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Abstract 

Fire safety inspection is essential for protecting occupants from fire hazards. 

Traditional inspection methods often rely on subjective assessments, often leading to 

potential errors and inadequate maintenance. This study introduces a visual fire safety 

inspection tool that integrates self-trained Machine Learning (ML) services to enhance 

the accuracy and efficiency of documenting Fire Safety Equipment (FSE) using images. 

The ML services were incorporated into a web-based application built with the React 

framework, featuring a backend developed using FastAPI and MongoDB for efficient 

processing and scalability. The tool achieved a high mean average precision (mAP) 

over 80% on testing datasets. It offers a robust environment for fire safety experts to 

validate and compare models, also providing insights into the impact of active learning 

algorithms. Despite the tool’s high accuracy, challenges such as slow loading times and 

application freezing were identified, with proposed solutions focusing on optimizing 

backend and frontend processes. The integration of ML services demonstrates 
significant potential for improving fire safety inspections, with future work aimed at 

refining models, expanding real-time monitoring capabilities, and ensuring 

compatibility with Building Information Modeling (BIM) systems and conventional 

smartphones. 

1 Introduction 

Traditionally, fire safety equipment (FSE), such as fire extinguishers, smoke detectors, and safety 

signs, are inspected manually. These inspections often rely on subjective judgment and manual data 

entry, increasing the likelihood of human error and incomplete documentation. As buildings grow in 

complexity, the need for more accurate, efficient, and automated facility management and 

maintenance becomes essential to ensure safety compliance and reduce risks (Sanzana et al., 2022; 

Yousefli et al., 2020). 

The facility management sector has increasingly adopted Computer-Aided Facility Management 

(CAFM) software to manage support activities, often complemented by Computerized Maintenance 
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Management System (CMMS) software for more detailed monitoring and maintenance scheduling 

(Rudl, 2021). However, over the years, researchers have explored various specific strategies to 

improve facility management processes, particularly during the Operation and Maintenance (O&M) 

phase of buildings. Previous literature concentrated on developing mobile and web-based applications 

to facilitate this process. For instance, (Alhaj et al., 2022) proposed an occupant-centric facility 

maintenance management system, demonstrating the value of mobile applications for streamlining 

building maintenance tasks. Similarly, (Wen et al., 2017) introduced a web-based hybrid BIM cost-

estimating system for fire safety engineering, which includes a "Fire Safety Equipment Property 

Database" module, underscoring the importance of digital tools for fire safety inspections. Yousefli et 

al. (2020) developed an automated Multi-Agent Facility Management system (MAFMS) that 
leverages a web-based application and multi-agent technology to integrate components such as 

workflow prioritization and resource scheduling. This system effectively automates facility 

management processes, demonstrating significant improvements in time-sensitive environments like 

hospitals. Using BIM and robotics, Chen et al. (2023) of this study focus on a knowledge-driven 

approach through a formalized model called the integrated Scene-Task-Agent (iSTA). This model 

synergizes information from BIM and robotics to enable autonomous facility inspections. However, 

while these systems offer significant improvements in overall facility management, they often fall 

short when it comes to automating specific fire safety inspection subjects, which still require manual 

data collection and input. 

The integration of machine learning (ML) into the fire safety inspection processes offers an 

opportunity to enhance both the accuracy and efficiency of these inspections. By automating tasks 

such as detecting fire safety equipment in images, identifying safety signs, and recognizing inspection 

tags, ML can streamline the inspection process. In particular, computer vision techniques have shown 

significant promise in the detection and documentation of FSE through image analysis (Aziz et al., 

2022; Corneli et al., 2020; Heinbach & Aziz, 2023). However, there is a notable gap in the availability 

of image-based web tools that can quickly analyze FSE and evaluate captured images within the 

application, enabling rapid responses and direct data storage. 
To address these limitations, this paper presents the concept of a web-based visual fire safety 

inspection tool that integrates ML services and demonstrates it through a proof-of-concept 

implementation. By automating the detection and documentation of FSE using images, this tool aims 

to decrease documentation efforts and streamline the inspection process. The tool leverages computer 

vision techniques to detect key FSE components directly from images. The web application is built 

using modern web technologies, with a frontend developed in React (Clark et al., 2022), and a 

backend powered by FastAPI (Ramírez, 2023) and MongoDB (Stephens, 2023) for data management. 

The integration of ML services into this application allows fire safety managers to automate routine 

evaluation tasks, compare model performance, and validate results. 

