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Abstract 

Risk management is crucial for construction safety, but safety risk assessment often 

relies on experts' knowledge, which makes automatic risk management in engineering 

projects still a big challenge. Fortunately, for large-scale infrastructure construction, on-

site inspection is required, and the conditions on-site are recorded in text format, which 

provides an opportunity to learn risk information from inspection reports. To improve 

document processing efficiency, automatic text classification plays an important role. 

However, currently, automatic text classification requires large scale training datasets. It 

is a big challenge for the engineering industry, especially for the fields which heavily rely 

on the experts’ knowledge, such as risk assessment. Limited data sources, high time and 

labor costs make it not practical to establish a large-scale dataset. This work proposes a 

BERT-based ensemble model for small-sample text classification, leveraging the Focal 

loss function to address data imbalance issues. Concurrently, an ensemble strategy is 

employed to enhance the model's generalization capabilities, while the learning rate 
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gradient descent method is applied to mitigate the risk of model overfitting. The efficacy 

of the proposed framework is validated through a four-classification task about 

identifying risk levels based on the inspection reports of a metro construction project. 

The BERT-based ensemble model proposed in this paper achieves an accuracy of 96.24% 

on the test set, surpassing other pre-trained classification models and excelling in 

automated text classification tasks. 

1 Introduction 

Construction is an inherently complex process characterized by long construction cycle, unique on-

site conditions, sophisticated construction techniques, and significant environmental dependency. 

Compared to other industries, accidents happen frequently in the construction sector, leading to 

casualties and property damage. In 2017, the U.S. Bureau of Labor Statistics reported over 950 fatal 

injuries and more than 200,000 non-fatal injuries in the construction industry, accounting for more than 

21% of all occupational fatalities in the United States (Bureau of Labor Statistics & Occupational Safety 

and Health Administration , 2018). To mitigate the harm caused by accidents, implementing safety risk 

management during construction process is crucial. 

The primary objective of safety risk management is to assess the safety risk status of construction 

projects, which helps allocating appropriate resources to mitigate risk. Currently, safety risk assessment 

in construction industry still heavily relies on experts’ experience. For example, for the risk assessment 

during foundation pits excavation, safety management engineers conduct on-site exploration daily, 

inspecting the on-site conditions (support structures, surrounding environment, and monitoring 

facilities etc.). Then, based on the exploration results and monitoring data, a construction site inspection 

report is created. Finally, experienced engineers make a comprehensive assessment of the construction 

safety risk based on the inspection report. This process is time-consuming and heavily relies on the 

engineers' expertise. The construction industry is labor-intensive, the shortage of experienced engineers, 

and the lengthy transmission time of risk information further hampers timely response to risks. 

Therefore, an automated method for safety risk assessment based on inspection reports needs to be 

developed to enable timely risk response. 

The rapid advancement of artificial intelligence provides new possibilities for construction safety 

risk management, with Natural Language Processing (NLP) technologies demonstrating high accuracy 

and applicability in processing textual data (Kim & Chi, 2019). To address the limitations of manual 

risk assessment, automated methods for safety risk assessment in construction projects have begun to 

emerge. Automated safety risk assessment based on construction inspection is a text classification 

problem. Currently, the most popular automated text classification methods can be classified into 

Shallow Machine Learning models and Deep Learning models. Abderrahim Zermane adopted Random 

Forest model to classify the causes of falls from height (Zermane & Mohd Tohir, 2023). Fan Zhang et 

al. proposed an approach integrating multiple machine learning models to classify the causes of 

construction accident reports (Zhang et al., 2019). However, these algorithms have limited learning 

capabilities, require manually provided features, and exhibit high error rates. In contrast, deep learning 

algorithms can identify features automatically. Zhang et al. enhanced a CNN model by introducing 

multi-channel input to classify unstructured construction quality records (Zhang, Li, Tian, Song, & Shen, 

2022). Similarly, Baker et al. employed a CNN and a hierarchical attention network (HAN), 

incorporating RNNs, to automatically extract accident precursors from construction accident report 

datasets (Baker, Hallowell, & Tixier, 2020). Even many attempts have been made in text mining in the 

construction industry, several challenges remain: (1) Semi-structured or unstructured natural language 

reports make it difficult for deep learning models to achieve a high accuracy; (2) Limited data sources 

and the high cost of manual labeling makes it a big challenge to develop large-scale domain-specific 
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datasets in construction industry; (3) Even construction domain is high risk, severe risk incidents are 

still rare, leading to data imbalance issues. Given these circumstances, the methods mentioned earlier 

struggle to handle text classification for imbalanced small-sample datasets in the construction domain. 

