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Abstract

There are various types of automata on infinite words, differing in their acceptance
conditions. The most classic ones are weak, Büchi, co-Büchi, parity, Rabin, Streett, and
Muller. This is opposed to the case of automata on finite words, in which there is only one
standard type. The natural question is why—Why not a single type? Why these particular
types? Shall we further look into additional types?

For answering these questions, we clarify the succinctness of the different automata
types and the size blowup involved in performing boolean operations on them. To this
end, we show that unifying or intersecting deterministic automata of the classic ω-regular-
complete types, namely parity, Rabin, Streett, and Muller, involves an exponential size
blowup.

We argue that there are good reasons for the classic types, mainly in the case of
nondeterministic and alternating automata. They admit good size and complexity bounds
with respect to succinctness, boolean operations, and decision procedures, and they are
closely connected to various logics.

Yet, we also argue that there is place for additional types, especially in the case of
deterministic automata. In particular, generalized-Rabin, which was recently introduced,
as well as a disjunction of Streett conditions, which we call hyper-Rabin, where the latter
further generalizes the former, are interesting to consider. They may be exponentially
more succinct than the classic types, they allow for union and intersection with only a
quadratic size blowup, and their nonemptiness can be checked in polynomial time.

1 Introduction

Automata on infinite words were introduced in the 1960s in the course of solving decision
problems in logic, and since the 1980s they play a key role in formal verification of reactive
systems. Unlike automata on finite words, these automata have various acceptance conditions,
the most classic of which are weak, Büchi, co-Büchi, parity, Rabin, Streett, and Muller.

We look into the question of why these automata types: Can we do with a single type? If
not, are these particular types the right ones? And do we still need to look for new types?

A simple answer to the question might be “for historical reasons”. Yet, though historical
events always play a role, they certainly do not give the full answer, and do not explain why
these types survived the test of time, while others, such as ∀-automata [42], did not.
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A more thorough answer should consider the properties of the different types, as put for
example by Kurshan [36]: “The choice of automaton type to use in connection with formal
verification is governed by two issues: syntactic suitability and computational complexity. ”

Toward answering the question, we look into the following properties of the classic automata
types: i) Their succinctness, compared to each other and to an arbitrary automaton type; ii)
The size blowup involved in performing boolean operations on them; and iii) The complexity
of resolving their decision questions.

Succinctness. Considering automata succinctness, there is a massive literature on trans-
lations between the classic types, accumulated along the past 55 years, and continuing to these
days. Having “only” seven classic types, where each can be deterministic or nondeterministic,
we have 175 possible non-self translations between them, which has become difficult to follow.
Moreover, it turns out that there is inconsistency in the literature results concerning the size
of automata—Some only consider the number of states, some also take into account the index
(namely, the size of the acceptance condition), while ignoring the alphabet size, and some do
consider the alphabet size, but ignore the index.

To make an order with all of these results, we maintain a website [5] that provides informa-
tion and references for each of the possible translations. The high-level tables of the size blowup
and of the state blowup involved in the translations are given in Table 1. The size blowup in
the table relates to an automaton of size n, and the state blowup to an automaton with n states
(and index as large as desired). The capital letters stand for the type names: Weak, Co-Büchi,
Büchi, etc. A question mark in the tables stands for an exponential gap between the currently
known lower and upper bounds.

As for succinctness with respect to an arbitrary type, we argue in Section 4 that the clas-
sic types are “well positioned” with respect to the inevitable tradeoff between succinctness,
determinization, and complementation—We observe that for an automaton type T whose com-
plementation only involves a single-exponential size blowup, there must also be at least a single-
exponential size blowup in translating arbitrary ω-regular automata into T -automata. In this
sense, we show that the classic types, except for Muller, provide a reasonable tradeoff between
their succinctness and the size blowup involved in their determinization and complementation,
having all of these measures singly exponential.

Boolean operations. There are many works on automata complementation (see [50]
for a survey until 2007, after which there are yet many new results), while very few on the
positive operations of union and intersection. This is possibly because positive operations are
simple on nondeterministic automata, and were less interesting on deterministic automata, as
nondeterministic ones are adequate for model checking. However, in recent years there is a vast
progress in synthesis and in probabilistic model checking, which require deterministic or almost
deterministic automata, such as limit-deterministic [51] or good-for-games automata [26, 8, 10].

We complete the picture of the size blowup involved in boolean operations, as summarized
in Table 2. To this end, we provide a new construction for intersecting nondet. Rabin automata
with only a quadratic size and state blowup, show that intersecting nondet. Muller automata
involves an exponential size blowup, and complementing them a double-exponential blowup.
For deterministic automata, we show that unifying or intersecting the classic ω-regular-complete
types, namely parity, Rabin, Streett, and Muller, involve an exponential size blowup.

Decision problems. We look into the nonemptiness problem, which allows, in combi-
nation with boolean operations, to also solve the other decision problems of equivalence and
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containment—The language of an automaton A is contained in the language of an automaton B
iff the intersection of A with the complement of B is empty. The complexity of the nonemptiness
problem of the classic types is clear in the literature and is summarized in Table 2.

So? Based on these, and other results, we argue that the classic types are interesting and
well deserve the attention they get, yet there is a need for additional types, especially in the
deterministic setting. There is no inherent reason for having an exponential size blowup in pos-
itive boolean operations on deterministic ω-regular-complete automata. These operations are
particularly interesting in verification of compound systems, in which setting there may already
be some deterministic automata for the individual systems, which are then to be combined.

Indeed, the problem with boolean operations on classic deterministic automata and the
current interest in the deterministic setting, may explain the emergence of new, or renewed, au-
tomata types in the past five years. Among these are “Emerson-Lei” (EL), which was presented
in 1985 [22], and was recently “rediscovered” within the “Hanoi” format [2], “generalized-Rabin”
[32], and “generalized-Streett” [3]. The EL condition allows for an arbitrary boolean formula
over sets of states that are visited finitely or infinitely often, generalized-Rabin extends the Ra-
bin pairs into lists, and generalized-Streett analogously extends Streett pairs. We analyze these,
and some other types, in Section 5, and show that they indeed provide additional benefits.

While positive boolean operations on EL automata are obviously simple, it is known that
its nonemptiness check is NP-complete [22] and complementing nondet. EL automata involves
a doubly-exponential size blowup [49]. Nevertheless, due to the practical progress in solving
the SAT problem, to which the EL condition is naturally related, it may still be interesting to
further pursue deterministic EL automata. (See [20, 45].)