 

2  Method 

The development of the visual fire safety inspection tool was focused on creating a scalable and 

user-friendly web-based application that automates FSE documentation through the integration of ML 

services. As illustrated in Figure 1, the workflow starts with users, typically fire safety inspectors, 

uploading images of FSE such as fire extinguishers, safety signs, and inspection tags through the 

tool's web interface. Once images are uploaded, the user requests the ML service to automatically 

detect and document key fire safety features within the images. This is handled using computer vision 

techniques that analyze the images. 
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Additionally, the tool incorporates an active learning component that plays a critical role in 

improving the performance of the ML models. As shown in Figure 1, the system can request 

annotation from the user on the most informative image data. These are the data that the model finds 

uncertain or challenging. Once annotated, the data is sent back into the system, where it is stored in 

the database for further use like retraining the ML models improving their accuracy and performance 

in detecting FSE. 

The tool should manage data storage and facilitate seamless communication between the user and 

ML services. Inspection results generated by the ML system, including detected FSE and any 

accompanying documentation, are directly downloadable and archived in the database. This process 

of archiving results allows users to retrieve and review inspection reports at any time, so that the tool 
supports long-term data management. 

In this workflow, the combination of automated detection, user feedback through active learning, 

and periodic model retraining creates a tool that not only reduces manual documentation efforts but 

also adapts and improves overtime, meeting the evolving needs of fire safety inspections. 

The next subchapters outline the key components of the tool's creation, from setup and interface 

design to the integration of ML services and backend architecture. 

 

 
Figure 1: Workflow of the web-based visual fire safety inspection tool integrating ML services and active 

learning. 

2.1 Web Application Setup 

The web application was developed using a modular, component-based architecture to ensure 
flexibility and scalability for both the frontend and backend. As illustrated in Figure 2, the frontend 

was built using React (Clark et al., 2022), a widely used JavaScript library known for efficiently 

rendering dynamic user interfaces. React’s Virtual DOM optimizes updates in response to user 

actions, making it an ideal framework for handling large datasets of images and annotations. This is 

particularly important in the context of fire safety inspections, where the application needs to manage 

a significant volume of images without sacrificing performance. 

The backend was developed using FastAPI (Ramírez, 2023), a modern Python framework 

designed for high-performance asynchronous operations. FastAPI was chosen for its ease of use and 

its ability to handle concurrent requests, ensuring that multiple users can interact with the application 

seamlessly. As shown in Figure 2, FastAPI communicates with the MongoDB (Stephens, 2023) 

database to store, retrieve, and manage project data, user information, and image annotations. 

MongoDB was selected for its flexibility in handling dynamic, document-based data, which is 

generated during on-site inspections and can scale with increasing data volumes. 
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Additionally, FastAPI integrates with the CVAT (Computer Vision Annotation Tool) (Sekachev et 

al., 2020), which is used for the annotation of new FSE images. This allows images and their 

associated annotations to be sent to CVAT for processing, as depicted in Figure 2, and then returned 

to FastAPI for further handling and storage. The interaction between FastAPI and MongoDB ensures 

that annotated images are properly archived and available for later retrieval, while CVAT facilitates 

the efficient annotation of new data. 

To ensure consistent deployment and operation across various environments, the entire application 

was containerized using Docker. Docker simplifies the deployment process by bundling all 

components, including the FastAPI backend, MongoDB database, and CVAT integration, into 

containers that can be deployed on any machine without complex setup procedures. This 
containerized architecture guarantees that the system performs reliably and efficiently, regardless of 

the deployment environment. 

 

 
Figure 2: Workflow of the web-based visual fire safety inspection tool integrating ML services and annotation. 

2.2 ML Services Integration 

The core feature of the web application is its ability to automate the detection and documentation 
of FSE using ML models. Several custom-trained ML services were integrated into the application to 

facilitate this process. These services are built on object detection models such as YOLOv5 (Jocher et 

al., 2022) and YOLOv7 (Wang et al., 202366), selected for their high precision in object detection 

and their adaptability to the specific needs of fire safety inspections. YOLOv5 and YOLOv7 were 

chosen based on their proven performance in prior studies on fire safety equipment detection (Aziz et 

al., 2023; Aziz & König, 2024; Bayer & Aziz, 2022), offering a reliable balance of accuracy and 

speed (mAP > 80%). Newer models were not adopted to maintain consistency with these validated 

results and avoid additional retraining efforts. 

