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Abstract

We present the results of a friendly competition for formal verification of continuous and
hybrid systems with nonlinear continuous dynamics. The friendly competition took place
as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH)
in 2021. This year, 5 tools Ariadne, CORA, DynIbex, JuliaReach and Kaa (in alphabetic
order) participated. These tools are applied to solve reachability analysis problems on five
benchmark problems, two of them featuring hybrid dynamics. We do not rank the tools
based on the results, but show the current status and discover the potential advantages of
different tools.

G. Frehse and M. Althoff (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 32–54
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1 Introduction

Disclaimer The presented report of the ARCH friendly competition for continuous and
hybrid systems with nonlinear dynamics aims at providing a landscape of the current capa-
bilities of verification tools. We would like to stress that each tool has unique strengths—
though not all of their features can be highlighted within a single report. To reach a
consensus in what benchmarks are used, some compromises had to be made so that some
tools may benefit more from the presented choice than others. The obtained results have
been verified by an independent repeatability evaluation. To establish further trustworthi-
ness of the results, the code with which the results have been obtained is publicly available
as Docker [16] containers at gitlab.com/goranf/ARCH-COMP.

In this report, we summarize the results of the fifth ARCH friendly competition on the
reachability analysis of continuous and hybrid systems with nonlinear dynamics. Given a system
defined by a nonlinear Ordinary differential equation (ODE) ~̇x = f(~x, t) along with an initial
condition ~x ∈ X0, we apply the participating tools to prove properties of the state reachable set
in a bounded time horizon. The techniques for solving such a problem are usually very sensitive
to not only the nonlinearity of the dynamics but also the size of the initial set. This is also one
of the main reasons why most of the tools require quite a lot of computational parameters.

In this report, 5 tools, namely Ariadne, CORA, DynIbex, JuliaReach and Kaa participated
in solving problems defined on three continuous and two hybrid benchmarks. This year the
Kaa tool joined the competition, while the Flow∗ and Isabelle/HOL tools were not able to
participate. The continuous benchmarks are the Robertson chemical reaction system, the Cou-
pled Van der Pol oscillator and the Laub-Loomis model of enzymatic activities. The hybrid
benchmarks model a Lotka-Volterra predator-prey system with a Tangential Crossing, and a
Space Rendezvous system.

The benchmarks were selected based on discussions between the tool authors, with a pref-
erence on keeping a significant set of the benchmarks from the previous year. It is apparent
that they come from very different domains and aim at identifying issues specific to nonlinear
dynamics, possibly with the addition of hybrid behavior.

2 Participating Tools

Ariadne. (Luca Geretti, Pieter Collins) Ariadne [19, 15] is a library based on Computable
Analysis [35] that uses a rigorous numerical approach to all its algebraic, geometric and logical
operations. In particular, it performs numerical rounding control of all external and internal
operations, in order to enforce conservative interpretation of input specification and guarantee
formal correctness of the computed output. It focuses on nonlinear systems, both continuous
and hybrid, supporting differential and algebraic relations. It is written in modern C++ with
an optional Python interface. The official site for Ariadne is https://www.ariadne-cps.org.

CORA. (Matthias Althoff, Mark Wetzlinger) The tool COntinuous Reachability Analyzer
(CORA) [6, 7] realizes techniques for reachability analysis with a special focus on developing
scalable solutions for verifying hybrid systems with nonlinear continuous dynamics and/or non-
linear differential-algebraic equations. A further focus is on considering uncertain parameters
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and system inputs. Due to the modular design of CORA, much functionality can be used for
other purposes that require resource-efficient representations of multi-dimensional sets and op-
erations on them. CORA is implemented as an object-oriented MATLAB code. The modular
design of CORA makes it possible to use the capabilities of the various set representations for
other purposes besides reachability analysis. While CORA uses verified algorithms, it does
not consider rounding errors since the main focus of the toolbox is the fast prototyping of
new reachability algorithms and concepts, and for this purpose the effect of rounding errors is
usually negligible. CORA is available at cora.in.tum.de.

DynIbex. (Alexandre Chapoutot, Julien Alexandre dit Sandretto) A library merging inter-
val constraint satisfaction problem algorithms and guaranteed numerical integration methods
based on Runge-Kutta numerical schemes implemented with affine arithmetic. This library
is able to solve ordinary differential equations [2] and algebraic differential equations of in-
dex 1 [3], combined with numerical constraints on state variables and reachable tubes. It
produces sound results taking into account round-off errors in floating-point computations
and truncation errors generated by numerical integration methods [29]. Moreover, constraint
satisfaction problem algorithms offer a convenient approach to check properties on reachable
tubes as explained in [4]. This library implements in a very generic way validated numer-
ical integration methods based on Runge-Kutta methods without many optimizations. In-
deed, the computation of the local truncation error, for each method, depends only on the
coefficients of Runge-Kutta methods and their order. DynIbex is freely available at http:

//perso.ensta-paristech.fr/~chapoutot/dynibex/. Figures have been produced with
VIBes library [24] which is available at http://enstabretagnerobotics.github.io/VIBES/.
Computations are performed on a Lenovo laptop with i5 processor, and computation times
gather all the process from compilation to figure producing.

