
Computing with Metabolic Machines

Claudio Angione1, Giovanni Carapezza2, Jole Costanza2, Pietro Lió1 and
Giuseppe Nicosia2

1 Computer Laboratory, University of Cambridge - UK
{claudio.angione, pietro.lio}@cl.cam.ac.uk

2 Department of Maths & Computer Science, University of Catania - Italy
{carapezza, costanza, nicosia}@dmi.unict.it

Abstract

If Turing were a first-year graduate student interested in computers, he would probably
migrate into the field of computational biology. During his studies, he presented a work
about a mathematical and computational model of the morphogenesis process, in which
chemical substances react together. Moreover, a protein can be thought of as a compu-
tational element, i.e. a processing unit, able to transform an input into an output signal.
Thus, in a biochemical pathway, an enzyme reads the amount of reactants (substrates)
and converts them in products. In this work, we consider the biochemical pathway in
unicellular organisms (e.g. bacteria) as a living computer, and we are able to program it
in order to obtain desired outputs. The genome sequence is thought of as an executable
code specified by a set of commands in a sort of ad-hoc low-level programming language.
Each combination of genes is coded as a string of bits y ∈ {0, 1}L, each of which represents
a gene set. By turning off a gene set, we turn off the chemical reaction associated with it.
Through an optimal executable code stored in the “memory” of bacteria, we are able to
simultaneously maximise the concentration of two or more metabolites of interest. Finally,
we use the Robustness Analysis and a new Sensitivity Analysis method to investigate both
the fragility of the computation carried out by bacteria and the most important entities in
the mathematical relations used to model them.

1 Introduction: From Turing to Bray

The key role that computation plays in the bio-inspired science was first discovered by Turing
in 1952 [22], who proposed computational processes in the morphogenesis. Turing states that
an organism, most of the time, develops from one pattern into another. In order to follow
this general process without simplifying assumptions (which are often made when conducting
theoretical analyses), one needs not only to have a theoretical approach, but also to treat
particular cases in detail with the aid of a digital computer. According to Bray [3], a single
protein is able to transform one or multiple input signals into an output signal, thus it can be
viewed as a computational or information carrying element. The cellular behaviour, controlled
by complex regulatory circuits, strongly depends on the signal transduction proteins (e.g. N-
WASP and Cdk2 [19]), which integrate multiple input signals responding simultaneously to all
of them [14]. Although DNA computing is a young field of research, it seems that computation
in organisms took place million years ago. Indeed, Landweber and Kari [13] provided a model
to view the unscrambling of genes in ciliates as a computational process. In particular, the
correct gene assembly in ciliates requires the joining of many DNA sequences controlled by
sequence repeats, and this has much in common with the Adleman’s algorithm [1] in graph
theory. Hence, a guided genome recombination system can simulate a Turing Machine (TM),
and therefore a functional macronuclear gene can be viewed as the output of a computation
carried out on the micronuclear sequence [2].

A. Voronkov (ed.), Turing-100 (EPiC Series, vol. 10), pp. 1–15 1

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

Following this line of thought, we provide a framework to show that bacteria could have
computational capability and act as molecular machines. Remarkably, as the biological system
grows larger, reaching the desired multiple input/output performance becomes a difficult task,
thus some sort of machine optimisation is required. To this end, we provide a novel algorithm
called Genetic Design through Multi-Objective optimisation (GDMO), with the aim of pro-
gramming molecular machines to maximise the yield of a desired metabolite. By giving to a
bacterium a certain amount of input metabolites, its metabolism follows a given pattern and
produces output metabolites. Therefore, by changing these input quantities, one could force it
to move to another development pattern [22]. For instance, most bacteria can selectively use
substrates from a mixture of different carbon sources. The presence of preferred carbon sources
prevents the expression, and often also the activity, of catabolic systems that enable the use of
secondary substrates. The ability of bacteria to prefer one carbon source to another is termed
carbon catabolite repression (CCR) [12].

It is well known that a von Neumann architecture is composed of a processing unit, a
control unit, a memory to store both data and instructions, and input-output mechanisms.
The bacterium takes as input chemicals (substrates) necessary for his growth and duplication,
and thanks to its biochemical network (coded by the genes of its genome), produces small
metabolites as output. We show that by providing an analogy between the von Neumann
architecture and a bacterium, its metabolism could be framed as a TM.

