q, even
though neither of them might know q individually. The notion of distributed knowledge is
relevant for describing and reasoning about the combined knowledge of agents in a distributed
system; see, e.g., [3]. Agents communicate with each other to combine their knowledge. Thus
the notion of distributed knowledge is also central to communication protocols and relevant
to reasoning about speech acts [4, 6]. We may think of distributed hypotheses as the result
of combining incoming information from several sources. However, the truthfulness of the
incoming information is not assumed. We demonstrate another way to think about distributed
hypotheses by using S5r to represent the knowledge of an agent whose knowledge capacity can
be characterized by any modal system between S4 and S5. As a main result we show that S5Dr

(S5r extended with distributive knowledge operator) is Kripke complete and decidable. For
proving Kripke completeness results we use technique developed [8]

The paper is organized as follows: In the next section, we briefly recall basic definitions on
modal logic, Kriple semantics, the standard translation to first-order logic. Next we review a
technique from [8] for obtaining Kripke completeness results for certain extensions of a modal
logic. In Section 3, we show that the techniques are also applicable to S5Dr. Additionally
we show how knowledge of an agent can be represented as a knowledge under distributed
hypotheses, where the agents’ knowledge corresponds to any system between S4 and S5.

2 Preliminaries

In this section, we briefly review modal logic. Moreover, we introduce a simple technique for
obtaining Kripke completeness.This technique in detail can be seen in [8].

Let 〈Π,M〉 be a signature consisting of countable sets Π and M of symbols for propositions
and modalities, respectively. The propositional modal language L for this signature consists of
formulas ϕ that are built up inductively according to the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 2mϕ,

where p ranges over proposition symbols in Π and m over modality symbols in M . The logical
symbols ‘>’ and ‘⊥’, and the additional connectives such as ‘∨’, ‘→’ and ‘↔’ and the dual
modalities ‘3m’ with m ∈M are defined as usual, i.e.: > := p∨¬p for some atomic proposition
p; ⊥ := ¬>; ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ); ϕ → ψ := ¬ϕ ∨ ψ; ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ); and
3mϕ := ¬2m¬ϕ.
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A subset L of the propositional modal language L is a modal logic iff it contains all proposi-
tional tautologies, is closed under substitution, modus ponens and modal replacement (mrep)

p↔q
2mp↔2mq , for m ∈ M . The modal logic L is called normal if it contains the formulas

(k) 2m(p → q) → (2mp → 2mq) and is closed under (nec) p
2mp . The smallest normal

modal logic is commonly denoted with K.

2.1 Kripke Semantics

The relational semantics for the propositional modal language L is based on Kripke struc-
tures for the signature 〈Π,M〉 of L. Formally, an M -frame (or Kripke frame) is a tuple F =
(W, {Rm}m∈M ), where W is a non-empty set of worlds and Rm ⊆ W 2 a binary relation over
W , for every m ∈ M . A Kripke model for 〈Π,M〉 is a pair M = (F, V ) consisting of a Kripke
frame F = (W, {Rm}m∈M ) together with a valuation function V : Π → 2W assigning to every
proposition p in Π a set V (p) of worlds. A Kripke model M = (F, V ) is said to be based on the
frame F.

An interpretation of formulas from L is given by means of a satisfaction relation ‘|=’, which
is a binary relation between pointed models and formulas. A pointed model is a pair 〈M, w〉,
where M = (W, {Rm}m∈M , V ) is a Kripke model and w a world from W . The satisfaction
relation is defined inductively on the structure of formulas ϕ as:

• 〈M, w〉 |= p iff w ∈ V (p);

• 〈M, w〉 |= ¬ψ iff 〈M, w〉 6|= ψ;

• 〈M, w〉 |= ψ ∧ χ iff 〈M, w〉 |= ψ and 〈M, w〉 |= χ;

• 〈M, w〉 |= 2mψ iff for all v ∈W with (w, v) ∈ Rm, 〈M, v〉 |= ψ.