JuliaReach. (Luis Benet, Marcelo Forets, Uziel Linares, David P. Sanders, Christian
Schilling) JuliaReach [17] is an open-source software suite for reachability computations of
dynamical systems, written in the Julia language and available at http://github.com/

JuliaReach. Linear, nonlinear, and hybrid problems are modeled and solved using the library
ReachabilityAnalysis.jl, which can be used interactively, for example in Jupyter notebooks.
Our implementation of the Taylor-model based solvers, TMJets20, TMJets21a and TMJets21b

implemented in TaylorModels.jl [14] integrates the TaylorSeries.jl [11, 12] package, TaylorInte-
gration.jl [30] and the IntervalArithmetic.jl [13] package for interval methods. The latter is
a self-contained implementation of interval arithmetic in pure Julia, which is competitive, in
terms of performance, with C++ interval packages. The algorithms applied in this report first
compute a non-validated integration using a Taylor model of order nT . The coefficients of that
series are polynomials of order nQ in the variables that denote small deviations of the initial
conditions. We obtain a time step from the last two coefficients of this time series. In order
to validate the integration step, we compute a second integration using intervals as coefficients
of the polynomials in time, and we obtain a bound for the integration using a Lagrange-like
remainder. The remainder is used to check the contraction of a Picard iteration. If the combi-
nation of the time step and the remainder do not satisfy the contraction, we iteratively enlarge
the remainder or possibly shrink the time step. Finally, we evaluate the initial Taylor series
with the valid remainder at the time step for which the contraction has been proved, which is
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also evaluated in the initial set to yield an over-approximation. The approach is (numerically)
sound due to rigorous interval bounds in the Taylor approximation. Discrete transitions for
hybrid systems and Taylor model approximations are handled using our core set-computations
library LazySets.jl [32].

Kaa. (Parasara Sridhar Duggirala, Edward Kim) Kaa [26] is a Python redesign of Sapo [21],
a tool written to compute and plot the reachable sets of discrete polynomial non-linear dynami-
cal systems using parallelotope bundles. Reachable set computation of nonlinear systems using
template polyhedra and Bernstein polynomials was first proposed in [20]. The representation
of parallelotope bundles for reachability was proposed in [22] and the effectiveness of using
bundles for reachability was demonstrated in [21, 23]. We extend these techniques to effectively
utilize dynamic templates strategies, i.e schemes created to automatically generate template
directions and parallelotopes. We use two techniques to generate such template directions. The
first involves computing local linear approximations of the dynamics, and the second involves
performing Principle Component Analysis (PCA). Both techniques are performed using sample
trajectory data. The sample trajectories are found by calculating support points over the par-
allelotope bundle and propagating them to the next step using the provided dynamics. At each
step, we add at least one parallelotope defined by either PCA or Linear Approximation tem-
plate directions. Each parallelotope added to the bundle has an associated lifespan, indicating
the number of time steps the parallelotope and its template directions exist in the bundle be-
fore being removed. We employ a Python wrapper over NASA’s Kodiak[1] as the optimization
library responsible for computing the upper and lower offsets for all utilized template direc-
tions at each step. The original Sapo program could only handle polynomial dynamics through
Bernstein polynomials. However, Kodiak allows us to circumvent this restriction and extend
our techniques to general non-linear dynamics. Sympy is used for symbolic manipulation and
substitution while Numpy is used for general linear-algebraic computations. Detailed explana-
tions of the underlying techniques used in Kaa can be found in a recent paper including the
co-authors [25].
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3 Benchmarks

For the 2021 edition of the competition we introduced one new continuous benchmark: the
Robertson system. This is a continuous system aimed at identifying the stability of integration
schemes under a stiff behavior; it replaces the Production-Destruction system, which had the
same objective. In addition, we modified the Lotka-Volterra system with tangential crossing
and the Space Rendezvous system to make them slightly more difficult compared to last year.
The Laub-Loomis system and the Coupled Van der Pol system were not modified, in order to
identify any improvements to the tools from 2020.

3.1 Robertson chemical reaction benchmark (ROBE21)

3.1.1 Model

As proposed by Robertson [31], this chemical reaction system models the kinetics of an auto-
catalytic reaction. 

ẋ = −αx+ βyz

ẏ = αx− βyz − γy2

ż = γy2

where x, y and z are the (positive) concentrations of the species, with the assumption that
x+y+z = 1. Here α is a small constant, while β and γ take on large values. In this benchmark
we fix α = 0.4 and analyze the system under three different pairs of values for β and γ:

1. β = 102, γ = 103

2. β = 103, γ = 105

3. β = 103, γ = 107

The initial condition is always x(0) = 1, y(0) = 0 and z(0) = 0.

3.1.2 Analysis

We are interested in computing the reachable tube until t = 40, to see how the integration
scheme holds under the stiff behavior. No verification objective is enforced.