As illustrated in Table 1, the ML services integrated into the tool cover a range of critical 

detection tasks, enabling the system to identify FSE, safety signs, inspection tags, and maintenance 

information. These services were developed based on prior ML-based studies (Aziz et al., 2023; Aziz 

& König, 2024; Bayer & Aziz, 2022) and are trained on custom datasets. One of the core services is 

FSE Detection, which identifies FSE such as fire extinguishers, fire blankets, smoke detectors and 

manual call points within images. This service is powered by a custom-trained YOLOv5 model, 

specifically optimized for real-time object detection. It achieves a mean Average Precision (mAP) of 

80.1% at Intersection over Union (IoU) thresholds between 0.5 and 0.95, ensuring reliable 

identification of critical equipment in various environments. Another essential service is Safety Sign 
Detection, responsible for recognizing safety signage typically found near fire safety equipment.  
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This service uses a YOLOv7 model to detect important safety signs such as exit signs and fire 

extinguisher location markers. The model performs with an mAP of 85.2% at a 0.5 IoU threshold. 

Inspection Tag Detection is a service focused on detecting inspection tags and manufacturer tag 

affixed to fire extinguishers and other equipment using the YOLOv7. With an mAP of 85.5% at IoU 

thresholds between 0.5 and 0.95, this service is highly accurate.  

Finally, Maintenance Information Detection is another key service integrated into the tool. It is 

designed to recognize and extract date information from inspection tags, particularly focusing on 

fields such as the month and year of the last or next inspection. Like the inspection tag service, this 

functionality is driven by a YOLOv7 model and achieves a high level of accuracy, with an mAP of 

86.1% at IoU thresholds of 0.5 to 0.95. These ML services, integrated into the backend architecture, 

allow users to upload images of FSE and receive automated feedback on the equipment's condition 

and inspection status.  

2.3 User Interface 

The user interface of the web application was designed with a focus on usability, scalability, and 

performance, ensuring that users can effectively manage their images, annotations, and models within 

various projects. As outlined in Figure 3, the component hierarchy of the application reflects a 
modular architecture that allows for the smooth management of fire safety inspection tasks, while also 

accommodating active learning algorithms to minimize the need for manually labeled images. 

The App Component serves as the root of the application, acting as the central entry point where 

essential states—such as user credentials, access tokens, and project data—are managed and passed 

down to other components. This architecture ensures that the system remains both scalable and 

responsive, making it capable of handling a large number of projects and associated datasets. After 

logging in via the Login Component, where users can either sign in or register for a new account, 

users are redirected to the ProjectList Component. 

The ProjectList Component offers an overview of all current projects associated with the user’s 

account, including functionalities to create, delete, or search for specific projects. Each project is 

represented by a Project Component, which displays important information, such as the project’s 

image, title, description, and additional metadata. If a new project needs to be created, the Popup 

FSE  
Detection 

Safety Sign  
Detection 

Inspection Tag  
Detection 

Maintenance 
Information Detection 

    
Used model: 

YOLOv5 

Used model: 

YOLOv7 

Used model: 

YOLOv7 

Used model: 

YOLOv7 

mAP@0.5:0.95 = 

80.1% 

mAP@0.5 = 

85.2% 

mAP@0.5:0.95 = 

85.5%  

mAP@0.5:0.95 = 

86.1%  

Table 1: Performance metrics of ML FSE services integrated into the visual inspection tool, detailing the 

models used and their mAP at various IoU thresholds on test datasets. 
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Component is rendered, allowing the user to enter the necessary details, such as the project’s name 

and description. 

Once a project is selected, the user is redirected to the ProjectSite Component, which contains the 

primary functionalities of the application. Within the ProjectSite Component, each project is 

represented visually by a ProjectSiteCard, which serves as an interface summarizing the key details 

of the project. This includes the project’s name, associated images, annotation progress, and model 

versions. The ProjectSiteCard provides users with quick access to essential information and actions, 

such as uploading new images, viewing statistics, or managing annotations 

The active learning mechanism implemented in this study builds upon the approach described by 

Soultana and Aziz (2023) and is designed to enhance the performance of pretrained object detection 
models while reducing the annotation burden. The human-in-the-loop framework plays a central role 

in this process, enabling users to iteratively refine model performance by providing annotations for 

the most uncertain or challenging samples. Specifically, the algorithm employs class weighting to 

address class imbalance by assigning higher importance to underrepresented classes, ensuring their 

inclusion in the training set. Diversity sampling clusters images containing rare classes, improving the 

likelihood of detecting and training on these less frequent instances. Additionally, image quality 

assessment via Laplacian variance reduces the influence of low-quality images by prioritizing higher-

quality samples for annotation. This active learning cycle allows for continuous improvement of 

pretrained models by leveraging user-provided feedback to retrain models with a focus on the most 

informative and representative data. 