We observe that generalized-Rabin is a special case of a disjunction of Streett conditions,
which was considered in [22] under the name “canonical form”, and which we dub “hyper-
Rabin”. These types provide an interesting potential, as they may be exponentially more
succinct than the classic types, they allow for union and intersection with only a quadratic
size blowup, and their nonemptiness check is in PTIME. Indeed, in the deterministic setting
there seem to also be practical benefits for generalized-Rabin automata [32, 15, 23], which may
possibly be extended to the more general hyper-Rabin condition.

The generalized-Streett condition is analogously a special case of a conjunction of Rabin
conditions, which we dub “hyper-Streett”. Positive boolean operations on them only involves
a quadratic size blowup, yet we show that like EL automata, their nonemptiness check is NP-
complete, and complementing their nondeterministic version is doubly-exponential.

Paper structure and main contributions. The paper aims at providing the big picture
of ω-regular automata, and along the way provides quite a few new results, the main of which
are Theorems 1, 3, 7, 12, and 24.

Table 1 puts an order in the chaos of translations between the different automata types.
Section 3 organizes the complexity of boolean operations, as summarized in Table 2, while
providing a new algorithm for intersecting Rabin automata, and several new negative results
on the exponential size blowup involved in some boolean operations. Section 4 is mostly of
a non-technical nature, providing reasons for why the classic types are indeed so. Section 5
analyzes a family of types that are stronger than the classical ones, as summerized in Tables 3
and 4, while providing new results on the size blowup involved in boolean operations on them
and in translations between them.

Due to lack of space, some proofs are omitted and appear in the full version of the paper.
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Size
Blowup

To Deterministic Nondeterministic

From W C B P R S M W C B P R S M

Det.

W ·

2Θ(n)

·
Θ(n)

2Θ(n)

C · ·

B · Θ(n) ·

P ·
Θ(n2)

·

R 2Θ(n)

Θ(2n log n)

O(n2)
Ω(n)

O(n2)
Ω(n)

· O(n2)
Ω(n)

S 2Θ(n)

·

· Θ(n) 2Θ(n) ·

M O(n2)
Ω(n)

? O(2n log n)
2Ω(n) · O(n2)

Ω(n)
Θ(n3) Θ(n2) ·

Non-

Det.

W

∗1

22Ω(n)

·
Θ(n)

2Θ(n)

C 2Θ(n) ·

B
2Θ(n log n)

2Θ(n)

·

P
Θ(n2)

·

R
∗2 2Θ(n2 log n)

O(n2)
Ω(n)

· O(n2)
Ω(n)

S ·

M ∗3 2O(n3 log n)

2Ω(n log n) Θ(n3) Θ(n2) ·

State
Blowup

To Deterministic Nondeterministic

From W C B P R S M W C B P R S M

Det.

W ·

Θ(n)

·

C · · Θ(n)

B · ·

P · Θ(n2) ·

R 2Θ(n)

Θ(2n log n)

·

S
2Θ(n)

·
· Θ(n) 2Θ(n)

Θ(n2)
·

M · ·

Non-

Det.

W ·
Θ(n)C 2Θ(n) ·

B
2Θ(n log n)

·

P Θ(n2) ·

R ? 22Θ(n) 2Θ(n) ·

S ∗4 ? ∗5 ? ∗4
Θ(n2)

·

M ? 22Θ(n) ·

∗1: Upper bounds between 22O(n)

and 22O(n3 log n) ∗2: Lower bound to DBW: 2Ω(n log n)

∗3: Lower bound to DBW: 2Ω(n) ∗4: 2O(n2 log n) and 2Ω(n log n) ∗5: 2Θ(n2 log n)

Table 1: Size blowup and state blowup involved in automata translations [5].
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2 Preliminaries

A word over a finite alphabet Σ is a sequence w = w(0) · w(1) · · · of letters in Σ.
A nondeterministic automaton is a tuple A = 〈Σ, Q, δ, ι, α〉, where Σ is the input alphabet,

Q is a finite set of states, δ : Q × Σ → 2Q is a transition function, ι ⊆ Q is a set of initial
states, and α is an acceptance condition. The first four elements, namely 〈Σ, Q, δ, ι〉, are the
automaton’s structure. In the case where |ι| = 1 and for every q ∈ Q and σ ∈ Σ, we have
|δ(q, σ)| ≤ 1, we say that A is deterministic.

A run r = r(0), r(1), · · · of A on w = w(0) · w(1) · · · ∈ Σω is an infinite sequence of states
such that r(0) ∈ ι, and for every i ≥ 0, we have r(i+ 1) ∈ δ(r(i), w(i)).

Acceptance is defined with respect to the set inf (r) of states that the run r visits infinitely
often, for which reason these automata are called ω-regular automata. Formally, inf (r) = {q ∈
Q | for infinitely many i ∈ IN, we have r(i) = q}. We describe below the most classic types of
acceptance conditions. In Section 5, we will describe additional types.

• Büchi, where α ⊆ Q, and r is accepting iff inf (r)∩α 6= ∅. (The states of α are accepting.)

• co-Büchi, where α ⊆ Q, and r is accepting iff inf (r) ∩ α = ∅. (The states of α are
rejecting.)

• weak is a special case of the Büchi condition, where every strongly connected component
of the automaton is either contained in α or disjoint to α.

• parity, where α = {S1, S2, . . . , S2k} with S1 ⊂ S2 ⊂ · · · ⊂ S2k = Q, and r is accepting if
the minimal i for which inf (r) ∩ Si 6= ∅ is even.

• Rabin, where α = {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}, with Bi, Gi ⊆ Q and r is accepting
iff for some i ∈ [1..k], we have inf (r) ∩ Bi = ∅ and inf (r) ∩Gi 6= ∅.

• Streett, where α = {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}, with Bi, Gi ⊆ Q and r is accepting
iff for all i ∈ [1..k], we have inf (r) ∩ Bi = ∅ or inf (r) ∩Gi 6= ∅.

• Muller, where α = {α1, α2, . . . , αk}, with αi ⊆ Q and r is accepting iff for some i ∈ [1..k],
we have inf (r) = αi .

Notice that Büchi and co-Büchi are special cases of the parity condition, which is in turn a
special case of both the Rabin and Streett conditions. In the latter conditions, we refer to the
Bi and Gi sets as the “bad” and “good” sets, respectively.

The number of sets in the parity and Muller acceptance conditions or pairs in the Rabin
and Streett acceptance conditions is called the index of the automaton. For weak, co-Büchi,
and Büchi automata, the index is 1.

The size of an automaton is the maximum size of its elements; that is, it is the maximum
of the alphabet length, the number of states, the number of transitions, and the index.

An automaton accepts a word if it has an accepting run on it. The language of an automaton
A, denoted by L(A), is the set of words that A accepts. We also say that A recognizes the
language L(A). Two automata, A and A′, are equivalent iff L(A) = L(A′).