3.1.3 Evaluation

For each of the three setups, the following three measures are required:

1. the execution time for evolution;

2. the number of integration steps taken;

3. the width of the sum of the concentrations s = x+ y + z at the final time.

Additionally, a figure with s (in the [0.999, 1.001] range) w.r.t. time overlaid for the three setups
should be shown.
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Table 1: Results of ROBE21 in terms of computation time, number of steps and width of
s = x+ y + z.

computation time in [s]

tool (1) (2) (3)

Ariadne 30 168 294

CORA 22 58 347

DynIbex 304 3362 5094

JuliaReach 63 1029 4392

Kaa − − −

number of steps

tool (1) (2) (3)

Ariadne 10000 49851 123677

CORA 3400 9500 48000

DynIbex 8694 84460 123248

JuliaReach 3494 30147 71367

Kaa − − −

width of x+ y + z

tool (1) (2) (3)

Ariadne 1.0e-5 4.0e-5 8.0e-6

CORA 3.4e-4 1.3e-4 7.1e-6

DynIbex 7.9e-4 1.4e-3 7.6e-4

JuliaReach 3.8e-5 8.1e-8 1.2e-9

Kaa − − −

3.1.4 Results

Except for Kaa, tools were able to get to completion. However, very different results were
obtained. In the case of Ariadne and JuliaReach, the width started small and increased mono-
tonically, while for DynIbex and CORA the width started decreasing from a given value, to
possibly increase further in the case of DynIbex. It is also interesting to analyze the number
of integration steps taken, which turned out to be sensibly lower for JuliaReach and especially
CORA. While JuliaReach obtained the best width for the stiffer cases, this came at the ex-
pense of a significantly higher computation time. Perhaps for the next year some verification
constraints should be enforced, in order to provide a better baseline for comparison between
the tools.

Settings for Ariadne. A GradedTaylorSeriesIntegrator is used, with a maximum error per
integration step of 10−9. A maximum step size of 0.004 is imposed in all three setups, though
the actual value dynamically identified along evolution for (2) and (3) is sensibly lower.

Settings for CORA. In all cases, we used the conservative linearization approach [9] with
maximum zonotope orders of 30, 30, and 200, respectively. In order to accelerate the computa-
tion, we increased the time step size during the computation, at the loss of some amount of tight-
ness of the reachable sets. The used time step sizes are (1) t ∈ [0, 5] : 0.0025, t ∈ [5, 40] : 0.025,
(2) t ∈ [0, 5] : 0.002, t ∈ [5, 40] : 0.005, and (3) t ∈ [0, 2] : 0.0002, t ∈ [2, 40] : 0.001.

Settings for DynIbex. The Runge-Kutta method selected is implicit Lobatto at fourth
order (called LC3 in DynIbex) for the three setups. The absolute precision is respectively
10−11, 10−12 and 10−12. The other parameters are set by default.
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(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

Figure 1: Reachable set overapproximations of s = x+ y + z vs time for ROBE21 in the three
setups.

Settings for JuliaReach. In all cases we used nQ = 1, an initial adaptive absolute tolerance
10−10 and the TMJets21a algorithm, adapting only the nT parameter as follows: (1) nT = 5,
(2) nT = 7 and (3) nT = 10. The maximum number of integration steps was also adjusted,
reflecting the results presented in Table 1. For the results displayed in Fig. 1, we used the much
tighter approximation obtained by computing s directly from the Taylor models produced by
the integration, and then evaluating them in each time interval.

Settings for Kaa. For all cases, we’ve attempted to deploy both dynamic strategies involving
PCA and local linear approximation templates and static strategies involving templates defined
by random diagonal directions. However, in all cases, Kaa was unable to complete execution
of the benchmark for the total time period t ∈ [0, 40]. From closer inspection, the dynamics
causes explosive growth within the beginning of the computation; this explosion generally occurs
between t ∈ [0, 2]. Our techniques, both static and dynamic, seem to be unable to control this
dramatic behavior, which causes Kodiak to eventually crash.
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3.2 Coupled van der Pol benchmark (CVDP20)

3.2.1 Model

The original van der Pol oscillator was introduced by the Dutch physicist Balthasar van der
Pol. For this benchmark we consider two coupled oscillators, as described in [10]. The system
can be defined by the following ODE with 4 variables:

ẋ1 = y1

ẏ1 = µ(1− x21)y1 − 2x1 + x2

ẋ2 = y2

ẏ2 = µ(1− x22)y2 − 2x2 + x1

(1)

The system has a stable limit cycle that becomes increasingly sharper for higher values of µ.

3.2.2 Analysis

We want to separately verify a safety specification for µ = 1 and µ = 2.

µ = 1: we set the initial condition x1,2(0) ∈ [1.25, 1.55], y1,2(0) ∈ [2.35, 2.45]. The unsafe set
is given by y1,2 ≥ 2.75 in a time horizon of [0, 7]. This is the same specification as the one used
for the single oscillator in the 2019 competition.