A formula ϕ is said to be true at w in M iff 〈M, w〉 |= ϕ; ϕ is satisfiable iff there is a pointed
model 〈M, w〉 at which it is true; ϕ is valid in M (written ‘M |= ϕ’) iff 〈M, w〉 |= ϕ for all w in
M; ϕ is valid on F (written ‘F |= ϕ’) iff ϕ is valid in all models based on F; and ϕ is valid in
the class C of Kripke frames (written ‘|=C ϕ’) iff it is valid in every Kripke frame from C.

The set of L-formulas that are valid in a class C of Kripe frames is called the L-theory ThL(C)
of C, i.e.:

ThL(C) := {ϕ ∈ L | for every F from C, ϕ is valid in F }.

A modal logic L is said to be Kripke complete w.r.t. C iff L ⊇ ThL(C), and L is said to be sound
w.r.t. C iff L ⊆ ThL(C).

2.2 Standard Translation

The relationship to first-order logic is made precise by the so-called standard translation st(·),
which assigns to a modal formula ϕ a corresponding first-order formula stx(ϕ) with one free
variable x. The signature of the first-order language contains unary predicate symbols P and
binary predicate symbols Rm, one P for every p ∈ Π and one Rm for every m ∈ M . The
translation function st(·) is inductively defined as follows:

stx(p) := P (x)
stx(¬ϕ) := ¬stx(ϕ)

stx(ϕ ∧ ψ) := stx(ϕ) ∧ stx(ψ)
stx(2mϕ) := ∀y(Rm(x, y)→ sty(ϕ))
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where y is a fresh variable for every occurrence of a box-modality.
A Kripke structure M = (W, {Rm}m∈M , V ) for 〈Π,M〉 can be seen as a first-order structure

interpreting the formula stx(ϕ). While a predicate symbol Rm is interpreted using the binary
relation Rm over W that is interpreting the modality m in M , a predicate symbol P is inter-
preted as the subset V (p) of W , where p is the proposition symbol from Π that corresponds to
P . Neither constants nor function symbols are introduced by the standard translation. In the
first-order structure M, however, we introduce a dedicated constant cw for every world w ∈W
and we interpret cw as w. At the level of pointed models 〈M, w〉, the relationship between ϕ
and stx(ϕ) is such that:

〈M, w〉 |= ϕ iff M |= stx(ϕ)[x 7→ cw],

where [x 7→ cw] substitutes every occurrence of the free variable x in stx(ϕ) with the con-
stant cw. Note that stx(ϕ)[x 7→ cw] is a sentence, i.e. a first-order formula without free
variables.

When considering the notion of validity on frames F, we have that ϕ corresponds to the
monadic second-order formula ∀~P ∀x stx(ϕ) as follows:

F |= ϕ(~p) iff F |= ∀~P ∀x stx(ϕ),

where ~p are the propositions from Π that occur in ϕ, and ~P are the corresponding unary
predicates.

2.3 Completeness by Modal Definitions

In [8] we introduced a technique on how to obtain Kripke completeness w.r.t. a specific class of
Kripke structures for certain extensions of complete modal logics. We apply this technique to
extensions of the modal logic S5.

By extending a modal logic L with a formula ϕ we mean obtaining a modal logic L′ as
a set of formulas that is minimal w.r.t. ⊆, that contains all tautologies over the symbols for
propositions occurring in L ∪ {ϕ}, that contains all formulas from L ∪ {ϕ} and that is closed
under substitution, modus-ponens and modal replacement. Clearly L ∪ {ϕ} is not necessarily
a modal logic. Moreover, an extension of a modal logic that is Kripke complete w.r.t. a class
C of models is not necessarily complete w.r.t. C itself nor any other class of models. We are
interested in studying formulas of a specific form (modal definitions) that, when used to extend
a modal logic, yield a modal logic that is complete w.r.t. a specific class of models. Let L be a
propositional modal language over the signature 〈Π,M〉. Let ϕ(~p) be a formula in L, where ~p
are the propositions occurring in ϕ. Let ‘+’ be a fresh symbol for a unary modality not in M ,
and � the box-version of this modality. A modal definition in L is a formula of the form

�p↔ ϕ(~p),

where ~p contains p. The box-modality � is defined in terms of a modal formula in which � does
not occur. Notice that the modal definition �p ↔ ϕ(~p) itself is a formula in the propositional
modal language over the extended signature 〈Π,M ∪ {+}〉. We only consider + to be a unary
modality symbol. Moreover, we will only consider the modal definitions for the box-version
of +. The results for the dual modality can be obtained in a similar way.