The class of an automaton characterizes its transition mode (deterministic, nondeterminis-
tic, or alternating) and its acceptance condition. We sometimes abbreviate the different classes
by three letter acronyms in {D, N, A}×{W, B, C, P, R, S, M}×{W, T}. The first letter stands
for the transition mode; the second for the acceptance-condition (weak, Büchi, co-Büchi, parity,
Rabin, Streett, or Muller); and the third indicates whether the automaton runs on Words or
on Trees. For example, DBW stands for a deterministic Büchi automaton on words.
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Büchi, parity, Rabin, Streett, and Muller automata are ω-regular complete, recognizing all
ω-regular languages. Weak, co-Büchi, and deterministic Büchi automata, are less expressive.

3 Classic Types – Boolean Operations

In the nondeterministic setting, boolean operations on the classic automata types, except for
Muller, roughly involve an asymptotically optimal size blowup: linear for union, quadratic for
intersection, and singly exponential for complementation. In the deterministic setting, however,
the picture is different, having an exponential size blowup on union or intersection for all of the
ω-regular-complete types. We provide below known and new results on the boolean operations,
and summarize them in Table 2.

3.1 Nondeterministic Automata

Union is simply achieved by adding up the two automata via an initial nondeterministic choice.
Intersection requires at least a quadratic blowup, already for automata on finite words, and

can indeed be done with that size blowup for most classic types. For parity automata the exact
blowup is still to be resolved. Intersection of Streett automata is straightforward due to the
conjunctive nature of the acceptance condition, while for Rabin automata it is more involved,
and given here for the first time. For Muller automata, we prove that it is exponential.

Complementation involves at least an exponential blowup, already for automata on finite
words, and for all classic types, except for Muller, it involves a size blowup between 2Θ(n) and
2Θ(n2 log n). Yet, the state blowup for Rabin automata (with index exponential in the number of
states) might be doubly exponential [14]. For Muller automata, we prove that the size blowup
is doubly exponential.

We elaborate below on the intersection operation for each of the types, considering input
automata A and B. For Muller, we also elaborate on complementation.

Weak and Co-Büchi. Intersection is done directly on the product automaton A × B,
with the definition that a state (a, b) is accepting iff a is accepting in A and b is accepting in
B. Notice that the resulting automaton retains the weak property, when both A and B have it,
and accepts exactly the words in L(A) ∩ L(B), as the runs of both A and B eventually remain
in only accepting/rejecting states.

Büchi. For Büchi intersection, the product automaton is not enough, since parallel ac-
cepting runs of A and B need not visit their accepting states simultaneously. Nevertheless, the
standard intersection construction only needs two copies of the product automaton, where a
jump from one component to the other is done once visiting states accepting w.r.t. A (resp. B),
thus guaranteeing infinitely many visits in the accepting states of both A and B.

Parity. A parity automaton can be translated to a Büchi automaton with only a quadratic
state and size blowup [17]. Thus, intersection involves up to a quartic state and size blowup
(yielding a Büchi automaton). The exact inevitable blowup in direct intersection of parity
automata into a parity automaton is yet to be resolved.

Streett. Streett intersection can be done directly on the product automaton, taking ad-
vantage of the conjunctive nature of the Streett condition.
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Rabin. A Rabin automaton can be translated to a Büchi automaton with only a quadratic
size blowup [17], implying intersection construction with up to a quartic size blowup. However,
state wise, this approach is inadequate, as there might be an exponential blowup in the trans-
lation of Rabin to Büchi automata [7]. We show below that the Rabin condition allows for a
direct intersection construction, involving only a quadratic state and size blowup.

The idea is to extend the Büchi-intersection construction, taking advantage of the Rabin
condition. Recall that in the construction for intersecting Büchi automata, a jump from one
copy of the product automaton into the other is done once reaching a state accepting w.r.t.
A (respectively B). This does not work for the Rabin condition, since a state is no longer
accepting w.r.t. A, but may belong to several “good” and “bad” sets of A’s accepting pairs.

We extend the construction by adding a “bridge” that is visited when jumping from the
first to the second copy of the product automaton, and another bridge between the second and
first copy. A bridge is a limited copy of the product automaton, in which all states can only
move to the next copy. Then, for every acceptance pairs 〈B1, G1〉 of A and 〈B2, G2〉 of B, we
define an acceptance pair 〈B,G〉 that enforces a visit in G1 when going through the first bridge
and a visit in G2 when in the second bridge. This enforcement is done by having in B all the
states of the first bridge that are not in G1 and all the states of the second bridge that are not
in G2.

An example of intersecting Rabin automata along this construction is illustrated in Figure 1.
We give below the formal construction, and provide the correctness proof in the full version.

Theorem 1. For every two NRWs A1 and A2 with n1 and n2 states, m1 and m2 transitions,
and indices k1 and k2, respectively, there is an NRW recognizing L(A1) ∩ L(A2) with 4n1n2

states, 6m1m2 transitions, and index k1k2.

Construction. Consider NRWs A1 = 〈Σ, Q1, ι1, δ1, α1〉 and A2 = 〈Σ, Q2, ι2, δ2, α2〉. We define
the NRW A = 〈Σ, Q, ι, δ, α〉, which we claim to recognize L(A) ∩ L(B), as follows.

• Q = Q1 × Q2 × [0..3]. (We shall call each instance of Q1 × Q2 a “component”, and the
odd components we dub “bridges”.)

• ι = ι1 × ι2 × {0}.

• For every state 〈q1, q2, i〉 ∈ Q and σ ∈ Σ, the transition function is defined as follows.

– If i is even, then δ(〈q1, q2, i〉, σ) = {〈q̂1, q̂2, î〉 | q̂1 ∈ δ1(q1, σ), q̂2 ∈ δ2(q2, σ), and
î ∈ {i, i+1}}.

– If i is odd, then δ(〈q1, q2, i〉, σ) = {〈q̂1, q̂2, (i+1) mod 4〉 | q̂1 ∈ δ1(q1, σ) and q̂2 ∈
δ2(q2, σ)}.

• For every acceptance pairs 〈B1, G1〉 ∈ α1 and 〈B2, G2〉 ∈ α2, we have in α the acceptance
pair 〈B,G〉, where B and G are defined as follows.

– G = G1 ×Q2 × {1}.