Through an effective formalism, we describe the whole behaviour of the bacterial cells in
terms of the von Neumann architecture. In particular, the genome sequence is thought of as
an executable code specified by a set of commands in a sort of ad-hoc low-level programming
language. Each combination of genes is coded as a string of bits y ∈ {0, 1}L, each of which
represents a gene set. By turning off a gene set, we turn off the chemical reactions associated
with it. The memory unit contains the string y, which is a program written in an ad-hoc low-
level programming language. The control unit is a function gΦ that defines a partition of the
string, and is uniquely determined by the pathway-based clustering of the chemical reaction
network. We model the processing unit of the bacterium as the collection of all its chemical
reactions. This way, we associate the chemical reaction network of bacteria with a TM.

By investigating the whole metabolism of bacteria considering pathways of many proteins,
we extend the above mentioned Bray’s idea, i.e. thinking of a protein as a computational ele-
ment. Likewise, the cell as a computational element receives, processes, and responds to inputs
from the environment. However, since the question ‘what does this cell do?’ has often more than
one correct answer, we program molecular machines using GDMO. GDMO acts on the genetic
level of the organism to find which are the genetic strategies in order to obey control signals;
then, it executes the optimisation of multiple biological functions. By exploring effectively the
whole space of gene knockouts, GDMO optimises acetate and succinate production, as well
as other multiple biological functions. In this paper, we test it on the model E. coli iAF1260
and we compare it with state-of-the-art methods, e.g. GDLS, OptFlux, OptGene, Opt-
Knock. Each point of the Pareto front provided by GDMO is a molecular machine to execute
a particular task. Pareto optimality allows to obtain not only a wide range of Pareto optimal
solutions, but also the best trade-off design. Finally, we propose a solution for the problem of
making the sensitivity analysis pathway-dedicated: we develop the Pathway oriented Sensitiv-
ity Analysis (PoSA) to investigate the functional components of the molecular machine and
detect the most sensitive ones. The robustness analysis supports GDMO and PoSA in that it
indicates the components of the molecular machine that are likely to “fail”.

Robust genetic interventions in cells, framed as optimal programs to be run in a molecular
machine, can be exploited to extend and modify the behaviour of cells and cell aggregates. For

2

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

Genome

Input Execution

ProcessingControl

Memory

Processing

OutputInput

Control gΦ(y)
Chemical
reactions
TM

y ∈ {0, 1}L

Metabolites
Input

Metabolites
Output

(a) (b) (c)

Figure 1: Comparison among biological systems (a), von Neumann architecture (b), and bac-
teria (c). The string y is a program stored in the RAM. The function gΦ represents the control
unit: it interprets the binary string y and turns gene sets off. The processing unit is the
metabolism of the bacteria, composed of all the chemical reactions that take place in it. The
goal is to produce desired metabolites as output of the molecular machine.

instance, programs can instruct cells to make logic decisions according to environmental factors
and current cell state. A program embedded in a cell could allow its metabolic network to work
with a specific user-imposed aim. The metodology proposed in this paper aims at addressing
the challenge pointed out by Weiss [23], i.e. to provide a robust computation in cells, with
reliable and reproducible results. This would lead to effectively modify and harness biological
organisms for our purposes.

2 Bacteria as von Neumann architectures

Inspired by Brent and Bruck [4], who studied similarities and differences between biological
systems and von Neumann computers, in Figure 1 we propose a mapping between the von
Neumann architecture and bacteria. This mapping suggests thinking of the metabolism as a
Turing Machine (TM). The bacterium takes as input the substrates required for its growth and,
thanks to its chemical reaction network, produces desired metabolites as output. The string y
acts as a program stored in the RAM.

Let us consider the multiset Y of the bits of y. A partition Π of the multiset Y =
{y1, y2, ..., yL} is a collection {b1, b2, ..., bp} of submultisets of Y that are nonempty, disjoint, and
whose union equals Y . The elements {bs}s=1,...,p of a partition are called blocks. We denote
by P (Y ; p) the set of all partitions of Y with p blocks. P (Y ; p) has a cardinality equal to the
Stirling number, namely |P (Y ; p)| = SL,p [20]. In order to formalise the control unit behaviour,
let us define the function:

gΦ : {0, 1}L −→
⋃

y∈{0,1}L
P (Y ; p)

ȳ ∈ {0, 1}L 7−→ Π ∈ P (Ȳ ; p),

where the partition Π is uniquely determined by the pathway-based subdivision of the chemical
reaction network. This subdivision, in turn, can be formalised as a p-blocks partition Φ of the
set of the bit indexes in the string y. In particular, if we denote by [L] the set of the first L
natural numbers, we have Φ ∈ P ([L] ; p). According to the partition Φ, the control function gΦ

partitions the multiset Y associated with the string y (see Figure 2).