In recent years, the emergence of BERT pre-trained models has offered a promising solution for 

addressing challenges associated with small datasets. As a pre-trained model, BERT requires minimal 

domain-specific data for fine-tuning to achieve the desired results. Thus, this paper proposes a BERT-

based ensemble model. First, data augmentation techniques are employed to enhance sample diversity. 

Then, leveraging BERT's powerful text processing capabilities, features are extracted from construction 

inspection reports, followed by fine-tuning multiple models. The final prediction result is determined 

by aggregating the predictions from these models. Furthermore, to address the data imbalance issues 

inherent in small-sample datasets, the Focal Loss function is employed to mitigate the impact of class 

imbalance. Ultimately, an automated warning level identification mechanism for construction 

inspection reports is developed, assisting project managers conducting timely risk control. 

2 Literature Review 

2.1 Application of Text Classification in Construction Safety 

Management 

Nowadays, there are many studies on automated text classification in the construction field. Typical 

text classification methods can be divided into knowledge-based methods and machine learning-based 

methods. Ontology is considered one of the most common knowledge-based approaches. Seokho Chi 

et al. developed an ontology-based text classification method to support automated job hazard analysis, 

identify key risk factors associated with each construction incident, and determine the critical risk 

combinations leading to accidents (Chi & Han, 2013). Salama and El-Gohary proposed a semantic 

machine learning-based text classification algorithm for categorizing clauses and sub-clauses in textual 

documents, facilitating compliance checking for construction regulations and contracts (Salama & El-

Gohary, 2016). 

With advancements in machine learning, new possibilities have emerged for text classification. For 

instance, Yang Miang Goh applied algorithms such as Support Vector Machine (SVM), Logistic 

Regression (LR), Random Forest (RF), K-Nearest Neighbors (KNN), Decision Tree (DT), and Naive 

Bayes (NB) to classify construction incident narratives. The F1 score of SVM ranged from 0.45 to 0.92, 

outperforming other classifiers (Goh & Ubeynarayana, 2017). Building on this, Fan Zhang et al. 

proposed an ensemble model based on multiple machine learning algorithms to classify the causes of 

construction accident reports (Zhang, Fleyeh, Wang, & Lu, 2019). 

However, a limitation of machine learning is the requirement for manual feature extraction. 

Compared to traditional machine learning, deep learning is an end-to-end process capable of 

automatically learning features from training datasets. Today, research on text classification using deep 

learning is increasingly prevalent. In the construction domain, Botao Zhong et al. proposed a method 

combining Natural Language Processing (NLP) and Convolutional Neural Networks (CNN) to analyze 

and classify construction incident texts, while using an LDA model to explore the intrinsic relationships 

between different categories of accident causes (Zhong, Pan, Love, & Ding, 2020). Dan Tian et al. 

employed a CNN-based text classification model to categorize textual descriptions of construction site 

conditions into six classes, demonstrating the proposed model's reliability and applicability in handling 

large-scale construction site texts (Tian, Li, Shi, Shen, & Han, 2021). Hrishikesh Gadekar and Nikhil 

Bugalia proposed a semi-supervised YAKE-GLDA method for the automatic classification of 

construction safety reports. However, the YAKE-GLDA method is suitable only for medium-sized 

databases and not for smaller ones (Gadekar & Bugalia, 2023). Although there have been studies on 
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text classification in the construction field, there is still a gap in research on small-sample text 

classification. 

2.2 Application of BERT in Text Classification 

In most cases, obtaining large domain-specific datasets is challenging. Google has released a new 

language representation model based on the Transformer, Bidirectional Encoder Representations from 

Transformers (BERT) (Devlin, Chang, Lee, & Toutanova, 2018). BERT is pre-trained on a large corpus 

and fine-tuned by adding additional output layers. Therefore, advanced models built on BERT can 

accomplish NLP tasks without the need for training on large-scale datasets. 