– B is the union of two sets B′ and B′′. The first includes all the states that are bad
w.r.t. B1 or B2. The second handles the transitions through the bridges, adding in
component 2i− 1 the states that are not in Gi. Formally, B = B′ ∪B′′, where B′ =
B1×Q2×[0..3]∪Q1×B2×[0..3] and B′′ = (Q1\G1)×Q2×{1}∪Q1×(Q2\G2)×{3}.
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B = B′ ∪B′′, with

B = B′ ∪B′′, with

B′ = {〈q0, p0, 0〉, 〈q0, p1, 0〉, 〈q0, p0, 1〉, 〈q0, p1, 1〉,
〈q0, p0, 2〉, 〈q0, p1, 2〉, 〈q0, p0, 3〉, 〈q0, p1, 3〉}

ii & ii’) Redundant, since all states should be visited finitely often.

i & i’) 〈B,G〉, where

B′ = {〈q1, p0, 0〉, 〈q0, p1, 0〉, 〈q1, p0, 1〉, 〈q0, p1, 1〉,
〈q1, p0, 2〉, 〈q0, p1, 2〉, 〈q1, p0, 3〉, 〈q0, p1, 3〉}

The acceptance pairs of A

i & ii’) 〈B,G〉, where

B = B′ ∪B′′, with

G = {〈q0, p0, 1〉, 〈q0, p1, 1〉}
B′′ = {〈q1, p0, 1〉, 〈q0, p1, 3〉}

G = {〈q0, p0, 1〉, 〈q0, p1, 1〉}
B′′ = {〈q1, p0, 1〉, 〈q0, p0, 3〉, 〈q1, p0, 3〉}

ii & i’) 〈B,G〉, where G = {〈q1, p0, 1〉}
B′′ = {〈q0, p0, 1〉, 〈q0, p1, 1〉, 〈q0, p1, 3〉}

B′ = {〈q1, p0, 0〉, 〈q0, p0, 0〉, 〈q1, p0, 1〉, 〈q0, p0, 1〉,
〈q1, p0, 2〉, 〈q0, p0, 2〉, 〈q1, p0, 3〉, 〈q0, p0, 3〉}

ii’) 〈{p0}, {p1}〉

The acceptance pairs

ii) 〈{q0}, {q1}〉

The acceptance pairs

i) 〈{q1}, {q0}〉 i’) 〈{p1}, {p0}〉

2

3

1

0

A1

A Rabin automaton A for L(A1) ∩ L(A2):

To component 0

Rabin automata A1 and A2:

A2

q1

q1, p0 q0, p1

q1, p0 q0, p1q0, p0

q0, p0

q1, p0 q0, p1

q1, p0 q0, p1q0, p0

q0, p0

q0 p1p0

a

a,bc
b
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c
c

b
a
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c
a,b

c

a

a,bc
b

b a

c
c

a

a,bc
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c
c
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a,bc
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c
c
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a,b

c
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b

b
a
c

c
a,b

c

Figure 1: An example of intersecting Rabin automata with a quadratic state and size blowup,
as per the construction of Theorem 1.

Muller. A Muller automaton can be translated to a Büchi automaton with only a cubic
size blowup [6]. However, when considering the intersection of Muller automata into a Muller
automaton, one cannot take advantage of the quadratic intersection of Büchi automata, as
the translation back from Büchi to Muller automata might involve an exponential size blowup
[48]. Moreover, we show below that due to the very descriptive nature of the Muller condition,
intersection might involve an exponential size blowup.

Theorem 2. Intersection of (deterministic) Muller automata involves an exponential size
blowup. In particular, for every n ≥ 1, there are DMWs M′n and M′′n with up to n states,
2n transitions, and index n+ 1 each, over an alphabet of 3 letters, such that every NMW that
recognizes L(M′n) ∩ L(M′′n) has an index of at least 2n.

Proof. Consider the DMWs D′n and D′′n of Figure 2. Observe that both D′n and D′′n accept all
infinite runs on their structures, and are thus equivalent to the corresponding weak automaton
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{q1, q2, . . . , qn}, {q1}, {q2}, . . . , {qn}
A weak automaton with

all states accepting.

Dn:D′′n:

Acceptance sets
{p0}, {p0, p1}

D′n:

Acceptance sets

· · ·

· · ·

· · ·p1

a,#

qn

a a

q2

a

#

bb

qnq2q1

aaa

#

bb bbq1

bb b

b b

p0

Figure 2: Deterministic Muller automata D′n and D′′n of size in O(n), whose intersection, which
is equivalent to Dn, is recognized by a nondeterministic Muller automaton with index of at
least 2n.

on their structures, all of whose states are accepting. Thus, the language L(D′n) ∩ L(D′′n) is
recognized by the weak automatonDn, whose structure is the product ofD′n andD′′n’s structures.
Now, in [6, proof of Theorem 12], it is shown that an NMW equivalent to Dn must have an
index of at least 2n.

Complementation of Muller automata is also very inefficient, involving a doubly exponential
size blowup.

Theorem 3. Complementation of Muller automata into Muller automata involves a doubly-
exponential size blowup. In particular, for every n ≥ 1, there is a language Ln over an alphabet
of 4 letters, recognized by an NMW with O(n) states and index in O(1), while an NMW for
Ln has an index of at least 22n

.

Proof. Let Σ = {a, b,#, $}. For every n ≥ 1, consider the language Hn = {u1#u1$u2#u2$ . . . |
for every i ∈ IN, ui ∈ {a, b}n} over Σ. That is, Hn consists of infinite words that are sequences
of pairs of finite words of length n over {a, b}, such that the two words in each pair are identical.
Let Ln be the complement of Hn. We claim that an NMW for Hn has an index of at least 22n

,
while there is an NMW of size in O(n) recognizing Ln.

An NMW of size in O(n) for Ln is straightforward. There are two options for a word not
in Hn: either it violates the pattern of n {a, b} letters between a # and a $, or there are two
different letters that are n positions apart and there is a # between them. Both cases can
be recognized by a nondeterministic finite automaton with O(n) states, after which there is a
forever accepting state.

We continue with analyzing an NMW M for Hn. Let U = {u | u ∈ {a, b}n} be the set of
words of length n over {a, b}. For every subset T ⊆ U , let t be the number of words in T , and
let wT = (u1#u1$u2#u2$ . . . ut#ut$)ω be an infinite word that repeats exactly the words in T .
Notice that for every such T , the word wT belongs to Hn. Let ST be an acceptance set of M
via which M accepts wT . We show that for every T 6= T ′, we have ST 6= ST ′ .