3

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

The function gΦ plays the role of the control unit, since it interprets the binary string y
and turns gene sets on and off, according to the pathway-based partitioning of the reactions
occurring in the bacterium. Each element of the partition Π is the submultiset bs of all the
gene sets that play a role in the reactions belonging to the s-th pathway. In other words, gΦ

turns syntax into semantics. The processing unit of the bacterium could be modelled as the
collection of all its chemical reactions. In this regard, a TM can be associated with the chemical
reaction network of bacteria [11].

Let us consider the Minsky’s register machine (RM), i.e., a finite state machine augmented
with a finite number of registers. Formally, a Minsky machine M = (D, i0, i1, ϕ) is a finite
set D of states, along with a finite set H = {Hr}r of registers, and a multivalued mapping
ϕ : D\{i0} −→ {(Hr, i), (Hr, j, k) | Hr ∈ H, j, k ∈ D}. The set D has two distinguished
elements i0, i1 ∈ D representing the initial state and the halting state respectively. Each
register Hr of the RM holds a non-negative integer. The instruction inc(i, r, j) increments
register r by 1 and causes the machine to move from state i to state j through the mapping
ϕ(i) = j. Conversely, the instruction dec(i, r, j, k), given that Hr > 0, decrements register r by
1 and causes the machine to move from state i to state j (ϕ(i) = j); if Hr = 0, the machine
moves from state i to state k (ϕ(i) = k). The Minsky’s RM has been proven to be equivalent
to the TM [16].

In order to map the chemical reaction network to the RM, we define [11]: (i) the set of state
species {Di}, where each Di is associated with the state i of the RM; (ii) the set of register
species {Hr}, where each Hr is associated with the register r of the RM, and therefore represents
the molecular count of species r. The instruction inc(i, r, j) can be viewed as the chemical
reaction Di → Dj + Hr. The instruction dec(i, r, j, k) can be viewed as either Di + Hr → Dj

or Di → Dk depending on whether Hr > 0 or Hr = 0 respectively. It is noteworthy that the
molecular machine performs the reaction Di → Dk only when there are no molecules of Hr,
since the r-th register cannot be decreased and the reaction Di + Hr → Dj cannot take place
(this is equivalent to the “test for zero” in the RM). In our FBA approach, the variables are the
fluxes of the reactions in the network, therefore a high flux corresponds to both a high rate of
reaction and a high mass of products. Consequently, given the increment reaction inc(i, r, j),
the value of Hr is positively correlated with the reaction flux; conversely, in the decrement
reaction dec(i, r, j, k), when Hr > 0 the value of Hr is negatively correlated with the reaction
flux.

Given a fixed volume V in which the reactions occur, and given two reactions inc and dec
with fluxes v1 and v2 respectively, the metabolism of the bacterium has a probability of error per
step equal to ε = v2/(v1/V +v2). Since it is well known that the simulated TM can be universal,
the mapping between metabolism and TM allows to perform any kind of computation, through
a set of species and chemical reactions characterised by their flux. In principle, this means that
bacteria can carry out at least any computation performed by a computer.

3 Genetic design of (living) computers

In light of the correspondence between bacteria and computers proposed in the previous section,
our aim is to program bacteria to optimise their yield. We program molecular machines using a
novel algorithm called Genetic Design through Multi-Objective optimisation (GDMO), which is
able to process the information, decide and execute. Through a specific optimal code stored in
the “memory” of the organism, we are able to simultaneously maximise the concentration of two
or more metabolites of interest. In particular, GDMO acts on the genetic level of the organism
to find which are the genetic strategies in order to obey control signals; then, it executes the

4

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

y6

y4

y7 y3
y1

y2

y5

yL
Y

b1 b2

b3

bp

y1 y2 y3 y4 y5 y6 y7 yLy

Figure 2: The multiset Y associated with y is partitioned by Π in p blocks. The ele-
ments of Π are submultisets of Y , since y is a string of bits, thus 0 and 1 may occur more
than once in the same subset. In this example, Π = {{y4} , {y1, y6, y2} , . . . , {y5, ..., yL}},
Φ = {{4} , {1, 6, 2} , . . . , {5, ..., L}}

optimisation of multiple biological functions. The molecular machine we take into account is
the Escherichia Coli in the Flux Balance Analysis (FBA) framework. In this context, the
multiple biological functions are represented by desired productions, e.g., vitamins, proteins,
biofuel, antibodies, electron productivity, or the energetic yield of the organism. The genetic
code, i.e. the “computation instructions” given to the machine, is represented by a string of
bits y ∈ {0, 1}L. Each bit in y is a gene set that distinguishes between single and multi-
functional enzymes, isozymes, enzyme complexes and enzyme subunits; this way, it captures
the complexity and diversity of the biological relationships through a Boolean approach.