BERT has been successfully applied across various domains, demonstrating outstanding 

performance in text classification tasks. Chi Sun investigated a series of fine-tuning approaches, 

providing a general framework for fine-tuning BERT across different text classification tasks (Sun, Qiu, 

Huang, & Xu, 2019). Fang et al. developed a novel BERT-based model for the automatic classification 

of near-miss information in safety reports. The model was validated using a database of near-miss 

incident reports from real projects, achieving a 10% increase in accuracy after fine-tuning (Fang, et al., 

2020). 

Several studies have enhanced model performance by modifying BERT's classification head and 

integrating it with other neural networks. Kamaljit Kaur et al. proposed a Bidirectional Encoder-

Decoder Transformer-Convolutional Neural Network (BERT-CNN) model for requirement 

classification, which improves model performance by stacking convolutional layers on top of the BERT 

layer. Experiments conducted on the PROMISE dataset containing 625 requirements demonstrated that 

the proposed model outperformed state-of-the-art baseline methods (Kaur & Kaur, 2023). Nishant Rai 

attempted to connect the output layers of an LSTM model and a BERT model for fake news 

classification of news headlines. Testing on the PolitiFact and GossipCop datasets showed an 

improvement in accuracy (Rai, Kumar, Kaushik, Raj, & Ali, 2022). 

When facing challenging tasks or insufficient training data, ensemble methods are often employed 

to enhance model performance. J. Briskilal integrated BERT and RoBERTa models for the 

classification of idiomatic and literal text (Briskilal & Subalalitha, 2022). Rohan S (Baker, Hallowell, 

& Tixier, 2020) ingh Wilkho utilized the Bagging ensemble method, combining different models to 

achieve superior predictive performSance. He fine-tuned 50 models for each architecture type on 

different subsets of the training-validation set and experimentally determined the optimal number of 

models to ensemble (Wilkho, Chang, & Gharaibeh, 2024). 

Based on previous works, we propose a BERT-based ensemble model for classifying imbalanced 

small-sample text datasets. This model can automatically assess the risk status of construction sites 

based on monitoring reports. 
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 Figure 1: BERT-Based Ensemble Model Framework for Small-Sample Text Classification 
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3 Model Architecture  

Our model is composed of multiple BERT classification models. Each model consists of a pre-

trained BERT model and a classification head, both of which are fine-tuned on our dataset. The specific 

architecture is shown in Figure 1. The model takes a piece of text as input and outputs a label based on 

the content of the text. The following section introduces our model architecture. 

3.1 Data Augmentation 

This research focuses on text classification problems for small-sample datasets. To increase sample 

diversity, we used a data augmentation strategy combining back-translation and Easy Data 

Augmentation (EDA). EDA is a method for expanding text data through simple operations such as 

synonym replacement, random insertion, random swapping, and random deletion. By making slight 

modifications to the original text, the generated samples help the model learn richer textual expressions, 

improving its robustness. Compared to other data augmentation methods, this approach is simple, 

requiring no complex algorithms or extensive computational resources, while increasing sample 

diversity at minimal cost. 

3.2 Bagging Ensemble 

We used the Bagging ensemble method in our model. Bagging (Bootstrap Aggregating) is a widely 

used ensemble learning method aimed at improving machine learning models by combining the 

predictions of multiple models, reducing the risk of overfitting, and enhancing generalization. We 

trained different classifiers on various subsets of the same training dataset, with these subsets generated 

from the original dataset using Bootstrap sampling (which allows samples to be selected multiple 

times). After creating the subsets, we trained multiple models on them, which together formed the 

Bagging ensemble model. The final prediction is made through a simple majority voting process. 

3.3 BERT Classification Model 

Our model is built on the integration of multiple BERT classification models. This section focuses 

on explaining the individual BERT models in the ensemble, with the architecture of a single model 

shown in Figure 2. In each individual model, we use the Focal loss function to address the issue of data 

imbalance, and apply a learning rate decay strategy along with the AdamW optimizer to enhance model 

accuracy. Further explanation of the individual models will be provided in later sections. 
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Figure 2: Structure of an individual BERT classification model 
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(1) Input Embedding 

BERT’s input embedding consists of three main components: token embedding, segment 

embedding, and position embedding. These embeddings work together to transform the text into a 

numerical form that the model can process. The BERT model only accepts fixed-length input sequences 

(with a maximum length of 512 tokens). We have fixed the input sequence length to 512 tokens, padding 

shorter sequences with empty tokens. 