In this paper, we only consider modal definitions �p ↔ ϕ(~p), where the box-modality �
does not occur in ϕ(~p).

A modal definition is interpreted in models M = (F, V ) that are based on M ∪ {+}-frames
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F = (W, {Rm}m∈M∪{R+}), i.e., frames that are extended with a binary relation R+ to interpret
the new box-modality �. The semantics of � can be defined in the usual way as for any other
box-modality:

• 〈M, w〉 |= �ψ iff for all v ∈W with (w, v) ∈ R+, it holds that 〈M, v〉 |= ψ.

We want to interpret � as specified in the modal logic L′ obtained from the modal logic L
extended with a modal definition of �. To this end, we have to confine ourselves to the models
from C(L′), i.e., all models from K〈Π,M∪{+}〉 in which all formulas of L′ are valid. It is now
interesting to investigate the relationship between the modal definition of � and the properties
of the relation R+ in the models from C(L′).

Example 1. Let L be a propositional modal language over a signature 〈Π,M〉. Additionally,
let ‘+’ be a fresh symbol for a modality not in M . Finally, let L ⊆ L be a modal logic.

The modal definition α1 = �p↔ p yields that R+ is the identity relation. This can be seen
as follows. Obtain the modal logic L1 by extending L with α1. One can see that class of frames
for L1 is the class of frames for L extended with the relation R+ being the identity relation.

Another simple example of a modal definition is �p ↔ 2mp, for some m ∈ M . Here we
have that R+ equals Rm in every model. Consider two more examples: �p ↔ p ∨ ¬p and
�p↔ p∧¬p. In the former case, R+ is the empty relation, whereas in the latter case the modal
definition does not yield any relation.

As the examples show, not all modal definitions yield a relational semantics for the logic
extended with the newly defined modality. Taking the standard translation of a formula ϕ that
is used in a definition �p↔ ϕ(~p) results in the second-order formula ∀~P ∀x stx(ϕ), where the

predicates in ~P correspond to the propositional variables in ~p. We are interested in elementary
formulas, i.e., those formulas ϕ for which there exists a first-order formula that is equivalent to
the second-order formula ∀~P ∀x stx(ϕ), that additionally yield a relational semantics for the
new modality +. It is a non-trivial problem to give a syntactic characterization of such formulas
ϕ that are suitable for defining fresh modalities.

To start tackling this problem, we introduce the notion of a ‘relational modal definition’.

Definition 1. Let L be a propositional modal language over the signature 〈Π,M〉. Let ϕ(p,
p1,. . . , pn) with n ≥ 0 be a formula in L, where p, p1, . . . , pn are the propositions occurring in
ϕ. Let ‘+’ be a fresh symbol for a unary modality not in M , and � the box-version of this
modality.

A modal definition �p↔ ϕ(p, p1, . . . , pn) is called a relational modal definition if there exists
a first-order formula Ψ+(x, y) with two free variables x and y using only predicates that occur
in stx(ϕ(p, p1, . . . , pn)) such that for every ψ ∈ L, it holds that for all pointed models 〈M, w〉,
M |= (∀y)(Ψ+(x, y)→ sty(ψ))[x 7→ cw] iff M |= stx(ϕ(ψ, p1, . . . , pn))[x 7→ cw].

Example 2. Let us consider modal logic K extended with a new modality �. A formula
�p↔ 2p ∧ p is a relational modal definition. Indeed, for every pointed model 〈M, w〉, it holds
that M |= ((∀y)(xRy → P (y))∧P (x))[x 7→ cw] iff (∀y)(Ψ(x, y)→ P (y))[x 7→ cw], where Ψ(x, y)
is the formula (xRy) ∨ (x = y).