In the past years, a variety of methods has been implemented based on evolutionary al-
gorithms [9], simulated annealing [10], bi-level optimisation framework [8], and mixed-integer
linear programming (MILP) [5, 18]. All these methods have been tested in FBA organism
machines. However, they require high computational efforts: the execution times grow expo-
nentially [5, 10, 9], or linearly [8] as the number of manipulations allowed in the final designs
increases. Because of the large number of reactions occurring in cellular metabolism, the dimen-
sion of the solution space is very large, and finding genetic manipulations is very expensive. Our
method is able to explore effectively the whole space of knockouts. We tested the performance
of GDMO by optimising acetate, succinate, and other multiple biological functions in E. coli,
iAF1260, and comparing it with state-of-the-art methods.

Additionally, we propose the Pathway oriented Sensitivity Analysis (PoSA), which repre-
sents a solution for the problem of making the sensitivity pathway-dedicated. This method
interrogates the structural components of the machine to reveal the most sensitive ones. PoSA
is able to find the genetic manipulations that have a greater influence on the outputs of the
model. Unlike other Sensitivity Analysis methods applied in biological modelling, such as RoSA
or SoSA (respectively Reactions- and Species- oriented Sensitivity Analysis) whose inputs (re-
actions or species) are valued in a real domain, PoSA is applied when inputs are valued in a
discrete domain Ω. Indeed, each input of the model is represented by a set of binary variables
(bits). PoSA computes two sensitive indices µ* and σ* for each pathway. Large measures of
these indices indicate an input with an important influence on the outputs.

The ability of the molecular machine to adapt to perturbations due to internal or external
agents, aging, temperature, and environmental changes is one of evolutionism guidelines and
should also be a fundamental design principle. By evaluating the fragility of the components of
the metabolic network, e.g. genes, fluxes and reactions, we evaluate the variables and subrou-
tines of the molecular machine that are prone to failure. In fact, we want to assess the ability
of a strain to adapt to small perturbations that can occur at any stage of the biochemical pro-
cesses, within the bacterium or caused by the environment in which it reproduces itself. To this
aim, we perform a statistical post-processing analysis inspired by the well-known robustness

5

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

analysis used in Electronic Design Automation (EDA) ([17]). The local robustness evaluates
genes, fluxes and reactions, and returns a numerical value that indicates their “fragility”, thus
ensuring the robustness of the solutions proposed by GDMO and PoSA.

4 Algorithmic complexity

GDMO is a combinatorial global search method that finds the genetic manipulation strategies
to simultaneously optimise multiple cellular functions (i.e., objective functions) in metabolic
networks. The multi-objective optimisation aims at exploiting the computational capabilities
of bacteria, in order to allow the maximum production of metabolites of practical or industrial
interest. Simultaneous optimisation of multiple objectives differs from single-objective optimi-
sation because the solution is not unique when the objectives are in conflict with each other.
The solution of a multi-objective problem is a potentially infinite set of points, called Pareto
optimal solutions or Pareto front. A point y∗ in the solution space is said to be Pareto optimal
if there does not exist a point y such that Z(y) dominates Z(y∗), where Z is the vector of r
objective functions. The variable space, (i.e., the domain of y) is defined in a binary space.

The method we present implements a genetic algorithm inspired by NSGA-II [6] and is
composed of 4 key steps. We start with the initialisation of the population Pop and the
computation of the fitness score. The population Pop is represented by a I × (L+ F) matrix,
where I is the number of individuals and F is the number of the objective functions. Each
individual represents a feasible solution, composed by the proposed knockout strategy ỹ (L
dimensional) and by the corresponding objective function values. The fitness score is computed
after sorting each individual according to the level of non-domination. Each individual is
assigned a rank, thus between two solutions with differing non-domination ranks we prefer the
point with the lower rank [6]. The individuals of the initial population can be initialised in
different ways: randomly, or assigning present status to all genes, or selecting a set of knocked
out genes.