The Statistics Component enables users to evaluate and validate their models, providing visual 

comparisons between different versions of their object detection models. Users can easily compare 

fine-tuned models against the original ones using performance metrics such as mAP, a critical 

measure of the effectiveness of the active learning algorithms used during the annotation and training 

process. This functionality allows users to continuously refine their models. 

 

 

 
Figure 3: Performance metrics of ML FSE services integrated into the visual inspection tool, detailing the 

models used and their mAP at various IoU thresholds on test datasets. 
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2.4 Backend Architecture 

FastAPI (Ramírez, 2023), a modern Python framework, was chosen for the backend due to its 

ability to support asynchronous programming and its compatibility with key Python libraries, such as 

Keras and TensorFlow, which are essential e.g., for implementing the active learning algorithms used 

in this study. FastAPI's simplicity and performance make it an ideal choice for handling large 

numbers of user requests while maintaining high throughput. 

The communication between the frontend and backend is handled through a REST API, which 

facilitates various operations via GET, POST, PUT, and DELETE requests. To improve performance 

and handle concurrent requests efficiently, the backend leverages FastAPI’s support for asynchronous 

programming. By using the async and await keywords, the backend can manage multiple user 

requests concurrently without blocking the main application. Figure 4 depicts an example showcasing 

how upcoming requests are processed. For long-running synchronous tasks, such as training a YOLO 

model or ranking images using active learning, background tasks are assigned to dedicated worker 

threads using Python’s ThreadPoolExecutor. This ensures that resource-intensive tasks run in the 

background, allowing other user requests to be processed simultaneously. Users are kept informed of 

the status of these tasks through visual feedback, such as loading indicators. 

 

 

Figure 4: Visualization on how certain requests are handled. 
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To handle the storage and retrieval of data, the backend uses MongoDB, a document-oriented 

NoSQL database. MongoDB was selected for its flexibility and scalability, which make it well-suited 

for managing the unstructured data generated during fire safety inspections, such as images, 

annotations, and model results. The use of Binary JSON (BSON) allows MongoDB to efficiently 

store complex data types, enabling quick access and manipulation of data. The structure of the 

MongoDB database is visualized in the Entity-Relationship Diagram (ER) shown in Figure 5, which 

illustrates the relationships between various tables and their attributes. 

The Users table contains essential user information, such as username, email, and password, 

which are required for authentication. This table is linked to other core components—Projects, 

Images, Models, and Annotations—through foreign keys. Each project, represented in the Projects 
table, has attributes such as the project name, description, and storage paths for images and 

annotations. The project is also linked to a user and can contain multiple models and annotations, as 

indicated by the foreign keys in the corresponding tables. The Images table stores metadata for each 

uploaded image, including its name, file type, and storage path. Additionally, it includes a ranking 

attribute, which is generated during the active learning process to prioritize images based on their 

importance for training. The Annotations table links each annotation to the image it was derived from 

through a one-to-one relationship, allowing each image to have at most one corresponding annotation. 

The Models table contains information about the trained ML models, such as the file type, storage 

path, and a Boolean selected attribute, which indicates whether a model has been chosen for 

validation or further training. 

By structuring the database in this way, the backend ensures that all data components—users, 

projects, images, annotations, and models—are well-organized and easily accessible. This schema 

design enables efficient querying and manipulation of data, ensuring that the application can scale 

effectively as the number of users, projects, and data points grows. 

 

 
Figure 5: ER Diagram of the database. 
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3 Results 

The web-based tool was thoroughly tested to evaluate the performance of the integrated ML FSE 

services. As shown in Table 2, each ML service demonstrated fast inference times once the models 

were loaded into the web application. However, the FSE Detection service, which relies on a 

YOLOv5 model, exhibited a slower execution time compared to other FSE services utilizing the more 

recent YOLOv7 models. The results confirm that the more advanced YOLOv7 models used for tasks 

like Safety Sign Detection, Inspection Tag Detection, and Maintenance Information Detection offer 

faster and more efficient performance. The user interface for analyzing a test FSE image and selecting 

an ML FSE service is shown in Figure 6. After successful detection, the original image is displayed 

with the detection results, and the output can also be downloaded directly. 

 

 

ML FSE Service Execution Time (s) 

FSE Detection 2.5 

Safety Sign Detection 1.36 

Inspection Tag Detection 1.52 

Maintenance Information Detection 1.32 

Table 2: Execution time of the respective ML services. 

In addition to performance testing, the active learning approach integrated into the tool was 

effective in reducing the annotation burden for users. The system allowed users to select the most 

informative images for annotation, improving the overall efficiency of the annotation process. By 

leveraging active learning, users were able to prioritize high-value images, which in turn enhanced the 

model’s ability to learn from fewer labeled samples. 