(2) Multi-layer Bidirectional Transformer Encoder 

The multi-layer bidirectional Transformer encoder in BERT is the core of the model, responsible 

for processing text data through the input embedding layer. The encoder is based on the Transformer 

architecture and is composed of multiple identical stacked layers. Each layer consists of two main 

components: a multi-head self-attention mechanism and a position-wise feed-forward network. 

(3) Classification Head 

We use a pre-trained BERT model as a feature extractor, and add a fully connected layer with a 

softmax activation function on top for classification. The fully connected layer and activation function 

together form the classification head of the model, responsible for converting BERT’s high-dimensional 

feature representation into the final classification prediction. Through the fully connected layer, the 

features extracted by BERT are mapped to the final classification labels. The output dimension of this 

layer equals the number of categories in the classification task. To improve the model's generalization 

ability, dropout is applied before the fully connected layer, randomly "dropping" some neuron outputs 

to reduce overfitting. Finally, the softmax function is used to calculate the predicted probability for each 

category. Additionally, Focal Loss is used to calculate the loss during model training, optimizing the 

process 

4 Experiments 

4.1 Dataset 

Our dataset consists of 158 monitoring reports from a metro construction project, with experts 

manually labeling four warning levels: no warning, yellow warning, orange warning, and red warning. 

To increase sample diversity, we used back-translation and EDA methods for data augmentation. Table 

1 shows the sample count for each warning level. The data is highly imbalanced, so we have applied 

two methods to cope with data imbalance: the Focal Loss function and the Bagging ensemble. When 

using BERT for text classification, preprocessing steps such as tokenization, adding special tokens, 

generating Token IDs and Type IDs, and constructing attention masks are necessary to meet the model's 

input requirements. 

 

 
 

Dataset 
 

 

Labels 

Original Dataset Augmented Dataset 

No Warning 24 48 

Yellow Warning 119 238 

Orange Warning 9 108 

Red Warning 4 48 

Table 1: The distribution of labels in the dataset 
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4.2 Training, Validation, Testing 

This paper applies fully supervised training of the BERT model on a small dataset, fine-tuning 

task-specific patterns to improve training speed and accuracy. By analyzing weights and the attention 

mechanism, the model provides interpretability for small datasets. The data is split into two groups: 

70% for training and 30% for testing, with the training set further divided into two groups: 80% for 

training and 20% for validation.  

We used the training set to perform bagging ensemble learning. We split the training dataset 

into 5 different subsets to train 5 different models (for each architecture).  

The training and validation of BERT involve the fine-tuning process. The general fine-tuning 

parameters are: training epochs = 8, initial learning rate = 8e-6, optimizer = AdamW, and the loss 

function is FocalLoss with class weights of 5:1:30:1. 

(1) Focal Loss Function 

The cross-entropy loss function is commonly used when training deep learning models for 

classification, as it measures the difference between two probability distributions for a given random 

variable or set of events. However, this research focuses on imbalanced datasets. In such cases, training 

with the cross-entropy loss function can lead to models that disproportionately favor the majority class, 

resulting in suboptimal performance for the minority class. To mitigate this issue, the focal loss function 

is employed in this paper as a replacement for the cross-entropy loss during model training. Focal Loss 

function is calculated using Equation (1). 

( ) (1 ) ( )t t t tFL p p log p= − −  （1） 

 Where 𝑃𝑡  corresponds to the predicted probability of the true class,  𝛼𝑡  denotes the modulating 

factor to handle class imbalance. γis a parameter that adjusts the attention given to easy and hard 

samples. Overall, the focal loss function addresses data imbalance by modulating the contribution of 

each sample to the loss. 𝛼𝑡 alleviates the imbalance from the perspective of sample class by adjusting 

the weight of the loss calculation for different classes, while γenhances the contribution of hard-to-

learn samples to improve model performance. Typically, γ = 2 is set to a standard value in the field 

of computer vision. 

