
EPiC Series in Computing

Volume 39, 2016, Pages 29–41

SCSS 2016. 7th International Symposium on
Symbolic Computation in Software Science

Space Analysis of a Predicate Logic Fragment

for the Specification of Stream Monitors∗

David M. Cerna, Wolfgang Schreiner, and Temur Kutsia

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

{David.Cerna,Wolfgang.Schreiner,Temur.Kutsia}@risc.jku.at

Abstract

We analyze the space complexity of monitoring streams of messages whose expected behavior is

specified in a fragment of predicate logic; this fragment is the core of the LogicGuard specification

language that has been developed in an industrial context for the runtime monitoring of network traffic.

The execution of the monitors is defined by an operational semantics for the step-wise evaluation of

formulas, which requires the preservation of formula instances in memory until their truth value can

be determined. In the presented work, we analyze the number of instances that have to be preserved

over time for a significant fragment of the core language that involves only “future looking quantifiers”;

this lays the foundations for the space analysis of the entire core language.

1 Introduction

The goal of runtime verification is to check at runtime whether the execution of a system satisfies
a formal specification. For this purpose, the specification is translated into an operational
representation that monitors the system and stops its execution or reports an error, if a violation
of the specification is detected. This approach results in a trade-off between the expressiveness
of a specification formalism and the efficiency of monitoring corresponding specifications. Often
these formalisms are based on (timed extensions of) linear temporal logic (LTL) [11] that provide
effective monitoring strategies, although at the price of limited expressiveness.

In contrast, the LogicGuard project [10] aims at a framework for monitoring event streams
(messages flowing through a network) that provides a declarative specification language with
great expressiveness (for describing security properties of message streams): in fact, the Logic-
Guard language [13] is based on predicate logic (where quantifiers bind variables that represent
stream positions), set theory (with stream constructions that mimic set builder notation), lim-
ited arithmetic (quantifiers to compute the minimum/maximum position respectively the num-
ber of positions where a property holds) and general computational facilities (stream folds).

It is challenging to make the operation of monitors arising from such specifications effective
and efficient. For this purpose, we have devised a static analysis that determines whether

∗The project “LogicGuard II: The Optimized Checking of Time-Quantified Logic Formulas with Applications
in Computer Security” is sponsored by the FFG BRIDGE program, project No. 846003.

J.H.Davenport and F.Ghourabi (eds.), SCSS 2016 (EPiC Series in Computing, vol. 39), pp. 29–41

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

a specification gives rise to a monitor that is able to operate with only a finite set of past
messages in memory; in [9] we proved the soundness of this analysis and the corresponding
“history pruning” optimization. That proof was based on a simplified core of the language for
which a formal operational semantics was devised. In this paper, we present first steps towards a
complementary analysis that determines the space requirements of the monitor operation itself:
every quantified formula of the monitor has to preserve in memory (runtime representations of)
those formula instances whose results could not yet be determined because they still depend
on future messages. Together with the history buffer, this measure determines the memory
requirements of the monitor (and also the time required for processing every message).

The core of the LogicGuard language could be considered as Monadic First-Order Logic
(MFO) [12] which is equivalent to LTL and captures the class of star-free languages; however,
several aspects of the full language (e.g., general computations) exceed this framework and
might be more adequately described by Monadic Second-Order Logic (MSO) [2] which captures
the class of omega-regular languages. Most complexity results with respect to MFO/LTL
and MSO refer to the size (number of states) of the non-deterministic Büchi automaton that
accepts the language of a formula: for MFO/LTL, this size is in the worst case exponential
in the formula size [14]. This result is directly applicable to automata-based model checking
where this automaton is indeed constructed; the construction of a corresponding deterministic
automaton (as is necessary for runtime checking) causes another exponential blow-up. Since
for MSO, the size of the accepting automaton is in general even non-elementary in the formula
size [6], MSO has been often neglected as a “practical” specification language.

Most investigations on improving the use of these logics for model checking or runtime
verification thus focus on specific subsets. The hardware design language PSL [7] which is based
on LTL defines a “simple subset” that restricts the general use of disjunction in a specification
to avoid exponential blowup. In [8], the class of “locally checkable” properties (a subclass of
the “locally testable” properties introduced in [12]) is defined that are satisfied by a word, if
every k-length subword of the word (for some k ∈ N) satisfies this property; such properties
can be recognized by deterministic automata whose number of states is exponential in k but
independent of the formula size. In [5] a procedure for synthesizing monitor circuits from LTL
specifications is defined that restricts the exponential blow-up to those parts of a formula that
involve unbounded-future operators.

Our work differs from this related research in that we do not consider the translation of
formulas to automata and do not use automata sizes as the space complexity measure. Rather
we base our investigations directly on an operational semantics of formula evaluation which
exhibits the formula instances that are kept in memory during each evaluation step; it is this
measure that we are interested in. The reason for this approach is that all quantified phrases are
subject to the same evaluation mechanism; some (stream folds) only coordinate computations
performed by external code. Any encoding of these evaluations by automata would obscure
more than highlight the complexity measures that are relevant for our framework (indeed it
is not entirely clear how these measures refer to the automata sizes). It should be also noted
that our analysis does not only give rise to asymptotic bounds but to concrete complexity
functions, although these functions still suffer from overestimation. Ongoing work investigating
optimizations for the complexity functions shows promise in reducing the overestimation and
providing more accurate bounds than the proposed asymptotic bounds.