µ = 2: we set the initial condition x1,2(0) ∈ [1.55, 1.85], y1,2(0) ∈ [2.35, 2.45], which is the
same size as before, but on the limit cycle for µ = 2. The unsafe set is given by y1,2 ≥ 4.05
for a time horizon of [0, 8]. Note that in this case, the time horizon T = 8.0 is used because
7.0 is not sufficient for the oscillator to make a complete loop. The unsafe set has been slightly
reduced compared with last year, due to the expected greater effort required for the coupled
oscillators.

3.2.3 Evaluation

The computation time required to evolve the system and verify safety is provided for both
values of µ. If the system can not be verified successfully, no value is provided.

3.2.4 Results

The computation results of the tools are given in Table 2. Results are comparable to those
from last year. The benchmark proved to be too hard for Kaa, however.

Settings for Ariadne. For µ = 1, we use a TaylorPicardIntegrator with a maximum step
size of 0.005. The maximum spacial error enforced for each step is 10−5. The initial set is split
once on x1 and x2, yielding 4 initial subsets. For µ = 2 instead, the initial set is split into
256 subsets, using a maximum spacial error of 5 × 10−6 and a maximum step size of 0.02. It
must be noted that the memory consumption for µ = 2 is significant, in some cases making the
operating system kill the process on a 16 GB machine during the final plotting. To avoid that,
we simply did not store intermediate evolve sets, which are normally returned along with the
final sets and the reached sets.
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(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

Figure 2: Reachable set overapproximations for the first oscillator in CVDP20, x1 ∈ [−2.5, 2.5],
y1 ∈ [−4.05, 4.05], overlaid for µ = 1 and µ = 2.

Table 2: Results of CVDP20 in terms of computation time.

computation time in [s]

tool µ = 1 µ = 2

Ariadne 11 1413

CORA 7.7 109

DynIbex 510 −
JuliaReach 1.5 104

Kaa − −
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Settings for CORA. We manually introduced artificial guard sets orthogonal to the flow of
the system in order to shrink the reachable set so that the linearization error does not explode.
We then applied the conservative linearization approach [9] using zonotopes with a zonotope
order of 20 and a time step size of 0.01 for µ = 1, and a zonotope order of 100 and a time step
size of 0.001 for µ = 2.

Settings for DynIbex. Maximum zonotope order is set to 100, reachability analysis is car-
ried out with an (absolute and relative) error tolerance of 10−5 using an explicit Heun method
of order 2. For µ = 1 an automatic partition of the initial state is performed (259 boxes are
necessary). For µ = 2, the system cannot be verified in satisfying time.

Settings for JuliaReach. For both settings we used nQ = 1 and nT = 8, and an adaptive
absolute tolerance. For µ = 2 we split the set of initial states along the x1 and x2 directions
into 49 boxes in total.

Settings for Kaa. For both cases, we computed the reachable set using a dynamic strat-
egy using PCA templates whose lifespans are set to 10 time steps. We have attempted to
employ other strategies without much success. Templates generated through local linear ap-
proximations yielded numerical instabilities arising from computing the inverse of matrices
with incredibly high condition numbers. We have also tried static parallelotopes defined by
random diagonal directions. Here, static parallelotopes are defined at the beginning and its
directions do not change during the course of the computation. However, the quality of the
reachable set varies wildly depending on the diagonal directions sampled, and the outputted
over-approximation seems to be extremely conservative. Even with a large amount of random
static parallelotopes (> 30), we could not produce well-formed reachable sets. Thus, we believe
that our current method of choosing effective templates is ill-suited for producing meaningful
over-approximations for this benchmark at this time. The step sizes for both cases were set to
∆ = 0.1.

3.3 Laub-Loomis benchmark (LALO20)

3.3.1 Model

The Laub-Loomis model is presented in [28] for studying a class of enzymatic activities. The
dynamics can be defined by the following ODE with 7 variables.

ẋ1 = 1.4x3 − 0.9x1
ẋ2 = 2.5x5 − 1.5x2
ẋ3 = 0.6x7 − 0.8x2x3
ẋ4 = 2− 1.3x3x4
ẋ5 = 0.7x1 − x4x5
ẋ6 = 0.3x1 − 3.1x6
ẋ7 = 1.8x6 − 1.5x2x7

The system is asymptotically stable and the equilibrium is the origin.

3.3.2 Analysis

The specification for the analysis is kept the same as last year, in order to better quantify any
improvements to the participating tools.
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The initial sets are defined according to the ones used in [34]. They are boxes centered at
x1(0) = 1.2, x2(0) = 1.05, x3(0) = 1.5, x4(0) = 2.4, x5(0) = 1, x6(0) = 0.1, x7(0) = 0.45. The
range of the box in the ith dimension is defined by the interval [xi(0) −W,xi(0) + W ]. The
width W of the initial set is vital to the difficulty of the reachability analysis job. The larger
the initial set the harder the reachability analysis.

We consider W = 0.01, W = 0.05, and W = 0.1. For W = 0.01 and W = 0.05 we consider
the unsafe region defined by x4 ≥ 4.5, while for W = 0.1, the unsafe set is defined by x4 ≥ 5.
The time horizon for all cases is [0, 20].