(2) Comparative experiment and sensitivity analysis 

To validate the effectiveness of Focal Loss function, comparative experiments were conducted. The 

results show that, compared to the traditional cross-entropy loss function, Focal Loss function 

demonstrates stronger classification performance on imbalanced datasets (see Table 2). In addition, we 

also studied the impact of the 𝛼𝑡 parameter on the model's classification performance. With γ = 2, the  

𝛼𝑡  parameter was systematically adjusted in the range from 0 to 30, with intervals of 10, and the 

classification performance was recorded after each training session. The experimental results show that 

as the  𝛼𝑡  value increases, the model's classification performance on imbalanced classes improves, 

further confirming the model's sensitivity to the 𝛼𝑡 parameter. This finding suggests that selecting an 

appropriate 𝛼𝑡 parameter helps improve the model's ability to identify minority classes. 

(3) Learning Rate Decay 

Learning rate is a key hyperparameter that controls how the model's weights are adjusted. An 

appropriate learning rate can speed up convergence and avoid oscillations or overly slow progress. A 

traditional constant learning rate often fails to meet the needs of deep networks, requiring numerous 

experiments and making it difficult to find the optimal value. This paper uses a time decay strategy, 

starting with a larger learning rate to quickly approach the optimal solution, and then gradually reducing 

it to allow fine-tuned adjustments in later stages and avoid oscillations. 
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For small datasets, we used cross-validation to determine the hyperparameters. After multiple tests, 

the learning rate was reduced to 90% of its original value after each epoch, achieving the highest 

accuracy, as shown in Figure 3. 

 

4.3  Evaluation Metrics 

Since our research involves a multi-label classification problem, it is important to evaluate not only 

the overall performance of the model, but also its ability to correctly identify each label. Therefore, we 

use the F1 score to assess the model's performance on each individual label and the micro-F1 score to 

evaluate the model's overall performance across all labels. The F1 score is calculated using Equations 

(2), (3), and (4). 

 Precision=
TP

TP FP+
                                             （2） 

 
 

Figure 3: Optimal learning rate decay ratio 

Types of Loss 

Functions 
Index No warning Yellow warning Orange warning Red warning 

cross-entropy loss 

function 
F1score 0.8959 0.9270 0.8616 1 

Focal Loss 

function (class 
weight =1:1:1:1) 

F1score 0.8959 0.9329 0.8808 1 

Focal Loss 

function (class 

weight =1:1:10:1) 

F1score 0.8887 0.9404 0.8925 1 

Focal Loss 

function (class 

weight =1:1:20:1) 

F1score 0.9280 0.9464 0.8925 1 

Focal Loss 

function (class 

weight =1:1:30:1) 

F1score 0.9280 0.9592 0.9356 1 

Table 2: Comparative experiment and sensitivity analysis of Focal Loss function 
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 Recall=
TP

TP FN+
 （3） 

 precision Recall
1score 2

precision Recall
F


= 

+

 （4） 

5 Case Study  

To validate the effectiveness of the proposed small-sample text classification framework in 

automatic text classification, we created two datasets. The data samples are shown in Table 3. The 

model’s performance was evaluated through 7-fold cross-validation, and we compared our model with 

other models suitable for small-sample classification as benchmarks. 

 

 

5.1  Summary of the data set 

For training and testing purposes, we divided 156 original monitoring inspection reports from a 

metro project into a total training dataset and a test dataset in a 7:3 ratio. The total training dataset was 

further split into a training set and a validation set at a ratio of 8:2. The inspection reports are formulated 

by manual daily inspection about construction conditions, support structure, surrounding environment, 

and monitoring facilities, which provide a comprehensive view of the foundation pit's risk conditions. 

We invited experts with safety management experience over 15 years in metro construction, to label 

inspection reports by evaluating risk levels based on each inspection report. The risk levels are divided 

into four categories: no warning, yellow warning, orange warning, and red warning. No warning 

indicates that the project is in a low-risk state, and risk response measures are generally not required. 

Yellow warning indicates that the project’s risk level is slightly higher than no warning, requiring 

minimal resources to control the risk. Orange warning indicates that the project is in a medium-high 

risk state, necessitating considerable resources and proper risk control measures to control the risk. Red 

warning indicates that the project is in a high-risk state, which typically leads to severe engineering 

accidents and requires close attention from project managers. Due to the specific nature of the 

construction industry, serious risks are undesirable. Reasonable risk control measures are often taken 

before risk evolves to high levels, leading to significant data imbalance. Normal and yellow warning 

samples make up the majority, while orange and red warnings are rare. Additionally, our dataset faces 

the issue of being a small sample dataset. 