The rest of this paper is structured as follows: in Section 2, we present the core of the
LogicGuard specification language and its operational semantics. Section 3 presents a two-
quantifier-nested fragment of this core language; monitors in this language can be abstracted
into triples of natural numbers. Section 4 defines on such triples an evaluation relation that

30

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

mimics the interesting aspects of the monitor operation in the sense that the relation preserves
an upper bound for the memory usage of monitor execution. Based on this relation, Section 5
analyzes the space complexity of triple evaluation. Section 6 extends the results from the two-
quantifier-nested fragment to the general core language by the translation of a monitor to a
dominating formula whose evaluation provides an upper bound for the memory usage of the
original monitor. Section 7 concludes by judging the presented analysis and outlining current
work that aims to improve its accuracy.

2 The Core Language and its Operational Semantics

We consider the core language presented in Fig. 1 (l) (a simplified version of the language given
in [9]). A specification in this language describes a monitor that processes a stream of Boolean
values indicated by > (true) and ⊥ (false). The various constructs are to be interpreted as
follows: the atomic predicate @V denotes the value in the stream at the position denoted by the
variable V , ¬F denotes the negation of the formula F , F1 & F2 denotes sequential conjunction
(the evaluation of F2 is delayed until the value of F1 becomes available), ∀V ∈[B1,B2] : F denotes
universal quantification over the interval [B1, B2]. We assume that a monitor constructed from
the core language has no free variables and that we assume each bound variable uses distinct
names. Unless otherwise noted x will be the variable bound by the quantifier ∀0≤x : F and will
be referred to as the stream variable.

The grammar depicted in Fig. 1 (l) uses the typed variables M,F, . . . to denote elements
of the syntactic domains M,F, . . . Similarly, in Fig. 1 (2), M,F, . . . denote elements of the
corresponding runtime domains M,F , . . . to which the syntactic domains are translated. Here
we use the domain N∞ = N∪{∞} over which arithmetic operations are interpreted in the usual
way, i.e., the operator − is interpreted as truncated subtraction and for every n ∈ N we have
∞± n =∞. The notions P(S) and A→part. B are to be interpreted as the powerset of S and
the set of partial mappings from A to B, respectively. The definition of C in Fig. 1 (2) assigns
both a position to the variable as well as the boolean value at that position. This choice was
made to extract the referenced stream value from the stream into the formula such that the
history pruning optimization [9] may be safely applied.

A monitor M ∈ M is translated by a function T : M →M into its runtime representation
M = T (M) which stores information concerning the current state of the evaluation, in particular
the set of instances I of the body F of M which could not yet be evaluated to > or ⊥.
The definition of the translation function given in Fig. 2 is based on two auxiliary functions
TF : F → F and TB : B → B which translate formulas and bounds, respectively. By c.1 in
Fig. 2 we are referring to accessing the positions in the tuple of Fig. 1(2) for C.

The evaluation of a monitor’s runtime representation is formalized by a small-step opera-
tional semantics with a 6-ary transition relation→ ⊆M×N× {>,⊥}ω × {>,⊥} × P(N)×M.
In a transition M →p,MS ,m,RS M′, p is the index of the next message m arriving on the
stream, MS denotes the sequence of messages that have previously arrived (by MS (t) we de-
note the message at position t) and RS (meaning ‘reported set’) denotes the set of violations
determined by the monitor transition, i.e., those positions that when assigned to the stream
variable x make the monitor body F false.

The operational semantics defines a monitor transition ∀IS0≤x : f →p,MS ,m,RS ∀IS
′

0≤x : f from

the current state with instance set IS (initially ∅) to a state with instance set IS ′ by the

31

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

M ::= ∀0≤V : F.
F ::= @V

∣∣¬F ∣∣F & F
∣∣∀V ∈[B,B] : F.

B ::= ∞|0|V |B ±N .
V ::= x|y|z|. . . .
N ::= 0|1|2|. . . .

M ::= ∀I0≤V : F
F ::= d(Bool) | n(G)
G ::= @V | ¬F | F & F | ∀V ∈[B,B] : F |

∀V ∈[N∞,N∞] : F | ∀IV≤N∞ : F
B ::= C→ N∞
I ::= P(N× F×C)

C ::=
(V →part. N)×
(V →part. {>,⊥})

Bool ::= > | ⊥

Figure 1: The core language (l) and its runtime representation (2).

T (∀0≤V : F) := ∀∅0≤V : TF (F)

TF (@V) := n(@V)

TF (¬F) := n(¬TF (F))

TF (F1 & F2) := n(TF (F1) & TF (F2))

TF (∀V ∈[B1,B2] : F) := ∀V ∈[TB(B1),TB(B2)] : TF (F)

TB(0)(c) := 0

TB(∞)(c) :=∞

TB(V)(c) :=

{
c.1(V) V ∈ dom(c.1)

0 otherwise

TB(b± n)(c) := TB(b)(c)± n̄

Figure 2: The translation functions.

following definitions:

c = ((x, p) , (x,m)), IS 0 = IS ∪ {(p, f, c)} ,
RS = {t ∈ N | ∃g ∈ F , k ∈ C : (t, g, k) ∈ IS 0 ∧ ` g →p,ms,m,k d(⊥)},

IS ′ = {(t,n(h), k) ∈ I | ∃g ∈ F : (t, g, k) ∈ IS 0 ∧ ` g →p,ms,m,k n(h)}.