We note that elementarity is neither a sufficient nor a necessary condition for modal formulas
being suitable for a relational modal definition; see, e.g., the reduction axiom for S5r in the
following section which yields a relational modal definition despite it being non-elementary.

Let Ψ+(x, y) be the first-order formula with two free variables x and y corresponding to a
relational modal definition. Given a model M = (F, V ) with F = (W, {Rm}m∈M ), we uniquely
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construct the model M+ = (F+, V ), where the underlying frame F+ is obtained from F by
adding the binary relation R+ ⊆W ×W defined as:

(v, w) ∈ R+ iff M |= Ψ+(x, y)[x 7→ cv, y 7→ cw].

For a class C of models, we denote with C+ the class consisting of the models M+, where M
ranges over the models in C.

Formulas from the extended language L+ can be translated to formulas in L in a straight-
forward way.

Definition 2. Let L and L+ be propositional modal languages over the signatures 〈Π,M〉 and
〈Π,M ∪ {+}〉, respectively, where + is a fresh unary modality not in M . The translation
function ∗ : L+ → L for the modal definition �p ↔ ϕ+(p, p1, . . . , pn) is inductively defined as
follows, where m ranges over M :

p∗ := p
(ϕ ∨ ψ)∗ := ϕ∗ ∨ ψ∗

(¬ϕ)∗ := ¬ϕ∗
(2mϕ)∗ := 2mϕ

∗

(�ψ)∗ := ϕ+(ψ∗, p1, . . . , pn)

The following theorem shows the intended completeness technique.

Theorem 1 ([8]). Let L and L+ be propositional modal languages over the signatures 〈Π,M〉
and 〈Π,M ∪ {+}〉, respectively, where + is a fresh unary modality not in M . Let L ⊆ L be
a normal modal logic that is sound and complete w.r.t. a class F of Kripke frames. Obtain
L+ ⊆ L+ from L by adding a relational modal definition �p↔ ϕ(p1, . . . , pn) as an only axiom
schema for �. Then the logic L+ is sound and complete w.r.t. the class F+.

3 The Modal Logic S5Dr

In this section, we introduce the modal logic S5Dr which is an extension of S5r with modalities
for distributed hypotheses that are analogous to modalities for distributed knowledge. Dis-
tributed knowledge in modal logic is a well-known notion; standard references include [2, 5] and
for a more recent discussion, see [4, 6]. We prove the completeness and decidability results for
this logic. We show how distributed hypotheses can be used to represent the knowledge of an
agent whose epistemic capacity corresponds to any system containing S4.

Let Π be a countably infinite set of atomic propositions. Formulas ϕ of S5Dr are defined
inductively over Π by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | [ϕ]K ϕ | [Φ]D ϕ,

where p ranges over atomic propositions in Π, and Φ over finite sets of S5Dr-formulas.

Formulas of S5Dr are evaluated in basic structures as well. The operators [Φ]D are necessi-
ties depending on the formulas in Φ. The semantics of [Φ]D is based on the relations Rϕ, where
ϕ ∈ Φ, as follows. Let M = (W,V ) be a basic structure. The logical consequence relation ‘|=’
and the relations R for formulas of S5Dr are defined as for S5r but extended with the following
clauses: For all S5Dr-formulas ψ and all finite sets Φ of S5Dr-formulas,

• M, w |= [Φ]D ψ iff for all v ∈W with (w, v) ∈ RΦ, M, v |= ψ,
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where RΦ =
⋂

ϕ∈ΦRϕ.
The following proposition shows how any finite preorder can be represented as an intersection

of one-step frames. This hints at the possibility that an arbitrary modal operator can be
represented as a distributed knowledge of some hypothetical knowledge operator. Here we
assume that knowledge operators are box-modalities for logics in the interval [S4, S5]. Below
we show a version of this claim.