3.3.3 Evaluation

The final widths of x4 along with the computation times are provided for all three cases. A
figure is provided in the (t, x4) axes, with t ∈ [0, 20], x4 ∈ [1.5, 5], where the three plots are
overlaid.

3.3.4 Results

The computation results of the tools are given in Table 3. Results are comparable to those
from the previous year, except for the newcomer Kaa for which convergence proved to be an
issue. The tool settings are given as below.

Table 3: Results of LALO20 in terms of computation time and width of final enclosure.

computation time in [s]

tool W = 0.01 W = 0.05 W = 0.1

Ariadne 5.7 11 31

CORA 1.9 8.4 38

DynIbex 10 27 1851

JuliaReach 4.4 6.4 6.4

Kaa 238 253 257

width of x4 in final enclosure

tool W = 0.01 W = 0.05 W = 0.1

Ariadne 0.01 0.031 0.071

CORA 0.005 0.035 0.116

DynIbex 0.01 0.40 2.07

JuliaReach 0.0042 0.017 0.033

Kaa 22 23 49

Settings for Ariadne. The maximum step size used is 0.2, with a TaylorPicardIntegrator
with a maximum spacial error of 10−6 enforced for each step. Compared with last year, no
splitting strategy for the initial set is necessary due to improvements in the integrator.
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(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

(e) Kaa

Figure 3: Reachable set overapproximations for LALO20 (overlayed plots for W = 0.01, W =
0.05, W = 0.1). t ∈ [0, 20], x4 ∈ [1.5, 5].
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Settings for CORA. Depending on the size of the initial set, different algorithms in CORA
are applied. For the smaller initial sets W = 0.01 and W = 0.05, the faster but less accurate
conservative linearization algorithm presented in [9] is executed. For the larger initial set
W = 0.1, the more accurate conservative polynomialization algorithm from [5] is applied.
CORA uses a step size of 0.1 for W = 0.01, a step size of 0.025 for W = 0.05, and a step size
of 0.02 for W = 0.1. For all sizes of initial sets, the maximum zonotope order is chosen as 200.

Settings for DynIbex. For W = 0.01 the maximum zonotope order is set to 50 and the
reachability analysis is carried out with an (absolute and relative) error tolerance of 10−6 with
an explicit Runge-Kutta method of order 3. For W = 0.05 the maximum zonotope order is set
to 80 and the reachability analysis is carried out with an (absolute and relative) error tolerance
of 10−7 with an explicit Runge-Kutta method of order 3. For W = 0.01 and W = 0.05 no
splitting of the initial conditions is performed. For W = 0.1, the initial set is split 64 times.
With parallelization, computation time is reduced to 249 seconds for this last experiment.

Settings for JuliaReach. We used an absolute tolerance of 10−11 for W = 0.01 and 10−12

for W = 0.05 and W = 0.1. In all cases, nQ = 1, nT = 7.

Settings for Kaa. For each case, we employed a dynamic strategy of PCA templates with
their lifespan set to 10 steps. Once again, we faced difficulties with using local linear approxima-
tion. The approximate linear transformation calculated by our strategies give highly singular
matrices, which in turn cause numerical instabilities. For this benchmark, it seems PCA tem-
plates are ineffective in controlling the error as time progresses. Due to this wrapping error, we
capped the upper and lower offsets for each template direction to lie in between the intervals
[−10, 10] in order to ensure completion of the computation. We used a step size of ∆ = 0.2 for
all cases.

3.4 Lotka–Volterra with tangential crossings benchmark (LOVO21)

3.4.1 Model

The benchmark described below refers to the Lotka-Volterra equations, or predator-prey equa-
tions, which are well-known in the literature.

The system is defined as follows: {
ẋ = 3x− 3xy
ẏ = xy − y (2)

which produces cyclic trajectories around the equilibrium point (1, 1) dependent on the initial
state.

We are interested to see how this nonlinear dynamics plays with a nonlinear guard, whose
boundary is: √

(x− 1)
2

+ (y − 1)
2

= 0.161 (3)

which is a circle of radius 0.161 around the equilibrium.
By choosing an initial state I = (1.3, 1.0) the cycle has a period of approximately 3.64 time

units. The trajectory of the Lotka–Volterra system trajectory is close to tangent to the guard
circle in the top half, while it crosses the circle on the bottom half. Hence, enlarging the width
of the initial set would put the trajectory partially within the guard in the top half.
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The corresponding hybrid automaton is used to model the system:

• Continuous variables: x, y;

• Locations: outside and inside;

• Dynamics: those from Eq. 2 for x, y in both locations;

• Guards: {
(x−Qx)

2
+ (y −Qy)

2 ≤ R2 from outside to inside

(x−Qx)
2

+ (y −Qy)
2 ≥ R2 from inside to outside

(4)

• Invariants: the complement of the corresponding guards (i.e., transitions are urgent);

• Resets: none, i.e., the identity for both transitions.