Here we first construct a context c which maps variable x to position p and value m; this
context is used to create a new monitor instance (p, f, c) which is added to IS yielding the
new instance set IS 0. Next we construct RS which contains the positions of monitor instances
which have evaluated to ⊥. Finally, we determine the set IS ′ of those instances which have not
yet evaluated to ⊥ or >. Here a term d(b) denotes the result of the evaluation of a formula to
a value b ∈ {>,⊥} (d(·) stands for ‘done’) while n(h) denotes a formula h whose value is still
unknown (n(·), stands for next, indicates what will be considers by the next application of the
operational semantics).

This definition of the monitor transition relation is based on a formula transition relation
→ ⊆ F×N× {>,⊥}ω × {>,⊥} ×C×F . In a formula transition f →p,MS ,m,c f

′, the additional
arguments p, MS , and m are defined as for the monitor transition and c is the context for the
current given monitor instance. When they are clear from the environment, we drop these
arguments and simply write f → f ′. The formula transition relation is described by the rules
depicted in Fig. 3 for which we use the following definitions:

IS f = {(p0, f, c[((y, p0), (y,MS (p0 + p− |MS |)))]) | p1 ≤ p0 ≤ min {p2 + 1, p}},

IS f0 =

{
IS f if p2 < p

IS f ∪ (p, f, c[((y, p), (y,m))]) otherwise
,

IS f1 =
{

(t,n(h), k) ∈ I | (t, g, k) ∈ IS f0 ∧ ` g → n(h)
}
,

DF = ∃t ∈ N, g ∈ F , k ∈ C : (t, g, k) ∈ IS f0 ∧ ` g → d(⊥).

32

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

Atomic Formulas
Transition Constraints
A1 n(@y)→ d(c.2(y))) y ∈ dom(c.2)
A2 n(@y)→ d(⊥) y 6∈ dom(c.2)

Negation
N1 n(¬f)→ n(¬n(f ′)) f → n(f ′)
N2 n(¬f)→ d(⊥) f → d(>)
N3 n(¬f)→ d(>) f → d(⊥)

Sequential conjunction
C1 n(f1 & f2)→ n(n(f ′1) & f2) f1 → n(f ′1)
C2 n(f1 & f2)→ d(⊥) f1 → d(⊥)
C3 n(f1 & f2)→ n(f ′2) f1 → d(>), f2 → n(f ′2)

Quantification
Q1 ∀y∈[b1,b2] : f → d(>) p1 = b1(c) , p2 = b2(c) , p1 > p2 ∨ p1 =∞

Q2 ∀y∈[b1,b2] : f → F ′
p1 = b1(c) , p2 = b2(c), p1 6=∞ , p1 ≤ p2,

n(∀y∈[p1,p2] : f)→ F ′

Q3 n(∀y∈[p1,p2] : f)→ n(∀y∈[p1,p2] : f) p < p1

Q4 n(∀y∈[p1,p2] : f)→ F ′ p1 ≤ p, n(∀ISf

y≤p2 : f)→ F ′

Q5 n(∀ISf

y≤p2 : f)→ d(⊥) DF

Q6 n(∀ISf

y≤p2 : f)→ d(>) ¬DF , IS f1 = ∅, p2 < p

Q7 n(∀ISf

y≤p2 : f)→ n(∀IS
f
1

y≤p2 : f) ¬DF , (IS f1 6= ∅ ∨ p ≤ p2)

Figure 3: The operational semantics of formula evaluation.

The set IS f used in rules Q4–7 denotes the set of all instances of a quantified formula which
can be created by assigning to the bound variable y positions up to p. By MS(·), we mean

access to a given position in the stream of messages. The set IS f0 used to define IS f1 and DF
is essentially the same as IS f , except that it is updated with a new instance when position p is
reached. The set IS f1 used in Q6 and Q7 contains all instances which cannot yet be evaluated.

Finally the formula DF checks to see if some instance in IS f0 evaluates to ⊥.
We illustrate this operational semantics by an example (for more details, see [9]).

Example 1. Take monitor M0 = ∀0≤x : ∀y∈[x+1,x+2] : @x & @y, which states that the current
position of the stream is true as well as the next two future positions. The runtime form of
M0 is ∀∅0≤x : F0 where F0 = ∀y∈[TB(x+1),TB(x+2)] : n(n(@x) & n(@y)). Operating on a stream

〈>,>,⊥, . . .〉, the first step of the evaluation is ∀∅0≤x : F0 →0,〈〉,>,∅ ∀IS
0

0≤x : F0. Here

IS0 =
{

(0,n(∀y∈[1,2] : n(n(@x) & n(@y))), [((x, 0), (x,>))])
}

is derived by the rules Q2 and Q3 (which are applicable because the stream position 0 is less

than the lower bound 1). The next step is ∀IS0

0≤x : F0 →1,〈>〉,>,∅ ∀IS
1

0≤x : F0 where

IS1 =
{

(1,n(∀y∈[2,3] : n(n(@x) & n(@y))), [((x, 1), (x,>))]),

(0,n(∀∅y≤2 : n(n(@x) & n(@y))), [((x, 0), (x,>))])
}

The quantifier from the instance in IS0 can now be unrolled, and the matrix is evaluable to >
using rules A1, C1, and C3, hence the instance set ∅ in n(∀∅y≤2 : n(n(@x) & n(@y))). The

33

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

new instance is the same as the instance in IS0 but the positions are shifted by 1. The next
step is ∀IS1

0≤x : F0 →2,〈>,>〉,⊥,{0,1} ∀IS
2

0≤x : F0 where

IS2 =
{

(2,n(∀y∈[3,4] : n(n(@x) & n(@y))), [((x, 2), (x,⊥))])
}

The quantifier from the first and second instance evaluated to ⊥ by rule Q5, thus RS = {0, 1}.
Again, there is a shifting of the remaining instances.