Indeed, for every word u ∈ U , consider the set Su of states of M, such that s ∈ Su iff there
is a finite word x ending with u and an infinite word y starting with #u, such that there is an
accepting run r ofM on xy, andM reaches s along r after reading x. We claim that for every
u 6= u′ ∈ U , we have Su and Su′ are disjoint. Indeed, assume by way of contradiction a state
s ∈ Su ∩ Su′ . Let r and r′ be the runs of M witnessing that s ∈ Su and s ∈ Su′ , and reaching
s at positions p and p′, respectively. Then the run r̂ that starts as r until position p and then
continues as r′ from the latter’s position p′ is a legal run of M and it is accepting, since the
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set of states that it visits infinitely often is the same as that of r′. Yet, it accepts a word not
in Hn, having an infix u#u′.

Hence, for every T 6= T ′ with some u ∈ T \T ′, we have ST contains some state s ∈ Su, such
that s 6∈ ST ′ . Thus, since there are 22n

different sets T ⊆ U , M must have an index of at least
22n

.

3.2 Deterministic Automata

We show below that positive boolean operations might involve an exponential size and state
blowup over deterministic parity, Rabin, Streett, and Muller automata.

Rabin and Streett. We start with straightforward positive results on constructions that
are natural to each type.

Proposition 4. Intersection of (deterministic) Streett automata and union of deterministic
Rabin automata can be done with quadratic state and size blowup.

Proof. The NSW S can be defined over the product of S ′ and S ′′, where the acceptance con-
dition is taken to be the union of the two accepting conditions. When both S ′ and S ′′ are
deterministic, so is S.

Formally, let S ′ = (Σ, Q′, ι′, δ′, α′) and S ′′ = (Σ, Q′′, ι′′, δ′′, α′′). We define S = (Σ, Q, ι, δ, α),
where

• Q = Q′ ×Q′′

• ι = 〈ι′, ι′′〉

• For every q′ ∈ Q′, q′′ ∈ Q′′, and a ∈ Σ, δ(〈q′, q′′〉, a) = 〈δ′(q′, a), δ′′(q′′, a)〉

• α = {〈B′ ×Q′′, G′ ×Q′′〉 | 〈B′, G′〉 ∈ α′} ∪ {〈Q′ ×B′′, Q′ ×G′′〉 | 〈B′′, G′′〉 ∈ α′′}

By the duality of deterministic Streett and Rabin automata, the result follows for the union
of DRWs R′ and R′′: L(R′n) ∩ L(R′′n) = L(S ′n) ∪ L(S ′′n).

For showing the exponential size blowup in the intersection of det. Rabin automata and
union of det. Streett automata, we leverage a recent lower-bound proof from [1].

Consider the family of languages {Ln}n≥1, where the alphabet of Ln is {1, 2, . . . , n} and a
word belongs to it iff the following two conditions are met:

i. A letter i is always followed by a letter j, such that i−1 ≤ j ≤ i+1. For example,
5433245 . . . is a bad prefix, since 2 was followed by 4, while 55434322 . . . is a good prefix.

ii. The number of letters that appear infinitely often is odd. For example, 23321(22343233)ω

is in Ln, while 1(233)ω is not.

We provide for every n, det. Streett automata S ′n and S ′′n of size n, such that L(S ′n)∪L(S ′′n) =
Ln. Intuitively, S ′n requires both the smallest and biggest letters that appear infinitely often to
be odd, while S ′′n requires both of them to be even. This covers, together with the enforcement
of condition (i), all cases in which the number of letters that appear infinitely often is odd.

Lemma 5. For every n ≥ 1, there are deterministic Streett automata S ′n and S ′′n of size n,
such that L(S ′n) ∪ L(S ′′n) = Ln.
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Yet, deterministic Rabin and Streett automata for Ln must have at least 2b
n−1

2 c states.

Lemma 6 ([1, Lemma 5.11 and Remark 5.13]). 1 Every deterministic Rabin and Streett au-

tomata recognizing Ln must have at least 2b
n−1

2 c states.

By the above lemmas, we get the exponential blowup in intersecting deterministic Rabin
automata and unifying deterministic Streett automata.

Theorem 7. Union of det. Streett automata and intersection of det. Rabin automata involve
an exponential state and size blowup. In particular, for every n ≥ 1, there are DSWs S ′n and
S ′′n (over the same structure) with n states, 3n − 2 transitions, and n accepting pairs over an

alphabet of n letters, s.t. every DSW that recognizes L(S ′n) ∪ L(S ′′n) has at least 2b
n−1

2 c states.

Parity and generalized parity. Complementation of det. parity automata involves no
blowup, however both union and intersection might involve an exponential state and size
blowup, as shown below. (This exponential blowup was independently shown by Christof Löding
and Haidi Yue, while investigating the memory requirements in two-player infinite games [40].)

We first construct for every n, four deterministic parity automata over the same structure,
such that their union and intersection provide Ln.

Lemma 8. For every n ≥ 1, there are deterministic parity automata P ′n,P ′′n ,P ′′′n , and P ′′′′n of
size n over the same structure, such that L(P ′n) ∩ L(P ′′n) ∪ L(P ′′′n ) ∩ L(P ′′′′n ) = Ln.

Now, using the above lemma and the negative results on unifying det. Streett automata, we
get the negative results on det. parity automata.

Theorem 9. Union and intersection of deterministic parity automata involve an exponential
state and size blowup. In particular, for every n ≥ 1, there are DPWs P ′n and P ′′n (over the
same structure) with n states, 3n − 2 transitions, and n colors over an alphabet of n letters,

such that every DPW that recognizes L(P ′n) ∩ L(P ′′n) has at least 2b
n−1

4 c states.

Proof. For every n ≥ 1, consider the DPWs P ′n,P ′′n ,P ′′′n , and P ′′′′n as per Lemma 8. Let A and
B be DPWs recognizing L(P ′n)∩L(P ′′n) and L(P ′′′n )∩L(P ′′′′n ), respectively. Observe that A and
B are also DRWs, and L(A) ∪ L(B) = Ln.

By Proposition 4, the union of DRWs involves at most a quadratic size blowup. Now, by

Lemma 6, a DRW that recognizes Ln must have at least 2b
n−1

2 c states. Hence, either of A or

B must be of a size that is at least the square root of 2b
n−1

2 c, which is 2b
n−1

4 c. This concludes
the claim concerning the intersection of DPWs.

As for the union of DPWs, we get the result from the self duality of parity automata: Assume
that P ′ and P ′′ are the DPWs whose intersection involves the exponential size blowup. Let D′
and D′′ be the DPWs that result from dualizing P ′ and P ′′, respectively. Since L(P ′n)∩L(P ′′n) =

L(D′n) ∪ L(D′′n), we have that a DPW that recognizes L(D′n)∪L(D′′n) must have at least 2b
n−1

4 c

states.