3.4.2 Analysis

We want to start the system from I = (1.3± ε, 1.0), with ε = 0.012, and evolve it for T = 3.64
time units. Since the original system was close to tangency, by enlarging the initial set we
expect to produce different sequences of discrete events due to the distinction between crossing
and not crossing, and possibly by distinguishing the crossing sets based on the different crossing
times. We must remark that, for reachability analysis purposes, it is important to carry the
trace of discrete events along with the current evolution time.

The following three properties must be verified:

• At least one final set must have crossed two guards by entering and exiting the reference
circle once;

• At least one final set must have crossed four guards by entering and exiting the reference
circle twice;

• While a larger even number of crossings is allowed due to Zeno behavior during tangent
crossing, no odd numbers are possible.

3.4.3 Evaluation

In terms of metrics, it is required to supply the following:

1. The execution time for computing the reachable set and checking the properties;

2. The area x× y of the box hull enclosing all the final sets.

In addition, a figure showing the reachable set along with the circular guard shall be provided.
The axes are [0.6, 1.4]× [0.6, 1.4].

3.4.4 Results

All tools were able to handle the benchmark, although with sensibly different quality of the
final set. Table 4 gives the timing/quality results, while Fig. 4 shows the graphical output. A
future improvement could be to introduce some restrictions on the final set in order to identify
a baseline for comparison.
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(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

(e) Kaa

Figure 4: Reachable set overapproximation for LOVO21, with x, y ∈ [0.6, 1.4], where the circular
guard is shown.
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Table 4: Results of LOVO21 in terms of computation time and area.

tool computation time in [s] area

Ariadne 8.0 1.2e-4

CORA 23 5.9e-3

DynIbex 75 8.8e-2

JuliaReach 3.4 1.4e-2

Kaa 180 4.7e-1

Settings for Ariadne. A GradedTaylorSeriesIntegrator is used with a maximum spacial
error of 1e− 7. The maximum step size is 0.07. The maximum number of parameters for a set
is 5 times the number of variables, instead of the default of 3 times.

Settings for CORA. We use the approach in [27] to calculate the intersections with the non-
linear guard set. For continuous reachability we apply the conservative linearization approach
[9] with time step size of 0.005 and a zonotope order of 20 for all modes.

Settings for DynIbex. The library DynIbex does not support hybrid systems natively.
However, based on constraint programming, event detection can be implemented and hybrid
systems can be simulated. Reachability analysis is carried out with an error tolerance of 10−14

using an explicit Runge-Kutta method of order 4 (RK4 method). No splitting of the initial
state has been performed.

Settings for Flow*. Since Flow* does not support urgent discrete transitions in hybrid
systems, we skip the test on this benchmark.

Settings for Isabelle/HOL. Isabelle/HOL does not support hybrid systems automatically.

Settings for JuliaReach. We used nT = 7 and nQ = 1 and split the initial set into 32 boxes.
The crossings to the non-linear guard were handled by checking the flowpipes that do not lie
strictly outside the circle.

Settings for Kaa. Although Kaa does not support hybrid dynamics, we can plot the reach-
able set utilizing a time step of ∆ = 0.03 for the dynamics given above. We employ a dynamic
template strategy using only local linear approximation templates. Each added template has a
lifespan of 20 steps.

3.5 Space rendezvous benchmark (SPRE21)

3.5.1 Model

Spacecraft rendezvous is a perfect use case for formal verification of hybrid systems with nonlin-
ear dynamics since mission failure can cost lives and is extremely expensive. This benchmark
is taken from [18]. A version of this benchmark with linearized dynamics is verified in the
ARCH-COMP category Continuous and Hybrid Systems with Linear Continuous Dynamics.
The nonlinear dynamic equations describe the two-dimensional, planar motion of the space-
craft on an orbital plane towards a space station:
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
ẋ = vx
ẏ = vy
v̇x = n2x+ 2nvy + µ

r2 −
µ
r3c

(r + x) + ux

mc

v̇y = n2y − 2nvx − µ
r3c
y +

uy

mc

The model consists of position (relative to the target) x, y [m], time t [min], as well as horizontal
and vertical velocity vx, vy [m / min]. The parameters are µ = 3.986× 1014 × 602 [m3 / min2],

r = 42164× 103 [m], mc = 500 [kg], n =
√

µ
r3 and rc =

√
(r + x)2 + y2.

The hybrid nature of this benchmark originates from a switched controller. In particular,
the modes are approaching (x ∈ [−1000,−100] [m]), rendezvous attempt (x ≥ −100 [m]), and
aborting. A transition to mode aborting occurs nondeterministically at t ∈ [120, 150] [min].
The linear feedback controllers for the different modes are defined as ( ux

uy ) = K1x for mode

approaching, and ( ux
uy ) = K2x for mode rendezvous attempt, where x =

(
x y vx vy

)T
is

the vector of system states. The feedback matrices Ki were determined with an LQR-approach
applied to the linearized system dynamics, which resulted in the following numerical values:

K1 =

(
−28.8287 0.1005 −1449.9754 0.0046
−0.087 −33.2562 0.00462 −1451.5013

)

K2 =

(
−288.0288 0.1312 −9614.9898 0
−0.1312 −288 0 −9614.9883

)
In the mode aborting, the system is uncontrolled ( ux

uy ) = ( 0
0 ).