3 The Restricted Fragment and N-Triples
When concerning ourselves with the worst-case space complexity of the operational semantics
defined in Sec. 2, we may ignore the actual result of a monitor evaluation but may focus on the
general structure of its evaluation. Thus we can greatly simplify the operational semantics to
perform the necessary analysis. This simplification also extends to the formula structure, where
we can ignore the propositional structure for the most part. However, what cannot be ignored
is the construction of the instance set. Essentially, the instance set grows when an instance
contains a quantifier whose interval upper bound is ∞ or the quantifier’s evaluation requires a
message at a future position.

Rather than performing our analysis on the global structure of a given monitor, we will
perform the analysis on the local structure around a given quantifier. Once we have a space
analysis for the local structure we can then apply the analysis to the global structure recursively
over the formula structure. Dealing with constant bounds, negative shifts, and∞, while doable
(see [4]), adds unneeded complexity to our analysis. Also, the space analysis of these cases is
rather straightforward. We assume that the bounds of the quantifiers only contain the stream
variable x from ∀0≤x : F . This assumption seems quite restrictive, but by assuming that
monitors do not have free variables, essentially every variable’s interval is defined by the stream
variable. This fact is important for our analysis.

In this section, we work with a restricted version of the core language which differs in the
definition of the bounds, i.e. B ::= V |B +N is used. We refer to this language as the variable
only fragment Mvb (the other domains are labelled in a similar way). Formulas of Mvb only
contain quantifiers whose bounds are non-negative.

Definition 1 (Restricted Fragment). Let M ∈Mvb, F ∈ Fvb be a formula (without quantifica-
tion) with two holes (F [•, ?]) , one for a formula (•) and one for a variable (?), and F ′ ∈ Fvb,
without quantification, be a formula with three holes (F ′ [•, ?1, ?2]), one for a formula (•) and
two for variable (?1, ?2). Then M ∈Mvb

N , if it can be expressed in the form

M ≡ ∀0≤x : F [∀y∈[x+a,x+b] : F ′[∀z∈[x+c,x+c] : @z, x, y], x]

where a, b, c ∈ N, a ≤ b, and x, y, z ∈ V. We assume that F contains only one occurrence of •.

The idea behind Def. 1 is that the quantifier binding y is at a local position in a more
complex formulas f and the quantifier binding z represents the furthest future position which
can be assigned to an atom located in the matrix of the quantifier binding y. We don’t consider
a higher nesting of quantifiers in this work being that we only want to represent the local
environment around a given quantifier in order to use the results for this local environment as
a induction invariant later on in this work. Take for example a monitor m = ∀0≤x : ∀w∈[x,x+5] :
@x & ∀y∈[x+1,x+2] : @y & @w. Consider the local position of the quantifier binding y, we can

write it in the form of Def. 1 as m′ = ∀0≤x : F
[
∀y∈[x+1,x+2] : F ′

[
∀z∈[x+5,x+5] : @w, x, y

]
, x
]
,

34

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

where F [•, ?] = @ ? & • and F [•, ?1, ?2] = @ ?2 & •. Though we provide a particular F and
F ′, the point of this abstraction is to make the propositional context surrounding the quantifier
frivolous.

What is fruitful about this abstraction is that m′ is really defined by three values. Following
the notation of Def. 1, a monitor in Mvb

N can be expressed as N-triples 〈a, b, c〉N. Triples of the
form 〈a, a, c〉N as singleton triples. They are essentailly a tuple of three natural numbers. An
instantiation of a triple, i.e. 〈a, b, c〉N (n), for n ∈ N, essentially assigns a position to the
stream variable. Rather than evaluating monitors as outlined in Sec. 2, we define in Sec. 4 a
greatly reduced evaluation procedure over N-triples that specifically highlights the instance set
construction.

4 The Evaluation of N-Triples
Unlike the operational semantics outlined in Sec. 2, we mix the evaluation of monitors with
the evaluation of formulas. The restricted fragment is simple enough that this simplification
of the evaluation procedure does not cause any issues. Essentially, our evaluation procedure is
a simplified version of the rules for evaluating quantifiers (Q1-7 in Fig. 3). The idea is that
instances of the triples are evaluated over a fragment of the external stream with a start point
α and an end point at β. In this setting, consider � to be a symbol corresponding to one place
to the left of α, i.e. the start of the stream.

Definition 2. An evaluation structure is a tuple of the form [n, t, I], where n ∈ N ∪ {�}, t is
an N-triple and I is a set of instances of t. When n = �, then the structure is called a start
evaluation structure and I ≡ ∅.

Now we move on to transitions between two evaluation structures.