ID Label Criteria Narrative example 

0 
no 

warning Based on the four aspects included 

in the inspection daily reports—

construction conditions, support 

structure, surrounding 

environment, and monitoring 

facilities—experts were asked to 

score the reports and classify the 

foundation pit risk warning levels 

into four categories. 

Narrative: 开挖面土体为中密卵石，基坑开挖区域为 0-

24 轴，1-8 轴制作顶板模板，8-12 轴中板浇筑，12-16 轴搭

设中板脚手架，16-19 轴制作底板垫层，19-24 轴已开挖至

设计深度，停止开挖，第四层钢支撑、第三层钢支撑 1-18

轴、第二层钢支撑 1-10 轴已拆除，东端盾构井有渗水，系

用坑内降水，降水设施运转正常，支护状体无裂缝、无明显

缺陷、隆起，基坑侧壁及坑内无涌水、流沙、管涌，基坑周

围无超载。支护桩无裂缝、侵陷等情况，冠梁已施工完成，

连续性完好，无过大变形、裂缝基坑防坠措施完好，钢支撑

架设及时。基坑周边土体存在细小裂缝、车辆碾压等情

况 ，无明显沉陷隆起。地表竖向位移监测点 DBC29-01、

DBC29-02 等破坏，桩顶位移监测点 ZQS27 无法观测。                                             

Label: yellow warning 

1 
yellow 

warning 

2 
orange 

warning 

3 
red 

warning 

Table 3: Labels used for the data, their criteria and sample narrative 
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To improve the model's training performance and reliability, we applied data augmentation method 

to original dataset. In the following sections, we will use both the original data and the augmented data 

to train and evaluate the model separately. 

5.2  Model Performance Based on Small-Sample Training 

The BERT ensemble model was implemented using the Pytorch deep neural network platform. The 

hyperparameters of the deep neural network were determined based on the best results from multiple 

rounds of experimental testing. The specific parameters are shown in Table 4. 

80% of the training set was used for model training, while the remaining 20% was used for model 

validation. The training loss from the original dataset is shown in Figure 4. After 20 epochs, the training 

loss fluctuated slightly, indicating that the model had reached optimal performance on the current 

dataset. In the final stage of training, the recall rate for the predefined labels stabilized at a relatively 

steady level. After 25 epochs of training, the recall rates for the normal and yellow warning labels 

stabilized above 0.9. Although there were only 13 samples for the normal label, the prediction accuracy 

was high, indicating that reports without warnings were more clearly expressed. However, due to 

significant data imbalance in the original training dataset, the red and orange warning samples were 

scarce (2 red samples and 4 orange samples), making them hard-to-learn samples and resulting in 

considerable fluctuations during training. 

Due to the limited sample size, we conducted a 7-fold stratified cross-validation to verify the 

reliability of the trained model. We randomly divided the total training set consisting of 109 samples 

into 7 parts, aiming to maintain the original sample distribution as much as possible. In each round, one 

part was selected as test set, while the remaining 6 parts were combined as the training data set. Figure 

5 (a, b) shows the precision and recall distributions of the classification labels from the 7-fold cross-

validation. Since the number of orange and red warning samples in the dataset is extremely limited, and 

the distinction between orange and yellow warnings is not clear, random partitioning cannot ensure that 

each fold in cross-validation contains all four label categories. Therefore, in Figure 5 (a, b), the lowest 

training precision and recall rates for the orange and red warning labels can be zero.  

The precision and recall distributions from the 7-fold cross-validation show that the range for orange 

and red warning labels is quite large, while the precision and recall for no warning and yellow warning 

labels are distributed at a higher level. The training results indicate that the size of the training dataset 

directly affects the model’s robustness. Due to the lack of training samples, the model's robustness is 

weak, especially for sample categories with lower proportions in the training dataset. However, the 

metrics for no warning and yellow warning labels are distributed at a high level, indicating that the 

model can perform text classification tasks well once the dataset reaches a sufficient size. 

5.3 Model Performance Based on Data-Augmented Training 

In the initial stage, the total training dataset contained only 109 samples, with very limited samples 

for each category. Therefore, we expanded our dataset using a combination of EDA and back-translation 

data augmentation methods. The expanded training dataset includes 309 samples.  