Successively, three steps are iteratively carried out. In a binary tournament selection process,
two individuals are selected at random, and their fitness is compared. The individual with the
best fitness is selected as a parent. The algorithm selects a number of parents (i.e. the best
individuals) equal to the half of the population. Parents are mutated using a combinatorial
mutation operator convenient to create an offspring population. Mutation represents a switch,
from 0 to 1, or from 1 to 0 for a gene set. The process is randomly executed and for each
parent individual are formed 10 offsprings and only the best is chosen. Mutation can achieve
the maximum knockouts number equal to the parameter C (fixed at 50 by default), as reported
in equation (1). A novel population of size Pop is formed selecting the best individuals from the
parents of the previously generation and the current offspring. Finally, a selection operator is
performed in order to reach the last front. Then, for each generation, Pareto optimal solutions
are provided.

This cycle is repeated until the solutions set does not improve, or until an individual with a
desired phenotype is achieved or when the number of generation is bounded out. The number
of generations D and individuals of population I are parameters chosen by the user. The
time-complexity of the genetic algorithm when the objective number is 2 (e.g., when acetate
production and biomass formation are chosen as objectives), is O(2DI2), where D is the number
of generations and I is the population size.

We tested our method for the genome-scale FBA model of E. coli K-12 MG1655, iAF1260.
This model consists of an m×n stoichiometric matrix S, where m is the number of metabolites
involved in the network, while n is the number of reactions. The (i,j)-th element Sij is the

6

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

stoichiometric coefficient of the i-th metabolite in the j-th reaction. Flux vj through reaction j
is constrained by a lower bound vector vLj and an upper bound vector vUj . In order to allow the
algorithm to work at the genetic level, we used gene-protein-reaction (GPR) mappings. GPR
mappings provide the links between each geneset and the reactions that depend on it, and
defines how certain genetic manipulations affect reactions in the metabolic network. For a set
of L genetic manipulations, the GPR mappings are represented by a L×n matrix G, where the
(l,j)-th element is 1 if the l-th genetic manipulation maps onto reaction j, and is 0 otherwise.
The genetic manipulations are performed by a string of bits represented by the vector y, whose
l-th element yl is equal to 1 if the geneset embroiled in manipulation l is knocked out, and 0
otherwise. This string can be thought of as the program stored in the RAM of the machine. The
multi-objective optimisation is performed to find the program that, running in the molecular
machine, gives the optimal output. We evaluate the value of the objective functions by solving
the following bi-level problem:

maximise c′v

such that

L∑
l=1

yl ≤ C

yl ∈ {0, 1}
maximise f ′v

such that Sv = 0

(1− y)′Gjv
L
j ≤ vj ≤ (1− y)′Gjv

U
j ,

j = 1, . . . , n,

(1)

where f is a vector of weights (n dimensional), and f ′ is its transpose. The elements in fz
are either 0 or 1. fz is equal to 1 if vz is the flux of the natural objective. vz is the core
biomass and is constrained to values greater than 0.05 h−1. vLj and vUj are the lower and upper
bound values (thermodynamic constraints) of the generic flux vj . (In our analysis, we consider
vUj = 100 and vLj = −100 for the fluxes that represent reversible reactions). c is a vector of
weights (n dimensional) associated with the synthetic objectives. The weights cj and ch are
equal to 1, when the synthetic objectives vj and vh have to be maximised. y is the knockout
vector (L dimensional) and contains only 0 when the metabolic network is complete. When yl is
equal to 1, the gene set embroiled in the l-th manipulation is turned off, and the corresponding
reactions are in the absent status (their lower and upper bounds are set to zero). C is an integer
and stands for the maximum number of knockouts allowed. We used the GLPK solver to solve
the problem 1.

4.1 Pathway-oriented Sensitivity Analysis

In PoSA, the knockout vector y used to represent the genetic manipulations is partitioned
in submultisets of bits Y = {b1, b2, . . . , bs, . . . , bp}. Each submultiset bs includes the genetic
manipulations linked to the reactions involved in the s-th metabolic functional pathway of the
network. Each submultiset bs has a length Ws, where Ws < L, s = 1, . . . , p. We clustered in
each submultiset all the genes that are involved in a single functional pathway, e.g. the Citric
Acid Cycle, Oxidative Phosphorylation, Pentose Phosphate Pathway, and so on.