Definition 3. Given an evaluation structure [n, t, I], and an interval [α, β], where n ∈ [α, β)∪
{�} , we have the evaluation transition [n, t, I]

[α,β]−−−→ [n+ 1, t, I′] , where

I′ = ((In+1 − I(n+1)
u) ∪ Ln+1 ∪ Un+1)− I

(n+1)
1

and the various sets are defined as follows: In+1 = I ∪ {t(n+ 1)} is the previous instance set
plus the new instance of t. The set

I(n+1)
u =

{
(a, i)

∣∣ ∃a′, b, c, γ : a = 〈a′, b, c〉N (γ) ∈ In+1 ∧ a′ ≤ i ≤ b ∧ i+ γ = n+ 1
}

contains the instance/position pairs (a, i), where the instance a can be partially unrolled up to
position i. The set

Ln+1 =
⋃

(a,i)∈I(n+1)
u

{(〈a′, a′, c〉N (n+ 1− i) | a′ ∈ L [(a, i)]} .

contains the singleton triple instances derived from the unrolling of instances of I
(n+1)
u . The set

L [(〈a, b, c〉N (γ), i)] consist of all w ∈ N such that a ≤ w ≤ i ≤ b. The set

Un+1 =
⋃

(〈a′,b,c〉N(γ),i)∈I
(n+1)
u

{〈i+ 1, b, c〉N (γ) | a′ < i+ 1 < b}

35

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

contains the instances in I
(n+1)
u after every singleton triple instance below position i has been

removed. Notice that given an N-triple instance 〈a, b, c〉N (γ) which can be unrolled up to b, the
singleton N-triple instance 〈b, b, c〉N (γ) is in Ln+1 and not in Un+1. The set

I
(n+1)
1 =

{
a
∣∣∣ ∃a′, c, γ : a = 〈a′, a′, c〉N (γ) ∈ I

(n+1)
0 ∧max{a′, c}+ γ ≤ n+ 1)

}
contains all N-triple instances which can be evaluated given the new external stream position.

By I
(n+1)
0 we refer to the set (In+1 − I

(n+1)
u) ∪ Ln+1 ∪ Un+1.

The idea behind Def. 3 is to mimic the operation semantic’s treatment of quantifiers for
triples. Using Def. 3, we can define evaluation chains.

Definition 4 (Evaluation Chain). Given a N-triple t, an interval [α, β], a complete proper
evaluation chain is a sequence of evaluation steps starting at � and ending at β.

[�, t, ∅] [α,β]−−−→ · · · [n, t, I]
[α,β]−−−→ [n+ 1, t, I′]

[α,β]−−−→ · · · [α,β]−−−→ [β, t, I′′]

The chain is considered to be a complete improper evaluation chain if β =∞.

In the work presented here, we are interested in evaluation over complete improper evalua-
tion chains. We want to show that after a finite segment of the interval the size of the instance
set is constant.

Example 2. Let us consider the monitor from Ex. 1, M0 = ∀0≤x : ∀y∈[x+1,x+2] : @x & @y,
which can be written as an N-triple t = 〈1, 2, 2〉N. One way of writing this monitor in the form
of the restricted fragment is

∀0≤x : F
[
∀y∈[x+1,x+2] : F

[
∀z∈[x+2,x+2] : @z, x, y

]
, x
]

where F = • and F ′ = @?1 & •. We replace the y with the quantifier representing the furtherest
point in the future being that the furtherest point in the future is from the variable y. Consider
the following proper evaluation chain

[�, t, ∅] [0,2]−−−→
[
0, t, I0

] [0,2]−−−→
[
1, t, I1

] [0,2]−−−→
[
2, t, I2

]
where the instance sets are I0 = {〈1, 2, 2〉N (0)}, I1 = {〈1, 1, 2〉N (0), 〈2, 2, 2〉N (0), 〈1, 2, 2〉N (1)},
and I2 = {〈1, 1, 2〉N (1), 〈2, 2, 2〉N (1), 〈1, 2, 2〉N (2)}.

Notice how in Ex. 2 there are more instances in memory than in Ex. 1 even though the same
formula is being evaluated. The reason for this is that we made the worst case assumption that
every instance of a quantifier will be blocked by the furthest in the future position assigned to a
variable used in the matrix; however this need not be the case, as Ex. 1 shows. More formally,
the relationship between the operational semantics of Sec. 2 and the evaluation of N-triples of
Sec. 3 is described by the following theorem.

Theorem 1. Let ∀0≤x : f ∈ Mvb be a monitor in which f contains at most two quantifiers
(when f contains two quantifiers, they are nested). Let tm be a N-triple corresponding to the
structure of ∀0≤x : f . Let ∀∅0≤x : f be the runtime form of ∀0≤x : f . Then given

∀∅0≤x : f →α,MS ,m,RM · · · →α+n,MS ,m,RM ∀IS0≤x : f

and

[�, tm, ∅]
[α,∞)−−−−→ · · · [α,∞)−−−−→ [α+ n, tm, I] ,

for α, n ∈ N, it is the case that |IS + ISq| ≤ |I|, where ISq is the set of instances held in the
quantifier instances of the monitor.

36

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

Proof. This trivially holds because the constraints on quantifier evaluation are stronger for eval-
uation structures than they are for the step transition of the operational semantics. Equality of
the cardinality of the instance sets can occur when the monitors match the syntactic constraints
of the restricted fragment.

5 Space Analysis of the Restricted Fragment

In this section we provide a space analysis of restricted fragment by first analyzing three types
of N-triples, namely , 〈0, b, b〉N, 〈0, b, b+ c〉N, 〈0, b, b− c〉N, and then putting the results together
to provide an analysis for all N-triples. We chose these N-triples because 〈0, b, b〉N is a founda-
tional form, i.e. the evaluation of the quantifier is held up by the upper bound of the quantifier’s
interval. Shifting by c represents the influence of the global structure on the quantifier’s evalu-
ation. Also, we set the first component of the triples to zero because shifting of the quantifier’s
interval only makes things unnecessarily complex and obfuscates the underlying structure of
the instance set.