Proposition 1. Let W = {w1, . . . , wk} be a set. Let R be a preorder over W . For all i ∈
{1, . . . , k}, let Ri = (W \R(wi))⊗R(wi). Then it holds that R =

⋂
i=1..k Ri. a

Intuitively, the proposition can be understood as follows. Observe that a preorder R induces
a partial order (i.e. an antisymmetic preorder) on the set of R-clusters, which are sets of points
fully connected by R. In other words, R gives rise to a collection of directed graphs whose nodes
are R-clusters. Note that the graph is loopless (and thus antisymmetric). Now, if R is total, all
points are connected which gives rise to just one such graph. If, additionally, R is ‘one-step’,
the graph consists of merely two nodes. Intersecting one-step total preorders has the effect
of erasing directed edges from the universal relation. Note that the intersection of preorders
is again a preorder. Proposition 1 shows that by intersecting a certain selection of one-step
total preorders, we can “carve out” the desired preorder. The following example illustrates the
scenario.

Example 3. Let W = {x, y, z} be a set and R = {(x, y), (x, z)} ∪ id(W ). It is readily
checked that R is a reflexive and transitive relation. Now let Rw = (W \ R(w)) ⊗ R(w)
for all w ∈ W . That is, Rx = W × W , Ry = {(x, y), (z, y), (x, z), (z, x)} ∪ id(W ) and
Rz = {(y, z), (x, z), (x, y), (y, x)}∪ id(W ). Intersecting these relations we obtain Rx∩Ry∩Rz =
{(x, y), (x, z)} ∪ id(W ), which is equal to R.

The intersection in Proposition 1 reminds us on the relations RΦ determined by a finite set
Ψ of S5Dr-formulas in a model. In fact, this is the connection we seek to establish in order to
represent the knowledge of an agent as distributed knowledge. In the following, we state how
this is done.

Take an arbitrary uni-modal logic L between S4 and S5 (whose satisfaction relation is
denoted by |=L). The necessity operator ‘2’ of L is thought of as representing the knowledge
of the agent. Note that the system L contains the axioms (T) and (4), each of which represent
important epistemic properties, namely, veridicality and positive introspection, respectively. Of
course, L may contain other axioms, in fact, any axiom that can be derived in system S5. We
assume that L is determined by a class C of Kripke structures (i.e., the theorems of L are exactly
the formulas that are valid on all structures in C). Clearly, the structures in C are reflexive and
transitive. What we require as a precondition is that L has the finite-model property w.r.t. C.
This means that, if a formula ϕ is not a theorem of L then there is a finite Kripke structure
Mk in C that falsifies ϕ, i.e. Mk, w 6|= ϕ for some world w in Mk.

Before we can state the theorem, we need one more auxiliary notion. Let Mk = (W,R, V )
be a finite Kripke structure such that the relation R is a preorder. We say that the valuation
function V covers R if for every world w ∈ W , there is an atomic proposition pw such that
V (pw) = R(w), i.e. the R-image at w.

Theorem 2. Let C be a class of Kripke structures whose relations are preorders. Let Mk =
(W,R, V ) be a finite structure from C such that V covers R. Let M = (W,V ) be a basic structure
and let w ∈W be a world. Let ϕ be a Boolean formula over Π. Then, there is a finite set Ψ of
atomic propositions such that the following are equivalent:

(i) Mk, w |=L 2ϕ;
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(ii) M, w |=S5Dr [Ψ]D ϕ. a

Proof. For every w ∈ W , select an atomic proposition pw such that V (pw) = R(w). Note that
such pw exists since V covers R. Set Ψ = { pw | w ∈W }. Using Lemma 1 the equivalence of (i)
and (ii) can be shown by induction on the structure of ϕ.

We remark that the theorem can be generalized since the condition of using finite models is
a bit too strict. Recall the metaphor that views a preorder R as a collection of loopless graphs
whose nodes are R-clusters. What is actually required is that the collection of graphs and the
graphs themselves are finite. So, we can still find a finite intersection of relations as desired.

The following example illustrates Theorem 2 and discusses the presented notions.