We generated the Gene-Pathway mappings (GP), defined by the p×L matrix P , where the
(s,l)-th element of P is 1 if the l-th genetic manipulation is linked to the reactions involved
in the s-th functional pathway, and 0 otherwise. We also formalised the Reaction-Pathway

7

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

mappings (RP), mathematically described by the p×n matrix R, where the (s,j)-th element of
P is 1 if the j-th reaction is part of the s-th functional pathway, and 0 otherwise. The E. coli
model used for our analysis is partitioned in p = 36 functional pathways. For the combinatorial
problem described above, we defined the “Elementary Effect” [15] for the input bs as:

EEs =

[
f(b1, b2, . . . , bs−1, b̃s, bs+1, . . . , bp)− f(ỹ)

]
∆s

(2)

where b̃s is the mutation on the input bs, and consists of the switch of bits chosen randomly
in bs: if a bit is equal to 0 (or 1), the permutation turns it into 1 (or 0). ∆s is a scale factor
defined as:

∆s =
1

Ws

Ws∑
i=1

b̃s(i), s = 1, . . . , p. (3)

The output f(y) considered in our analysis is the vector v of fluxes. ỹ is the mutation

carried on the knockout vector y defined in the Boolean region of interest Ω = {0, 1}L =
{(y1, . . . , yl, . . . , yL)|yl ∈ {0, 1}}. The pseudo-code in Algorithm 1 and Algorithm 2 explains
the PoSA method in details. The parameters β and K of PoSA establish respectively the al-
lowed knockouts in the whole network and in the pathway bs. In our analysis we chose β = 0.1
(default value), and we recommend to set 0.02 ≤ β ≤ 0.2. K is selected by the user or set by
default to 4.

The distribution of effects EEs is obtained permuting y by randomly sampling KQ points
from Ω and permuting bs by randomly sampling KQN points from Ω. If the procedure was
performed for each input, the result would be a random sample at a total cost of KQ for
calculating f(ỹ) and KQN for f(b1, b2, . . . , b̃s, . . . , bp), with a total cost of pKQ(N+1) evaluates
of function. The estimation of the mean µ* and standard deviation σ* will be used as indicator
of which inputs should be considered important. A large (absolute) measure of central tendency
for EEs indicates an input with an important overall influence on the output. A large measure
of spread indicates an input whose influence is highly dependent on the values of the inputs
[15].

4.2 Robustness Analysis

The basic principle of this analysis is as follows. Firstly, we define the perturbation as a function
τ = γ (Ψ, σ) where γ applies a stochastic noise σ to the system Ψ and generates a trial sample
τ . The γ-function is called γ-perturbation. Without loss of generality, we assume that the noise
is defined by a random distribution. In order to make statistically meaningful the calculation
of robustness, we generate a set T of trial samples τ . Each element τ of the set T is considered
robust to the perturbation, due to stochastic noise σ, for a given property (or metric) φ, if the
following condition is verified:

ρ (Ψ, τ, φ, ε) =

{
1, if |φ (Ψ)− φ (τ) | ≤ ε
0, otherwise

(4)

where Ψ is the reference system, φ is a metric (or property), τ is a trial sample of the set T
and ε is a robustness threshold. The definition of this condition makes no assumptions about
the function φ. It can be anything (not necessarily related to properties or characteristics of
the system); however, it is implicitly assumed that it is quantifiable.

8

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

Algorithm 1 PoSA Algorithm

Require: [f, y,Q,N,K, α, β]
/* f output of the model */
/* y knockout vector */
/* [Q,N,K,α, β] parameters of PoSA*/

1: Given Y = {b1, b2, . . . , bs, . . . , bp}
2: for s← 1 to p do
3: Select the pathway bs

4: for q ← 1 to Q do

5: for α← 1 to K do
/* perform Mutation Operator on y */

6: ỹ(q, α)← Mutation(y, β)

7: for h← 1 to N do
/* perform Mutation Operator on bs */

8: b̃s(α, q, h)← Mutation
(
bs,

α

K

)
/* evaluate scale factor ∆ */

9: ∆s(h, α, q) =

∑
b̃s(α, q, h)

Ws

/* evaluate an Elementary Effect on pathway bs */

10: EEs(h, α, q) =
f(ỹ(i, α))− f(b1, b2, . . . , b̃s, . . . , bp)