Theorem 2. Given an N-triple t = 〈0, b, b〉N, for b ∈ N, and an interval [α,∞), there exists a
value x ∈ [α,∞) such that for all x ≤ β, the evaluation chain

[�, t, ∅] [α,∞)−−−−→ · · · [α,∞)−−−−→ [x− 1, t, I0]
[α,∞)−−−−→ [x, t, I1]

[α,∞)−−−−→ · · · [α,∞)−−−−→ [β, t, Iβ−x+1]
[α,∞)−−−−→ · · ·

has the property |I0| 6= |I1| = · · · = |Iβ−x+1|.

Proof (sketch). The key to proving this theorem is finding the value of x; we can derive x =
α + b − 1. If one closely observes the construction of the sets in Def. 3, one will notice that

I
(γ)
1 ≡ ∅ for γ ∈ [α, α+ b− 1]. This implies that the instance set is at least growing until this

point. At α+ b, the first position such that I
(α+b)
1 6≡ ∅, there is the possibility for the instance

set to stay constant. One can easily check as a basecase for an induction that |I1| ≡ |I2| using
the notation provided in the evaluation chain of the theorem statement. The argument for the
base case can be generalized to show the stepcase of the induction. For a more detailed proof,
see Appendix ??.

The following corollary to Thm. 2 concerns how large the instance set becomes.

Corollary 1. Given an N-triple t = 〈0, b, b〉N, for b ∈ N, evaluated over the evaluation chain

[�, t, ∅] [α,∞)−−−−→ [α, t, Iα]
[α,∞)−−−−→ [α+ 1, t, Iα+1]

[α,∞)−−−−→ · · ·

then,

|In| ≤
(b+ 1) ∗ (b+ 2)

2
− 1

for all n ∈ [α,∞].

Proof (sketch). Count the instances added to the instance set by unrolling prior to position
α+ b− 1.

Thus we derive a worst case space complexity of O(b2) for the size of the instance set.

37

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

Theorem 3. Given an N-triple t = 〈0, b, b+ c〉N, for b, c ∈ N, and an interval [α,∞), there
exists a value x ∈ [α,∞) such that for all β ∈ N, the evaluation chain

[�, t, ∅] [α,∞)−−−−→ · · · [α,∞)−−−−→ [x− 1, t, Ix−1]
[α,∞)−−−−→ [x, t, Ix]

[α,∞)−−−−→ · · · [α,β]−−−→ [β, t, Iβ]
[α,∞)−−−−→ · · ·

has the property |Ix−1| 6= |Ix| = · · · = |Iβ |. Also, for all n ∈ N,

|In| ≤
(b+ 1) ∗ (b+ 2)

2
+ c ∗ (b+ 1)− 1

Proof (sketch). In this case we have x = α+ b+ c. We use Thm. 2 as a base case and perform
induction on c. The bound is derived from considering the state of the monitor instances
introduced at positions p ∈ [α+ 1, α+ c].

Thus, we derive a worst case space complexity of O(b2 + bc) for the size of the instance set.
The next case is the most interesting because the convergence isn’t as straightforward. We will
not provide the full argument, see [4] for the detailed proof.

Theorem 4. Given an N-triple t = 〈0, b, b− c〉N, for b, c ∈ N and 0 ≤ c ≤ b, and an interval
[α,∞), there exists a value x ∈ [α,∞) such that for all β ∈ N, the evaluation chain

[�, t, ∅] [α,∞)−−−−→ · · · [α,∞)−−−−→ [x− 1, t, Ix−1]
[α,∞)−−−−→ [x, t, Ix]

[α,∞)−−−−→ · · · [α,β]−−−→ [β, t, Iβ]
[α,∞)−−−−→ · · ·

has the property |Ix−1| 6= |Ix| = · · · = |Iβ |. Also, for all n ∈ N,

|In| ≤
(b− c) ∗ ((b− c) + 1)

2
+ (c− 1)

Proof (sketch). The value of x is the same as Thm. 2, x = α + b − 1, but the way we arrive
at this value is different. Given 0 < c, at some point γ < b, instances are removed from the
instance set, but the quantifier has not fully unrolled. Thus, at this point the instance set
increases by 1 as the position is incremented till position α+b−1. At this position the instance
set has a constant size. The bound is derived from considering the growth of the instance set
in two parts, those which are unrolled before γ is reached and those unrolled afterwards.

Theorem 5. Given an N-triple t = 〈a, b, c〉N, for a, b, c ∈ N, and an interval [α,∞), there
exists a value x ∈ [α,∞) such that for all β ∈ N, the complete improper evaluation chain

[�, t, ∅] [α,∞)−−−−→ · · · [α,∞)−−−−→ [x− 1, t, Ix−1]
[α,∞)−−−−→ [x, t, Ix]

[α,∞)−−−−→ · · · [α,β]−−−→ [β, t, Iβ+x]
[α,∞)−−−−→ · · ·

has the property |Ix−1| 6= |Ix| = · · · = |Iβ+x|. Also, for all n ∈ N,

|In| ≤ f(a, b, c)

where f(a, b, c) is defined as

f(a, b, c) =



a+ (I − 1)

a+
(I − d)(I − d+ 1)

2
+ (d− 1)

a+
I ∗ (I + 1)

2
+ d ∗ I − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

c ≤ a

c = b− d , a < c ≤ b

c = b+ d

where I = (b− a) + 1.