The parity condition is also considered in the literature in a generalized form, called “general-
ized parity” [16], allowing for either a disjunction or a conjunction of standard parity conditions.
Analogously to Proposition 4, unifying disjunctive-generalized-parity automata, as well as in-
tersecting conjunctive-generalized-parity automata, is easy. Yet, the dual operations involve an
exponential size blowup.

1The statement of Lemma 5.11 in [1] speaks of a family of languages that is slightly different from the one
presented here, yet its proof considers a variety of language families, including the one used here.

153



Why These Automata Types? Udi Boker

An: Bn:

Both automata have a single Muller acceptance set of all states.

· · ·· · · p1
b

a

p0

a

baa

b

#

q1
a

b

q0

b

pnqn

#

a

b

Figure 3: Deterministic Muller automata of size in O(n), whose union is recognized by det.
Muller automata of index at least 2n.

Corollary 10. Union of deterministic conjunctive-generalized-parity automata and intersection
of disjunctive-generalized-parity automata involve an exponential state and size blowup.

Muller. Union and intersection of det. Muller automata only involves a quadratic state
blowup, and for automata over the same structure, also only a linear size blowup. Yet, for
automata over different structures, both union and intersection involve an exponential size
blowup.

Proposition 11. Union and intersection of deterministic Muller automata involves a quadratic
state blowup. Union and intersection of (deterministic) Muller automata over the same struc-
ture involves no state blowup and linear size blowup.

Exponential size blowup in intersection is shown in Theorem 2, when the target automaton
may even be a nondeterministic Muller automaton. We show below that when the target
automaton is a deterministic Muller automaton, union also involves an exponential size blowup.

Theorem 12. Union of deterministic Muller automata involves an exponential size blowup. In
particular, for every n ≥ 1, there are DMWs An and Bn with n+ 1 states, 2(n+ 1) transitions,
and index 1 each, over an alphabet of 3 letters, such that every DMW that recognizes L(An) ∪
L(Bn) has an index of at least 2n.

Proof sketch. Consider the DMWs An and Bn of Figure 3. The language of An is ((b∗a)nb∗#)ω

and of Bn is ((a∗b)na∗#)ω. Let M be a DMW for L(An) ∪ L(Bn). We first classify its states
according to their relation with the states of An and Bn. Formally, for every i, j ∈ [0..n], let
Si,j be the set of states s of M , for which there exists a finite word u, such that M(u) = s,
An(u) = qi, and Bn(u) = pj .

Now, let U be the set of finite words of length 2n over {a, b}, having exactly n a’s and n b’s.
Notice that for every u ∈ U , the infinite word wu = (u#)ω belongs to both L(An) and L(Bn),
and in particular also belongs to L(M). Therefore, for every u ∈ U , there is a set Su of states
of M that is visited infinitely often in the run of M on wu, and Su belongs to the acceptance
sets ofM. We analyzeM and show that for every u 6= u′ ∈ U , Su 6= Su′ , getting

(
2n
n

)
different

Muller sets in the acceptance condition of M.

4 In Favor of The Classic Types

We start with some general observations on the classic types, claiming that they are “well
positioned” with respect to the inevitable tradeoff between succinctness, determinization, and
complementation. We then briefly specify some good qualities of each type.

2This result was independently proved by Christof Löding and Haidi Yue [40].
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Operations
Size Blowup

On Deterministic Automata On Nondet. Automata Nonemptiness
ComplexityUnion Intersect. Complement. Union Intersect. Complement.

Weak

Quadratic

No
blowup

Linear

Quad.

2Θ(n)

[44]

(if possible)

Linear time,
NL-complete

[19, 52]

Co-Büchi No blowup
[34]

(if possible)Büchi
2Θ(n log n)

[43, 48, 13]Parity
Exponential

Thm. 92
No

blowup
Quad. -
Quartic

O(m log k) time,
NL-Comp. [22, 29]

Rabin Quad.
Prop. 4

Exp.
Thm. 7 Exp.

[38]

Quad.
Thm. 1,

Prop. 4

2Θ(n2 log n)

[35, 14, 12]

O(mk) time,
NL-Comp. [52]

Streett Exp.
Thm. 7

Quad.
Prop. 4

PTIME-comp. [22]

Muller
Exp.

Thm. 2,12
Exp.
[48]

Exp.
Thm. 2

Double-Exp.
Thm. 3

NL-comp. [18]

Table 2: The size blowup involved in boolean operations on the classic word automata, and the
complexity of checking their nonemptiness. The complexity is w.r.t. the automaton size n, and
if specified, w.r.t. m states and index k.

Inevitable: Succinctness + Complementation ≥ Double-Exp

There is an inherent tradeoff between the succinctness of an automaton and the size blowup
involved in its complementation—It is shown in [49] that there is a family of ω-regular languages
{Ln}n≥1, such that for every n, there is an Emerson-Lei automaton of size n for Ln, while every
ω-regular automaton for Ln has at least 22n

states. (See Section 5 for details.)

Hence, for an automaton of some type T whose complementation only involves a single-
exponential size blowup, there must also be at least a single-exponential size blowup in trans-
lating arbitrary ω-regular automata into T -automata. Analogously, if we aim for a single-
exponential blowup in determinization, and no blowup in the complementation of deterministic
automata, there must be at least a double-exponential size blowup in translating arbitrary
automata into deterministic T -automata.

In this sense, the classic types, except for Muller, provide a reasonable tradeoff between
their succinctness and the size blowup involved in their determinization and complementation,
having all of these measures singly exponential.

Proposition 13. For every n ∈ IN and nondeterministic ω-regular automaton of size n, there is
an equivalent nondeterministic Büchi automaton of size in 2O(n) and an equivalent deterministic

parity automaton of size in 22O(n)

.

For the classic types, except for Muller, positive boolean operations on nondet. automata
are optimal, as union and intersection are generally done with only linear and quadratic size
blowup, respectively (see Table 2), which matches the lower bound for arbitrary automata
types. So is the case with the nonemptiness check (see Table 2), which is generally resolved in
nondet. logarithmic space.

The classic types have close connection to the Borel hierarchy, to various logics, and to other
common formalisms. We list below some distinguishing features of each type.
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Weak. The restriction on the structure of the automaton often limits the expressive power,
and allows for simple analysis. In particular, the Myhill-Nerode property holds for DWW, while
not for the other types, and a language is expressible by a DWW iff it is expressible by both a
DBW and a DCW [37, 41, 4].

When considering alternating automata, the weak condition no longer limits the expressive
power and AWWs recognize all ω-regular languages [46]. When further restricting the automa-
ton structure to only allow cycles that are self loops (“very weak” automata), we get the exact
expressiveness of linear temporal logic (LTL) [39]. Over trees, weak alternating automata are
particularly natural [46] and are equivalent to alternation free mu-calculus (AFMC) [47].