Training on the augmented dataset improved the model's robustness. As shown in Figure 4, after 15 

training epochs, the training loss stabilized without fluctuation. The recall rate during the training 

process stabilized after 10 epochs. The expanded training dataset made the model training more stable, 

with faster convergence, and there were no significant fluctuations in any class labels during training. 

Evaluating the model's performance in the final training stage, the recall rates for all class labels 

exceeded 0.9, indicating a significant improvement in the model's training performance.  

To verify the model's robustness, a 7-fold cross-validation was performed on the augmented dataset, 

with precision and recall rates shown in Figure 5 (d, e). Except for the orange warning, the average 

Automated Text Classification of Construction Inspection Report K. Li et al.

551



precision and recall rates for the other warning categories were above 0.95. Although the recall rate for 

the orange warning fluctuated, its average reached 0.8. 

 

 

 

 

 

 

5.4 Model’s Robustness Validation 

To accurately evaluate the model's performance, we validated the model on a completely new test 

set, and the test results are shown in Figure 5 (c, f). On the original dataset, although the overall test 

accuracy reached 87.23%, for the orange warning category, all 3 test samples were predicted 

incorrectly, resulting in an accuracy of 0 for this label. As for the red warning samples, although they 

were all predicted correctly, there was only one red sample in the original test set, so the accuracy result 

lacks statistical significance due to the small sample size. 

On the augmented dataset, we clearly saw that although the overall accuracy maintains 96.24%, the 

model also achieved high accuracy for each individual category, with only few yellow and orange 

samples incorrectly predicted. While ensuring high accuracy, the augmented test set contains enough 

samples for each category, making the results more convincing. 

Hyperparameters Value 

Batch Size 2 

Dropout Ratio 0.5 

Optimizer AdamW 

Initial learning rate 8e-6 

Optimal number of integration models 5 
Table 4: Bert integrated model training parameters 

 
 

 
Figure 4: Training loss curve and Training recall curve 
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To examine the advantage of the model in small-sample text classification, we compared the 

ensemble model with other BERT-based text classification models. We trained and tested the models 

using both the original dataset and the augmented dataset. For a more comprehensive evaluation, we 

calculated the precision, recall, and F1 score for each category in the test set, and the results are shown 

in Table 5. 

First, the models were trained on the original dataset. For the normal and yellow warning categories, 

the F1 scores of the models were almost identical and performed well. Due to the small number of 

orange samples, all models performed poorly in this category, but BERT + DPNN and BERT + RCNN 

showed some improvement in predicting the orange warnings. Although the number of red warning 

samples was also small, all models performed well in identifying the red warnings. 

On the augmented dataset, the F1 scores of all models are relatively high, indicating that each model 

performs well in classifying imbalanced small samples. However, the F1 scores of the ensemble model 

are higher than those of the other models, demonstrating that our proposed ensemble model offers 

significant advantages and better performance in small-sample text classification tasks. 

6 Discussion 

Small-sample datasets are prone to overfitting during model training, making it difficult to learn 

features accurately. This is often accompanied by data imbalance issues, as seen in our dataset, where 

the model tends to favor the majority classes and ignore the minority classes. As shown in Figure 4, 

during the convergence process, the model's training loss on the original dataset did not stabilize at a 

low level in the later stages and exhibited some fluctuations. The recall for the orange and red warning 

categories fluctuated significantly during training. On the original dataset, as shown in Figure 5 (c), the 

ensemble model achieved an overall test accuracy of 87.23%, but for the orange warning category, all 

3 test samples were predicted incorrectly, resulting in an accuracy of 0 for this category. As for the red 

warning samples, all were predicted correctly, there was only one sample, making the result less reliable 

due to randomness. To address the issue of insufficient data, we applied data augmentation techniques 

to expand our dataset, increasing sample diversity and providing more learnable samples. During the 

convergence process, compared to the original dataset, the model's training loss on the augmented 

 

 
Figure 5: Performance comparison of the model on the original (a, b, c) and augmented (d, e, f) datasets 
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dataset was smoother and stabilized at a lower level, with recall for all categories converging to 0.95, 

as shown in Figure 4. The generalization ability of the ensemble model was also improved, with the 

average metrics for all categories in 7-fold cross-validation exceeding 0.8. Additionally, the BERT-

based model more accurately identified category features on the augmented test set. 