3.5.2 Analysis

The spacecraft starts from the initial set x ∈ [−925,−875] [m], y ∈ [−425,−375] [m], vx ∈ [0, 5]
[m/min] and vy ∈ [0, 5] [m/min]. For the considered time horizon of t ∈ [0, 200] [min], the
following specifications have to be satisfied:

• Line-of-sight: In mode rendezvous attempt, the spacecraft has to stay
inside line-of-sight cone L = {( xy ) | (x ≥ −100) ∧ (y ≥ x tan(30◦)) ∧ (−y ≥ x tan(30◦))}.

• Collision avoidance: In mode aborting, the spacecraft has to avoid a collision with the
target, which is modeled as a box B with 0.2m edge length and the center placed at the
origin.

• Velocity constraint: In mode rendezvous attempt, the absolute velocity has to stay

below 3.3 [m/min]:
√
v2x + v2y ≤ 3.3 [m/min].

Remark on velocity constraint In the original benchmark [18], the constraint on the
velocity was set to 0.05 m/s, but it can be shown (by a counterexample) that this constraint
cannot be satisfied. We therefore use the relaxed constraint 0.055 [m/s] = 3.3 [m/min].

3.5.3 Evaluation

The computation time for evolution and verification is provided. A figure is shown in the (x, y)
axes, with x ∈ [−1000, 200] and y ∈ [−450, 0].
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Table 5: Results of SPRE21 in terms of computation time.

tool computation time in [s]

Ariadne −
CORA 26

DynIbex 144

JuliaReach 24

Kaa −

3.5.4 Results

The results of the reachability computation for the spacecraft rendezvous model are given in
Figure 5 and Table 5, with the tool settings below. The introduction of a permissive guard
prevented completion for Ariadne: too many trajectories were generated and the absence of
a recombination strategy proved an issue. Therefore this benchmark requires proper support
of crossings in the presence of large sets, even if the crossing region is very simple from a
geometrical viewpoint. The hybrid nature of the problem was an obstacle for Kaa.

Settings for Ariadne. Ariadne was not able to complete evolution, due to the extremely
large number of trajectories produced from the nondeterministic guard: this is caused by the
lack of a recombination strategy. The maximum step size used was 1.0, essentially meaning that
we allowed the step size to vary widely along evolution: this choice turned out to be preferable
in terms of execution time. The maximum temporal order was 4 and the maximum spacial
error enforced for each step equal is 10−3. A splitting strategy for the initial set was used; the
strategy compare the radius of the set with a reference value of 12.0, in order to split the first
two dimensions once and yield a total of 4 initial subsets.

Settings for CORA. CORA was run with a time step size of 0.2 [min] for the modes
approaching and aborting, and with a time step size of 0.05 [min] for mode rendezvous attempt.
The intersections with the guard sets are calculated with constrained zonotopes [33], and the
intersection is then enclosed with a zonotope bundle [8]. In order to find suitable orthogonal
directions for the enclosure principal component analysis is applied.

Settings for DynIbex. The library DynIbex does not support hybrid systems natively.
However, based on constraint programming, event detection can be implemented and hybrid
systems can be simulated. Maximum zonotope order is set to 10, reachability analysis is carried
out with an error tolerance of 10−6 using an explicit Runge-Kutta method of order 3 (Kutta’s
method). No splitting of the initial state has been performed.

Settings for JuliaReach. The transition to the aborting mode is handled by clustering and
Cartesian decomposition with zonotope enclosures in low dimensions, (x, y) and (vx, vy). The
continuous-time algorithms used in the modes approaching, rendez-vous attempt, and aborting
were TMJets20 (first two modes), TMJets21b (third mode) with nT = 5, 4, 7, nQ = 1, 1, 1 and
absolute tolerance 10−5, 10−7, 10−10, respectively.

Settings for Kaa. Kaa does not support hybrid dynamics in its current state.
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Figure 5: Reachable set of the spacecraft position in the x-y-plane for SPRE21.

4 Conclusion and Outlook

This year, the competition confirmed four participants from 2020, with two leaving and a new
one joining. As a consequence, we did not introduce too many changes in order to accommodate
the newcomer: we added only one new benchmark and modified two, along with the removal
of one benchmark that was not deemed challenging anymore.

The new benchmark was the Roberston system (ROBE21), replacing the Production-
Destruction (PRDE20) system, with a focus on stiffness. This was an interesting variation
which returned sensibly different results. Given the different approaches, we might introduce
some constraints in the evolution for the next year, in order to better compare the performances.