Büchi and Co-Büchi. Somewhat surprisingly, the simple Büchi condition, consisting of
a single set of states, allows nondet. automata to capture all of the ω-regular languages [11].
Due to its simplicity and natural connection to fairness constraints, it is the most preferred
condition in the nondet. setting. Dually, for universal automata, the co-Büchi condition is very
useful [25, 9].

Deterministic Büchi automata are less expressive, yet every ω-regular language is equal to a
boolean combination of DBWs, namely to a positive boolean combination of DBWs and DCWs.

Generalized-Büchi (GB) automata, in which there are several sets of accepting states, each of
which should be visited infinitely often, are useful in the translation of LTL to automata (which
involves an exponential size blowup), and can be translated into equivalent Büchi automata with
a quadratic size blowup. Deterministic GB automata are as expressive as DBWs.

Parity. The parity condition is naturally related to fixpoint expressions [31, 21], and alter-
nating parity tree automata are expressively equivalent to µ-calculus [21, 28]. This equivalence
follows to the hierarchy of parity automata w.r.t. their index and the hierarchy of µ-calculus
formulas w.r.t. their alternation depth. Deterministic parity automata are attractive due to
their self duality, and the fact that they are ω-regular complete, even though their index is
bounded by the number of states.

In the game setting, the parity condition enjoys a special popularity, as both players can do
with memoryless strategies [21], and deciding the winner is in NP ∩ coNP .

Rabin and Streett. The Rabin and Streett conditions are union-closed with respect
to rejecting and accepting, respectively, sets of states visited infinitely often. This allows to
simplify many aspects of automata and games with the Rabin and Streett conditions. In
particular, it allows Rabin (resp. Streett) games to have memoryless strategies for the first
(resp. second) player [30], and provides the typeness property of deterministic Rabin and Streett
automata with deterministic Büchi and co-Büchi automata, respectively [33].

The Streett condition naturally relates to strong fairness, and NSWs are only up to quadrat-
ically less succinct than every other classic nondet. automaton (though not than arbitrary non-
det. ω-regular automaton). State-wise, on the other hand, every nondet. ω-regular automaton
can be translated to an equivalent Rabin automaton with only a quadratic state blowup [7].

Muller. The very descriptive Muller condition is generally impractical, as evident from
the its insuccinctness (see Table 1) and the blowup involved in boolean operations on it (see
Table 2). Nevertheless, it is very convenient for theoretical purposes, as every nondet. ω-regular
automaton admits an equivalent NMW over the same structure, and the Muller condition,
though very descriptive, is very simple. (See, e.g., Proposition 13.) Another useful theoretical
aspect of the Muller condition is evident by the Wagner hierarchy [53].
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5 In Favor of Additional Types

The good qualities of the nondeterministic classic types do not follow to the deterministic
setting. In particular, union or intersection of all the classic deterministic ω-regular-complete
automata involve an exponential size blowup (see Table 2). This has recently become a practical
problem, as det. automata are required in synthesis and in probabilistic model checking, which
are rapidly developing. As a result, new, or renewed, acceptance types have emerged, on which
positive boolean operations only involve a quadratic size blowup.

We formally define these types and then elaborate on each. Acceptance is defined, as usual,
with respect to the set inf (r) of states that the run r visits infinitely often. We also define for
a set S of states that Inf (S ) holds in a run r if S ∩ inf (r) 6= ∅ and Fin(S ) holds otherwise. We
describe for each type the form of boolean formula over Fin and Inf that it allows.

• Emerson-Lei: An arbitrary boolean formula over Fin and Inf . (A positive boolean for-
mula is enough, as ¬Fin(S ) = Inf (S ).)

• Generalized-Rabin:
∨n

i=1 Fin(Bi) ∧ Inf (Gi1 ) ∧ . . . ∧ Inf (Giki
).

• Generalized-Streett:
∧n

i=1 Inf (Gi) ∨ Fin(Bi1 ) ∨ . . . ∨ Fin(Biki
).

• Hyper-Rabin:
∨n

i=1

∧m
j=1 Fin(Bi,j ) ∨ Inf (Gi,j ).

• Hyper-Streett:
∧n

i=1

∨m
j=1 Fin(Bi,j ) ∧ Inf (Gi,j ).

Another related type is circuit [27], which further shortens Emerson-Lei, by representing the
acceptance formula as a boolean circuit.

The index of an automaton is the length of the boolean formula describing its acceptance
condition. (For the classic types, it coincides with the standard definition of Section 2.)

The three-letter acronyms of classic automata is extended to four-letter acronyms for the
above types. For example, DGRW stands for a deterministic generalized-Rabin word automa-
ton.

Emerson-Lei. The acceptance condition was introduced in 1985 by Emerson and Lei [22],
gained some popularity shortly after, was much less popular afterwards, and regained popularity
in the past five years. It now appears also as part of the Hanoi Omega-Automata Format
(HOAF), which is a new standard for representing automata with some boolean condition over
states or transitions [2]

It obviously allows for simple boolean operations. However, complementing as well as de-
terminizing nondet. EL automata involves a doubly-exponential size blowup [49], and their
nonemptiness check is NP-complete [22]. Yet, due to the tremendous progress in practically
solving the SAT problem, to which the EL condition is naturally related, it may still be inter-
esting to further pursue deterministic EL automata. (See [20, 45])

Hyper-Rabin and generalized-Rabin. The generalized-Rabin condition generalizes
both the Rabin and the Muller conditions, and naturally occurs in the translation of various
fragments of LTL into automata [32, 15, 23]. The hyper-Rabin condition further generalizes
the generalized-Rabin condition, having a disjunction of Streett conditions. It was used under
the name “canonical form” in [22]. It allows for union and intersection with only a quadratic
size blowup, and the its nonemptiness check is in PTIME.
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Proposition 14. The Muller and Rabin conditions are special cases of the generalized-Rabin
condition, which is a special case of the hyper-Rabin condition.

By Proposition 14, we get lower bounds on translations to classic automata. (See Table 1.)

Proposition 15. There is an exponential size blowup in the translation of det. generalized-
Rabin and hyper-Rabin automata to det. parity, Rabin, Streett, and Muller automata.

Their positive boolean operations are simple.

Proposition 16. Union and intersection of (deterministic) generalized-Rabin and hyper-Rabin
automata can be done with quadratic size blowup.

Still, their nonemptiness check is in PTIME.

Proposition 17 ([22, Theorem 4.6]). Nonemptiness check of hyper-Rabin automata is PTIME-
complete.