In Section 5.4, when comparing with other models, the performance differences between models on 

the original dataset were small, mainly due to the limited dataset size, which restricted the models' 

capabilities. However, on the augmented dataset, the ensemble model outperformed other models on 

all metrics, indicating that our multi-model ensemble architecture and the Focal Loss function 

performed well in coping with data imbalance in small datasets. 

However, there are certain limitations to our research. First, the model training still needs manual 

labels, which is a time-consuming process. With the accumulation of domain-specific datasets, manual 

work can be reduced with the help of unsupervised training on large datasets. Additionally, we only 

trained and tested the model's effectiveness on the inspection reports from one real-world project. Future 

work will be requires testing the model on other text classification problems in the construction industry. 

7 Conclusion 

During construction, a large amount of unstructured and semi-structured text is generated, providing 

project managers with valuable information. However, reading and identifying useful information in 

inspection reports and classifying warning levels is typically a manual and time-consuming process. 

Additionally, due to the limited data sources and the high cost of manual labeling, it is difficult to form 

large-scale domain datasets. 

In summary, this paper proposes a BERT ensemble model to address the issue of imbalanced small-

sample datasets. First, a combination of EDA and back-translation data augmentation techniques is 

applied to enhance the diversity of the small-sample dataset without collecting additional data. The 

training dataset is then divided into multiple subsets, with each model trained on a different subset. The 

final prediction label is determined by a voting mechanism. For individual models, learning rate 

gradient descent is used to reduce the risk of overfitting, and the Focal Loss function assigns weights 

to different classes during loss calculation, improving the model’s ability to learn from minority, hard-

to-learn samples. Finally, to verify the feasibility of the proposed model, the paper classifies real textual 

Model 

name 
Index 

No warning Yellow warning Orange warning Red warning 
Original Augmented Original Augmented Original Augmented Original Augmented 

BERT-

based 
ensemble 

model 

 

Precision 0.7000 0.9333 0.9167 0.9467 0.0000 1.0000 1.0000 1.0000 

Recall 1.0000 1.0000 0.9167 0.9861 0.0000 0.8788 1.0000 1.0000 

F1score 0.8235 0.9655 0.9167 0.9660 — 0.9355 1.0000 1.0000 

BERT+ 

CNN 

 

Precision 0.7000 0.8235 0.9167 0.8718 0.0000 0.9583 1.0000 1.0000 

Recall 1.0000 1.0000 0.9167 0.9444 0.0000 0.6970 1.0000 1.0000 

F1score 0.8235 0.9032 0.9167 0.9066 — 0.8070 1.0000 1.0000 
BERT+ 

RNN 

 

Precision 0.7000 0.8235 0.9167 0.9571 0.0000 0.9375 1.0000 1.0000 

Recall 1.0000 1.0000 0.9167 0.9306 0.0000 0.9091 1.0000 1.0000 

F1score 0.8235 0.9032 0.9167 0.9461 — 0.9231 1.0000 1.0000 

BERT+D

PNN 

 

Precision 0.7000 0.9286 0.9697 0.9583 0.6667 0.9375 1.0000 1.0000 

Recall 1.0000 1.0000 0.8889 0.9583 0.6667 0.9091 1.0000 1.0000 

F1score 0.8235 0.9630 0.9275 0.9583 0.6667 0.9231 1.0000 1.0000 

BERT+R
CNN 

 

Precision 0.7000 0.8235 0.9412 0.9189 1.0000 0.9643 1.0000 1.0000 
Recall 1.0000 1.0000 0.9143 0.9444 0.3333 0.8182 1.0000 1.0000 

F1score 0.8235 0.9032 0.9276 0.9315 0.5000 0.8853 1.0000 1.0000 

Table 5：Comparison of training performance across different models 
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data from inspection reports of a real project. The data was split into training and test sets, with cross-

validation performed on the training set, showing that the model performs well on different datasets and 

has strong generalization capabilities. Additionally, the ensemble model achieved a classification 

accuracy of 96.24% on the test set, slightly outperforming other classification models and 

demonstrating good robustness. 

This model framework provides a viable path for automated risk assessment from construction site 

inspection reports, supporting intelligent construction management, enabling timely responses to safety 

risks. 
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