 

 

Figure 6: Execution of ML service - Maintenance Information Detection in the tool. 

Testing also revealed that the integration between the frontend and backend functioned smoothly. 

The communication with CVAT for annotation purposes was seamless, enabling users to upload 

images, annotate them, and train models in a streamlined manner. This smooth interaction was critical 

in ensuring that the tool maintained a responsive and user-friendly experience. 

The Statistics Component of the tool proved valuable in helping users visually compare model 

performance. It provided clear insights into the effect of active learning on model accuracy, allowing 
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users to monitor and validate model improvements over time. As shown in Figure 7, the mAP 

comparison graph displayed the results of different trained models over various epochs, enabling 

users to see the progression of each model’s performance. 

 

Figure 7: Visual mAP comparison of trained models in the tool. The left diagram shows mAP scores 

for different models on the training dataset, while the right diagram tracks validation mAP 

progression over epochs during training, with each line representing a different model. 

4 Discussion 

The testing of the visual fire safety inspection tool highlighted the strong performance of the 
integrated ML models in detecting FSE and documenting other FSE-related inspection subjects. 

Models such as the YOLOv5-based FSE detection model achieved an mAP of over 80%, proving 

their effectiveness under various conditions. However, several performance bottlenecks were 

identified during system testing that need to be addressed to optimize the user experience and overall 

system efficiency. 

One of the main issues observed was slow loading times, particularly when handling large datasets 

or performing inference on multiple images. This was more apparent when switching between models 

trained on different architectures, such as YOLOv5 and YOLOv7. These delays likely stemmed from 

how the system manages requests and processes large amounts of data. Additionally, application 

freezing occurred during extensive image uploads or batch processing, which was traced back to 

synchronous backend functions causing blocking during intensive operations. Optimizing these 

backend processes by converting synchronous operations to asynchronous ones could significantly 

reduce these performance bottlenecks. Transitioning synchronous backend operations to 

asynchronous processes using tools like Python's asyncio could enhance the system's responsiveness. 

Additionally, integrating distributed computing for batch processing and leveraging cloud-based GPU 

resources could improve performance when dealing with large datasets or real-time applications. 

Despite these challenges, the tool offered several benefits. The ProjectSite Component provided 
users with an intuitive way to navigate between projects, upload images, and run predictions. The 

integration with the MongoDB database ensured that all project data, images, and annotations were 

securely stored and easily retrieved, even during system restarts or failures. This was essential in 

maintaining data integrity throughout the inspection process. 
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The integration of the tool's active learning algorithm proved to be valuable in improving model 

accuracy while reducing the annotation burden on users. By focusing on selecting the most 

informative images for annotation, the active learning approach helped prioritize high-impact data for 

training. However, this process was computationally expensive, and slowdowns were observed when 

handling large batches of data. Streamlining the active learning process and improving model 

retraining efficiency could further enhance the tool's performance and usability. 

5 Conclusion 

The development of the web-based visual fire safety inspection tool, integrating ML services, 

represents a practical step toward automating fire safety inspections. It improves the accuracy and 

efficiency of detecting FSE and streamlines the documentation process, helping to reduce human error 

and save time. The tool's use of ML models, particularly YOLOv5 and YOLOv7, demonstrated high 
accuracy in identifying FSE, safety signs, inspection tags and maintenance information. Its user-

friendly interface, combined with active learning, allows for efficient image annotation, model 

validation, and the creation of custom datasets, making it adaptable to various inspection needs. 

Looking ahead, there are several key areas for future improvement. First, integrating real-time 

monitoring capabilities into the tool, such as connecting it with BIM, would enable building managers 

to access up-to-date fire safety documentation. Additionally, adding real-time notifications for FSE 

maintenance and inspections would further automate the fire safety management process. 

Another important enhancement would be to ensure the tool’s compatibility with smartphones and 

mobile devices. This would enable on-site inspectors to perform fire safety inspections directly from 

their devices, eliminating the need for bulky equipment or manual data entry. Expanding the tool’s 

accessibility to mobile platforms would streamline the inspection process, making it more efficient 

and practical for fieldwork. 

In conclusion, the integration of ML services into fire safety inspections has the potential to 

revolutionize the field by automating routine tasks, improving documentation accuracy, and enabling 

real-time monitoring. While the tool has already demonstrated its capabilities in partially automating 

FSE documentation, ongoing research and development will focus on optimizing performance, 

expanding functionality, and ensuring scalability for larger operations. 
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