In the nondet. setting, hyper-Rabin automata are quite similar to standard Streett au-
tomata, analogously to the connection between standard Rabin and Büchi automata: The
disjunction in the acceptance condition is turned into nondeterminism between copies of the
automaton with the weaker condition. Hence, there is only a quadratic size blowup in trans-
lating between them.

Proposition 18. Nondeterministic hyper-Rabin automata can be translated to equivalent non-
deterministic Streett automata with a quadratic size blowup.

As a result, nondet. hyper-Rabin automata can be complemented and determinized with
only a single exponential size blowup.

Proposition 19. Complementation (and determinization) of nondeterministic hyper-Rabin
automata can be done with a single-exponential size blowup.

Hyper-Streett and generalized-Streett. The generalized-Streett condition [3] is the
dual of generalized-Rabin, and Hyper-Streett is the dual of Hyper-Rabin.3 These types natu-
rally occur in n-player ω-regular games [24]. Their succinctness and the simplicity of performing
boolean operations on them follow from their duality to hyper/generalized-Rabin automata.

Proposition 20. There is an exponential size blowup in the translation of det. generalized-
Streett and hyper-Streett automata to det. parity, Rabin, Streett, and Muller automata.

Proposition 21. Union and intersection of (deterministic) generalized-Streett and hyper-Streett
automata can be done with quadratic size blowup.

However, the simplicity of the nonemptiness check does not follow.

Proposition 22. Nonemptiness check of generalized-Streett and hyper-Streett automata is NP-
complete.

Furthermore, while nondet. hyper-Rabin automata can be easily translated to standard
Streett automata, nondet. hyper-Streett automata cannot be easily translated to standard
Rabin automata, and complementing them involves a doubly-exponential size blowup. It was
also recently shown in [24] that their universality problem is ExpSpace-complete.

3In [15], they refer to the generalized-Rabin condition as “generalized Rabin pairs” and to the hyper-Streett
condition as “generalized Rabin”. As we will show, the two conditions have very different properties. In [24],
they refer to the hyper-Streett condition as “multi-Rabin”.
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The acceptance condition:
∧n

i=1(Fin({pi}) ∨ Fin({p′i}))

Deterministic generalized-Streett automaton Dn

· · ·
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Figure 4: A deterministic generalized-Streett automaton Dn of size in O(n), for which equivalent
nondeterministic hyper-Rabin automata are of size in 2Ω(n).

Theorem 23. Complementation (and determinization) of nondet. generalized-Streett and hyper-
Streett automata of size n into any ω-regular automaton results in an automaton with at least
22n

states.

Proof sketch. In [48, Lemma 2.4], it is shown that for every n > 0, there exists a language Ln

that is recognized by a nondet. EL automaton A of size n, while any nondet. ω-automaton for
the complement of Ln has at least 22n

states. We observe that due to the special structure of
A, its acceptance condition can be simplified and therefore defined by generalized-Streett and
hyper-Streett conditions of length in O(n).

Translating between hyper-Rabin and hyper-Streett automata. While the size
blowup involved in translating a nondet. hyper-Rabin to an hyper-Streett automaton is quadratic
(Proposition 18), in the opposite direction it is exponential, even if starting from a det.
generalized-Streett automaton. (A matching single-exp. upper bound follows from Proposi-
tion 13.)

Theorem 24. For every n ∈ IN, there is a deterministic generalized-Streett automaton of size
n, for which equivalent nondeterministic hyper-Rabin automata are of size at least 2n/2.

Proof sketch. Consider the family {Dn}n≥1 of DGSWs depicted in Figure 4. We describe 2n

different words, such that Dn accepts each of them, while it rejects each combination of a pair
of them. As a result, we prove that an equivalent NSW needs a unique state for each such word.
Then, by the result that every NHRW can be translated to an NSW with only a quadratic size
blowup, the required lower bound follows.

Complementing deterministic hyper-Rabin and hyper-Streett automata is the same, due to
their duality, which is also the same as translating between them. It can be done with a single
exponential size blowup, using the quadratic translation of hyper-Rabin automata to NSWs,
and the single exponential blowup in determinizing the latter. As a corollary of Theorem 24,
this exponential blowup is inevitable.

Corollary 25. Complementation of deterministic hyper-Rabin and hyper-Streett automata in-
volves a single exponential size blowup.
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Translations
Size Blowup

Deterministic Nondeterministic

From
To

H-Rabin H-Streett H-Rabin H-Streett

Det.
Hyper-Rabin · Exp.

Cor. 25
· O(n2)

Prop.18

Hyper-Streett Exp.
Cor. 25

· Exp.
Thm. 24

·

Non-
Det.

Hyper-Rabin Exp.
Prop. 19

· O(n2)
Prop.18

Hyper-Streett Double-Exp.
Thm. 23

Exp.
Thm. 24

·

Table 3: The size blowup involved in translations between hyper-Rabin/Streett automata. The
translations to and from generalized-Rabin/Streett automata have the same blowup.

Operations

Size Blowup

On Deterministic Automata On Nondet. Automata Nonemptiness

ComplexityUnion Intersect. Complement. Union Intersect. Complement.

Hyper-Rabin

Quadratic

Prop. 16,21

Exp.

Thm. 24,

Cor. 25
Linear

Quad.

Prop.16,21

Exp.

Prop. 19

PTIME-comp.

[22]

Hyper-Streett
Double-Exp.

Thm. 23

NP-Complete

Prop. 22Emerson-Lei No
blowup

Table 4: The size blowup involved in boolean operations on the non-classic word automata, and
the complexity of checking their nonemptiness. The complexity is w.r.t. the automaton size.
Generalized-Rabin/Streett have the same blowup and complexity as hyper-Rabin/Streett.

6 Conclusions

The paper provides a comprehensive picture of ω-regular automata, analyzing and summarizing
the properties of classic and non-classic automata types. Along the way, it completes the data
on the size blowup involved in boolean operations, providing quite a few new results.

The need for various automata types on infinite words is clear from the richness of ω-regular
languages; Each of the classic types has its own good qualities with respect to simplicity,
expressibility, succinctness, complexity of decision problems, and connection to specific logics.
Yet, we show that positive boolean operations on deterministic automata of all of the classic
ω-regular-complete types involve an exponential size blowup. This is not a must for ω-regular-
completeness, as shown in our analysis of stronger, non-classic, types; Generalized- and hyper-
Rabin automata, which may be exponentially more succinct than the classic types, allow for
union and intersection with only a quadratic size blowup, and their nonemptiness check is
in PTIME. This suggests their usefulness in the setting of deterministic automata, which are
essential in the rapidly developing fields of synthesis and probabilistic model-checking.
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