∆s(h, α, i)
11: end for
12: end for
13: end for
14: µs* ← mean(EEs) /* evaluate the µs* sensitivity index */
15: σs* ← var(EEs) /* evaluate the σs* sensitivity index */
16: end for
17: return [µ∗ , σ∗]

Algorithm 2 Mutation Operator

Require: [x, a]
/* a ∈ {0, 1} is a real constant and defines the maximum number of mutations in the
Boolean vector x of Wx elements*/

/* Select randomly an integer value A in [1, a ·Mx] */
1: A← random (1, aWx)

/* Select randomly A bits on x vector */
2: ind← random (1,Wx, A)

3: x̃ ← not(x [ind])
4: return x̃

9

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

The robustness of a system Ψ is the number of robust trials of T, with respect to the property
φ, over the total number of trials (|T |). In formal terms:

Γ (Ψ, T, φ, ε) =

∑
τ∈T ρ (Ψ, τ, φ, ε)

|T | (5)

where Γ is a dimensionless quantity that states, in general, the robustness of a system and, in
this case, of a strain.

Γ is a function of ε, so the choice of this parameter is crucial and not a trivial task. Generally,
if a system is robust, all trials must differ the less possible from it. In EDA, designers choose ε
taking into account the manufacturing processes, the physical properties of the materials and
the adherence to the original design. In the area of robust cell design, setting a general and
reasonable threshold has required to perform extensive computational experiments [21]. This
way, we detected 3% of φ(Ψ) for local analysis (local robustness) and 6% of φ(Ψ) for global
analysis (global robustness).

5 Results

In Table 2, we report the genetic strategies obtained by GDLS ([8]), OptFlux ([10]), OptGene
([9]), OptKnock ([5]) and GDMO to optimise succinate and acetate productions in the E. coli
metabolic network. For all methods, we used the E. coli K-12 MG1655 iAF1260 model ([7]),
in anaerobic conditions with 10 mmol h−1 gDW−1 available glucose.

OptKnock ([5]) is a bi-level optimisation framework, that uses CPLEX 7.0 and that makes
inoperative fluxes in order to maximise a specific bioengineering objective as acetate, subject
to the maximisation of a cellular objective (e.g., biomass yield). OptKnock, as OptGene and
OptFlux, does not use the FBA reductions and does not implement the GPR mappings, thus
it identifies and turns off reactions that uncouple the objective functions. We allow at most 50
reaction knockouts. OptFlux and OptGene implement respectively an evolutionary algorithm
and a simulated annealing meta-heuristics, while GDLS employs a local search method through
a principled heuristic approach and integrates the GPR mappings and the FBA reductions.
GDLS, OptGene and OptFlux solutions are extracted by published data in [8].

We run GDMO initialising the E. coli network with an empty set of knockout, i.e., in
wild type configuration, and setting the population size I and the number of generations D as
I = 1000 and D = 1500. Table 2 reports the best solutions obtained by the previously methods
and our proposed solutions. It is clear that GDMO overcomes previous methods, proposing
strategies with a lower knockout cost. In particular, we obtained solutions in terms of succinate
(strain B2, in Table 1) better than the ones achieved by GDLS and OptKnock. Our strategy
achieves a slightly higher biomass turning off only eight genes. As a matter of fact, solutions
of past methods have a high k cost; in particular, OptKnock reaches k cost=54, that is very
hard to reproduce in laboratory. For acetate production, we also show the solution reported in
the third and second last column of Table 2: we are able to find, respectively, a grater level of
biomass and acetate through knockout costs of value 5 and 10.

As regards the Global Robustness of a strain, we performed the perturbation with Gaussian
noise with zero mean and sigma equal to 5% of the perturbed variable. In particular, the
perturbed variables are the upper and lower bounds that regulate the metabolic fluxes. Hence,
a trial τ is created by perturbing each of the upper vUj and lower bounds vLj , j = 1, . . . , n, of the
metabolic flux. After N trials, for each of them we evaluate the property φ(τ) (by flux balance
analysis), which in our case can be the value of acetate, succinate, biomass or a combination

10

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

Table 1: Proposed solutions to maximise acetate (Ac) and succinate (Suc) productions
[mmolh−1 gDW−1]. For each strain we report the biomass formation (Bm) [h−1], the knockout
cost (k cost) and the calculated Robustness indices: the Global index (GR) and the relative
minima of the local robustness results (LR), associated with the related reactions and the cor-
responding genes. For all other fluxes not reported in the Table, we obtained 100% of local
robustness.
Strain Ac Bm k cost GR(%) LR(%) Reaction Gene(s)