38

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

Proof (sketch). Put the results of Thm. 2, 3, & 4 together and add the shift of the interval
provided by a.

Example 3. Let us consider the evaluation of the N-triple t = 〈0, 2, 2〉N over the interval [0,∞).

[�, t, ∅] [0,∞)−−−→
[
0, t,

{
〈1, 2, 2〉N (0)
〈0, 0, 2〉N (0)

}]
[α,∞)−−−−→

1, t,


〈2, 2, 2〉N (0)
〈1, 1, 2〉N (0)
〈0, 0, 2〉N (0)
〈1, 2, 2〉N (1)
〈0, 0, 2〉N (1)



 [α,∞)−−−−→

2, t,


〈2, 2, 2〉N (1)
〈1, 1, 2〉N (1)
〈0, 0, 2〉N (1)
〈1, 2, 2〉N (2)
〈0, 0, 2〉N (2)



 [α,∞)−−−−→

3, t,


〈2, 2, 2〉N (2)
〈1, 1, 2〉N (2)
〈0, 0, 2〉N (2)
〈1, 2, 2〉N (3)
〈0, 0, 2〉N (3)



 [α,∞)−−−−→ · · ·

One can easily calculate that f(0, 2, 2) = 5.

For Sec. 6 the following theorem concerning the monotonicity of f(a, b, c) is needed

Theorem 6. Given the function f of Thm. 5 and a, b, c ∈ N then the following properties hold:
f(a, b, c) ≤ f(a, b+ 1, c), f(a+ 1, b, c) ≤ f(a, b, c), and f(a, b, c) ≤ f(a, b, c+ 1).

Proof (sketch). The properties follow from tedious, but trivial computations.

Essentially what we derived in this section is a function bounding the space requirements of
N-triples in the positive fragment, i.e. Thm. 5. The function can be extended to all N-triples,
which is done in [4]. We use this function in the next section as invariant for deriving a function
bounding the space requirements of a much larger fragment.

6 Space Analysis of the Variable Only Fragment

Now that we have a space analysis of the individual quantifiers and their local formula structure,
we can generalize the results to arbitrary formulas of the variable only fragment. A major
problem with the generalization is that we assumed in the analysis of the restricted fragment
that quantifier interval bounds are always of the form x+n where n ∈ N. Though in actuality,
the variable used can be any of the bound variable above the quantifier.

To deal with this issue we introduce the concept of a dominating formula. The dominating
formula fD of a formula f has the same propositional structure, but the bounds of the quantifier
intervals only contain x and the interval is at least as large as the interval in f . To make this
concept more formal, we introduce the dominating formula transformation.

Definition 5 (Dominating Formula Transformation). Given a sentence f ∈Mvb we construct
the dominating formula fD of f using the following transformation

D(∀0≤x : fD, ∅, ∅) =⇒ D(∀0≤x : D(f, {x← x} , {x← x}))
D(f1 & f2, σl, σh) =⇒ D(f1, σl, σh) & D(f2, σl, σh)

D(¬f, σl, σh) =⇒ ¬D(f, σl, σh)

D(∀y∈[b1,b2] : f, σl, σh) =⇒ ∀y∈[hL(b1),hH(b2)] : D(f, σl {y ← hL(b1)} , σh {y ← hH(b2)})
D(@x, σl, σh) =⇒ @x

39

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

where hL(b1) = min {b1σl, b1σh} and hH(b2) = max {b2σl, b2σh}.

The substitutions used in the dominating formula transformation implement the inequalities
of Thm. 6, essentially maximizing the value of f(·, ·, ·). The dominating formula transformation
allows us to construct a theorem similar to Thm. 1. The problem is that we do not have a
transition relation for the variable only fragment to compare to the operational semantics.
Instead, being that we assuming the worst case behavior at each quantifier, based on Thm. 1,
we know that we have an upper bound for the variable only fragment. The bounding function
of Def. 6 essentially implements this idea. Remember that the function f(·, ·, ·) is the upper
bound instance set size discussed in Thm. 1 for the evaluation transition. Thm. 7 below provides
concrete bounds for the space complexity of the above method.

Definition 6 (Bounding Function). Given a sentence f ∈ Mvb, let fD be its dominating
formula. We construct the bounding function b(fD) as follows:

b(∀0≤x : f) =⇒ b(f, {x← 0})
b(@f & @g, σ) =⇒ b(f, σ) + b(g, σ)

b(¬f, σ) =⇒ b(f, σ)
b(∀y∈[x+a,x+b] : f, σ) =⇒ g(a, b, w(f, σ {y ← (x+ b)σ})) ∗ b(f, σ {y ← (x+ b)σ})

b(@y, σ) =⇒ 1
w(@f & @g, σ) =⇒ max {w(f, σ), w(G, σ)}

w(¬f, σ) =⇒ w(f, σ)
w(∀y∈[x+a,x+b] : f, σ) =⇒ w(f, σ {y ← (x+ b)σ})

w(@y, σ) =⇒ yσ

Theorem 7. Given a sentence f ∈Mvb, the space complexity of evaluating f is O(b(D(f, ∅, ∅)))
= O((Imax)2n), where Imax is the largest interval in D(f, ∅, ∅) and n is the formula depth.