The Lotka-Volterra with Tangent Crossing (LOVO21) was modified in order to focus on
crossings, practically increasing the number of trajectories involved. Results from the partici-
pants are quite different. Hence, for the next year, the addition of verification constraints might
be introduced to simplify the comparison between tools.
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The extension of the Space Rendezvous benchmark to a larger initial set introduced an
increase in the computation time, but did not cause many issues to those tools that could
handle it. Still, Ariadne and Kaa have their own peculiar limitations for which this benchmark
should still be proposed next year. Also, it is the only benchmark that is natively hybrid
(whereas the Lotka-Volterra benchmark is enriched with transitions for the pure purpose of
evaluating tangent crossings).

Finally, the Laub-Loomis (LALO20) and Coupled Van der Pol (CVDP20) benchmarks were
kept the same as the previous three years. Except for Kaa, tools are consistently capable of
returning results for them with a satisfactory quality. We expect to keep these benchmarks
to accommodate any future improvements in Kaa, while trying to squeeze anything out of the
remaining tools.

We care to mention that, triggered by the participation in this competition, individual tools
made progress:

• Ariadne introduced parallelization of its continuous and hybrid evolution, which signifi-
cantly helped in those cases where the initial set required splitting, or where transitions
in hybrid evolution generated multiple trajectories. Miscellaneous minor improvements
to its integrators allowed to avoid splitting strategy in some cases and improving conver-
gence for stiff systems. Compared to last year, different integrators have been used across
the benchmarks to exploit their specific advantages.

• CORA enabled the handling of tangential crossings without infinite switching between
locations following the LOVO20 benchmark. Furthermore, an adaptive parameter tuning
approach for nonlinear systems was designed as a consequence of the severe changes in
the degree of nonlinearity seen in last year’s PRDE20 benchmark, which is replicated this
year by ROBE21.

• DynIbex is used in the same release than last year. However, compilation with high level
of optimization (O3) is now supported and allows slightly better time execution.

• JuliaReach introduced several advances in the core packages ReachabilityAnalysis.jl,
LazySets.jl and TaylorModels.jl. Notable developments were a thorough revision of
the Taylor-model based algorithms, a generalization of the initial set representation for
those methods, and improvements in clustering and overapproximation of Taylor models
with convex sets such as zonotopes.

• As Kaa’s first year of participating in the competition, the benchmarks elucidated many
drawbacks of parallelotope-based methods. The salient challenge seems to lie with the
calculation of template directions based on local linear approximation. Calculating the
best-fit linear transformation with Kaa’s methods results in a highly singular matrix for
most benchmarks, leading to numerical instability. Furthermore, the addition of PCA
templates seems to have imparted a weaker positive effect than we had originally hoped.
We plan to use these benchmarks as a set of models to search for more sophisticated
template-generating techniques. In particular, developing methods of decreasing the con-
dition number of the approximate linear transformations through testing with the bench-
marks will be the next natural step in improving Kaa.
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Summarizing, the new benchmark and their variations were interesting by way of continuing
to explore critical aspects of continuous/hybrid evolution, with the objective of pushing all tools
forward. We believe that a benchmark suite with representative problems is of the utmost im-
portance, in order to stimulate meaningful progress of all the participating tools. Consequently,
for the next year we aim at refining the existing suite to advance in this direction, also possibly
increasing the number of benchmarks.
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[30] Jorge A. Pérez-Hernández and Luis Benet. PerezHz/TaylorIntegration.jl. https://github.com/

PerezHz/TaylorIntegration.jl, May 2021. doi:10.5281/zenodo.2562352.

[31] H. H. Robertson. The solution of a set of reaction rate equations. In ”Numerical analysis: an
introduction”, page 178–182. Academic Press, 1966.

[32] Christian Schilling and Marcelo Forets. JuliaReach/LazySets.jl: v1.45.1. https://github.com/

JuliaReach/LazySets.jl, June 2021. Accessed: 2021-05-31. doi:10.5281/zenodo.4896008.

[33] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz. Constrained zonotopes: A new
tool for set-based estimation and fault detection. Automatica, 69:126–136, 2016.

[34] R. Testylier and T. Dang. Nltoolbox: A library for reachability computation of nonlinear dynamical
systems. In Proc. of ATVA’13, volume 8172 of LNCS, pages 469–473. Springer, 2013.

[35] K. Weihrauch. Computable analysis. Texts in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, Berlin, 2000.

54

https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/PerezHz/TaylorIntegration.jl
https://doi.org/10.5281/zenodo.2562352
https://github.com/JuliaReach/LazySets.jl
https://github.com/JuliaReach/LazySets.jl
https://doi.org/10.5281/zenodo.4896008

	Introduction
	Participating Tools
	Benchmarks
	Robertson chemical reaction benchmark (ROBE21)
	Model
	Analysis
	Evaluation
	Results

	Coupled van der Pol benchmark (CVDP20)
	Model
	Analysis
	Evaluation
	Results

	Laub-Loomis benchmark (LALO20)
	Model
	Analysis
	Evaluation
	Results

	Lotka–Volterra with tangential crossings benchmark (LOVO21)
	Model
	Analysis
	Evaluation
	Results

	Space rendezvous benchmark (SPRE21)
	Model
	Analysis
	Evaluation
	Results


	Conclusion and Outlook
	Acknowledgments