Example 4. Consider the Kripke model Mk = (W,R, V ), where W and R are as in Example 3,
and V (p) = {x, z} and V (q) = {z}. Clearly, Mk is not an S5-model as R is not symmetric. Let
ϕ.2, ϕ.3, ϕ.4 be the instances of the axioms (.2), (.3) and (.4) as shown above. It turns out that
only ϕ.3 holds at x, but not ϕ.2 nor ϕ.4. In fact, ϕ.3 holds at all worlds in Mk. Let us assume
that the box (i.e., the epistemic capacity of the agent) is characterized by the system S4.3.

Now label the worlds with fresh atomic propositions px, py, pz, i.e., we set V ′(pw) = {w} for
all w ∈W . Notice that V ′ covers R. Let Rpx , Rpy , Rpz be the relations determined by the basic
structure M = (W,V ′) and the fresh propositions. Notice that Rpw equals Rw from Example 3,
for every w ∈W . Thus Rpx∩Rpy∩Rpz = R. Now it is immediate that M, w |= [{px, py, pz}]D ϕ
iff Mk, w |= 2ϕ, for all w ∈ W and all propositional formulas ϕ without occurrence of any of
px, py and pz. In other words, [{px, py, pz}]D simulates the S4.3-box. We can see px, py, pz as
hypotheses that another agent has to adopt in order to know what the S4.3-agent knows.

In some cases, we have an alternative to introducing fresh propositions even though V does
not cover R. This means that V covering R is a sufficient but not necessary condition for
Theorem 2. Here ¬p and q are hypotheses so that [{¬p, q}]D simulates S4.3-box as well. That
is, hypotheses do not need to be atomic propositions. Moreover, (parts of) hypotheses may occur
in the conclusion as in (W,V ), x |= [{¬p, q}]D ϕ.3.

The reduction of the distributive knowledge modality for a finite set Φ = {ϕ1, . . . , ϕn} of
agents is recursively defined as a function Rd as follows, where n ≥ 3:

Rd([ϕ1]D p) := [ϕ1]K p
Rd([ϕ1, ϕ2]D p) := [ϕ2]K p ∨ (ϕ1 ∧ [ϕ2]K (ϕ1 → p)

Rd([ϕ1, . . . , ϕn]D p) := Rd([Rd([ϕ1, . . . , ϕn−1]D p), ϕn]D p)

Here we assume that each ϕi belongs to the language of S5r, i.e., ϕi does not contain the dis-
tributive knowledge modality although the reduction for arbitrary formulas Φ = {ϕ1, . . . , ϕn},
where the ϕi-s may include the distributive knowledge modality, is a simple application of the
reduction step by step. It can readily be seen that the function Rd yields a formula in the
language of S5r.

Theorem 3. Let Φ be a finite set of formulas in the language of S5r. Then the formula
[Φ]D p↔ Rd([Φ]D p) is a relational modal definition for the language of S5r.

Let S5Dr be the logic obtained by extending S5r with modal definitions of the form [Φ]D p↔
Rd([Φ]D p), where Φ ranges over sets of formulas in the language of S5r and the function Rd is
defined as above. We obtain the following result.

Theorem 4. The modal logic S5Dr is sound and complete w.r.t. the class of all basic structures.
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The proof of the theorem follows from the fact that the modal logic S5r is complete and
theorems 1 and 3. We also imply decidability of the logic since all formulas are reduced to S5r

formulas.

Theorem 5. The logic S5Dr is decidable.

Proof. Proof follows from decidability of the logic S5r and reducibility of an arbitrary S5Dr

formula to a S5r formula.

4 Conclusion

In this paper we studied S5Dr which is an extension of S5r by distributive knowledge operator.
In particular we have addressed Kripke completeness and decidability issues. In previous works
we have investigated similar questions for S5r and S5C r (S5r extended with common knowl-
edge operator) as well. This paper summarises investigation of Kripke semantics of the logics
mentioned above. In future we aim to investigate topological semantics of the logics as well as
computational complexity of the satisfiability problem for the logics.
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