Proof(sketch). The dominating formula requires more space to evaluate than f , by construction.
By performing induction on the formula complexity of f (i.e., its quantifier structure) we get
the exponential bound ((Imax)2)n where n is the length of the longest chain of quantifiers.
(remember that each f(·, ·, ·) has a worst case space complexity of O((Imax)2)).

Thm. 7 provides a worst case space complexity which we provide in order to connect our
results with known results for similar languages, for example weak fragments of predicate logic
[1]. In our case, we are speaking about the number of states of the stream which need to
be checked. However, this bound represents an overapproximation of the bounding function
given in Def. 6. This function can be applied to each monitor individually, i.e., it does not
just provide a general space complexity but also gives bounds for the space usage of a given
monitor. Nevertheless, since even this bounding function suffers from overestimation, we are
currently investigating various optimizations to improve the accuracy of the analysis.

7 Conclusions

In this paper we have provided a method for bounding the memory needed to execute a monitor
which has been expressed in a fragment of the core language defined in Sec. 2. The representa-
tion of a monitor and its operational semantics are abstracted as outlined in Sec. 3 and Sec. 4
to derive an upper bound for the monitor’s memory consumption. For details concerning the
extension of this work to the entire core language, see [4].

The work presented here answers our questions concerning an upper bound for the number
of instances in memory, as well as an upper bound for individual monitors. The extensions

40

Space Analysis of a Predicate Logic Fragment for Stream Monitors Cerna, Schreiner, Kutsia

concerning constants and∞ provide a method for discerning monitors which use infinite memory
and those which do not [4]. However, one open problem we would like to address is the accuracy
of the derived upper bound. It turns out that it is easy to design a monitor such that the results
of computing the expected memory usage is off by a few orders of magnitude (though the bounds
are accurate, if one abides by the structure of the restricted fragment). Some methods for fixing
these problems are given in [4], i.e. the method used for abstracting monitors into N-triples
seems to play a role in the output of the bounding function. Nonetheless, it seems that the
global formula structure has a larger than expected influence on how many instances need to be
held in memory. We have already started to investigate this issue in [3]. Our future work will
focus on understanding the influence of the global structure on the actual number of instances
needed in memory.

References

[1] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer, 1997.

[2] Julius Richard Büchi. Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

[3] David Cerna. Space Complexity of LogicGuard Revisited. Technical report, Research Institute
for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria, October 2015.

[4] David Cerna. Space Complexity of Operational Semantics for the LogicGuard Core Language.
Technical report, Research Institute for Symbolic Computation (RISC), Johannes Kepler Univer-
sity Linz, May 2015.

[5] Bernd Finkbeiner and Lars Kuhtz. Monitor Circuits for LTL with Bounded and Unbounded
Future. In Runtime Verification, 9th International Workshop, RV 2009, volume 5779 of Lecture
Notes in Computer Science, pages 60–75, Grenoble, France, June 26–28, 2009. Springer, Berlin.

[6] Markus Frick and Martin Grohe. The Complexity of First-Order and Monadic Second-Order Logic
Revisited. Annals of Pure and Applied Logic, 130(1–3):3–31, 2004.

[7] IEEE Std 1850-2007: Standard for Property Specification Language (PSL)., 2007.

[8] Orna Kupferman, Yoad Lustig, and Moshe Y. Vardi. On Locally Checkable Properties. In Logic for
Programming, Artificial Intelligence, and Reasoning, 13th International Conference, LPAR 2006,
volume 5779 of Lecture Notes in Artificial Intelligence, pages 302–316, Phnom Penh, Cambodia,
November 13–17, 2006. Springer, Berlin, Germany.

[9] Temur Kutsia and Wolfgang Schreiner. Verifying the Soundness of Resource Analysis for Log-
icGuard Monitors (Revised Version). Technical Report 14-08, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria, 2014.

[10] LogicGuard II, November 2015. http://www.risc.jku.at/projects/LogicGuard2/.

[11] Oded Maler, Dejan Nickovic, and Amir Pnueli. Real Time Temporal Logic: Past, Present, Future.
In Paul Pettersson and Wang Yi, editors, Formal Modeling and Analysis of Timed Systems, Third
International Conference (FORMATS), volume 3829 of Lecture Notes in Computer Science, pages
2–16, Uppsala, Sweden, September 26–28, 2005. Springer, Berlin, Germany.

[12] Robert McNaughton and Seymour Papert. Counter-Free Automata, volume 65 of Research Mono-
graph. MIT Press, Cambridge, MA, USA, 1971.

[13] Wolfgang Schreiner, Temur Kutsia, David Cerna, Michael Krieger, Bashar Ahmad, Helmut Otto,
Martin Rummerstorfer, and Thomas Gössl. The LogicGuard Stream Monitor Specification Lan-
guage (Version 1.01). Tutorial and reference manual, Research Institute for Symbolic Computation
(RISC), Johannes Kepler University, Linz, Austria, November 2015.

[14] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach to Automatic Program
Verification (Preliminary Report). In Symposium on Logic in Computer Science (LICS ’86),
Cambridge, Massachusetts, USA, June 16-18, pages 332–344. IEEE Computer Society, 1986.

41

http://www.risc.jku.at/projects/LogicGuard2/

	Introduction
	The Core Language and its Operational Semantics
	The Restricted Fragment and N-Triples
	The Evaluation of N-Triples
	Space Analysis of the Restricted Fragment
	Space Analysis of the Variable Only Fragment
	Conclusions