A1 19.198 0.052 12 0.43 17.5 D-glucose exchange (Ex-glc)
24.0 Glyceraldehyde-3-phosphate dehydrogenase (GAPD) (b1179)
46.5 Triose-phosphate isomerase (TPI) (b3919)
47.0 Formate C-acetyl transferase (PFL) (b0902) (b0903)

(b2579) (b3114)
(b3951) (b3952)

70.5 Glucose-permease IIA component (GLCptsspp) (b1101) (b2415)
(b2416) (b2417)
(b1621) (b1817)
(b1818) (b1819)
(b2415) (b2416)

A2 19.150 0.053 10 1.75 12.5 D-glucose exchange
14.5 Glyceraldehyde-3-phosphate dehydrogenase (b1179)
43.0 Triose-phosphate isomerase (b3919)
52.5 Formate C-acetyl transferase (b0902) (b0903)

(b2579) (b3114)
(b3951) (b3952)

71.0 Glucose-permease IIA component (b1101) (b2415)
(b2416) (b2417)
(b1621) (b1817)
(b1818) (b1819)
(b2415) (b2416)

A3 18.532 0.096 9 13.55 28.5 D-glucose exchange
47.5 Glyceraldehyde-3-phosphate dehydrogenase (b1179)
72.0 Triose-phosphate isomerase (b3919)
73.0 Formate C-acetyl transferase (b0902) (b0903)

(b2579) (b3114)
(b3951) (b3952)

A4 14.046 0.104 5 43.88 24.5 D-glucose exchange
GDLS 15.914 0.05 14 0.14 0.0 D-glucose exchange
OptKnock 12.565 0.1165 53 49.65 25.5 D-glucose exchange
Strain Suc Bm k cost GR(%) LR(%) Reaction Gene(s)

B1 12.012 0.055 15 16.55 31.5 D-glucose exchange (Ex-glc)
34.0 Glyceraldehyde-3-phosphate dehydrogenase (GAPD) (b1179)
50.0 Triose-phosphate isomerase (TPI) (b3919)

B2 11.530 0.070 10 19.58 28.0 D-glucose exchange
28.0 Glyce1raldehyde-3-phosphate dehydrogenase (b1179)
52.5 Triose-phosphate isomerase (b3919)

B3 10.610 0.087 8 18.99 30.0 D-glucose exchange
32.0 Glyceraldehyde-3-phosphate dehydrogenase (b1179)
47.5 Triose-phosphate isomerase (b3919)

B4 9.284 0.093 5 22.17 18.5 D-glucose exchange
27.0 Glyceraldehyde-3-phosphate dehydrogenase (b1179)
29.0 Triose-phosphate isomerase (b3919)

GDLS 9.727 0.05 26 0.27 0.0 D-glucose exchange
Optknock 9.069 0.1181 54 51.92 32 D-glucose exchange

of them, and then we calculate the function ρ. Once a value of ρ is obtained for each of the
trials, we compute the value of robustness (the function Γ) which, in this case, we call Global
Robustness. The values are shown in Table 1.

Conversely, in the Local Robustness analysis, we perturb again the upper and lower bounds
of a metabolic flux, but in this case we create N trials perturbing a single flux and so we
calculate the robustness for each metabolic flux. The indicative value of the Local Robustness,
which we utilise and show in Table 1, is the absolute minimum of these values. Figure 3
highlights the local robustness results for each flux. Most of them are equal to 100. The values

11

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

Table 2: The table reports the best solutions obtained by OptFlux ([10]), OptGene ([9]), GDLS
([8]), OptKnock ([5]) and our multi-objective optimisation algorithm for maximising acetate
and succinate production [mmolh−1 gdW−1]. The last two rows provide the biomass [h−1] and
the knockout cost (k cost). Details are shown in Table 1.

Wild Type OptFlux OptGene GDLS GDLS OptKnock OptKnock GDMO GDMO GDMO
Acetate 8.30 15.129 15.138 15.914 - - 12.565 13.797 19.150 -

(82.3%) (82.4%) (91.7%) - - (51.4%) (66.20%) (130.7%) -
Succinate 0.077 10.007 9.874 - 9.727 9.069 - - - 10.610

(12877%) (12704%) - (12514%) (12362%) - - - (13659%)
Biomass 0.23 n.a. n.a. 0.0500 0.0500 0.1181 0.1165 0.1296 0.053 0.087

n.a. n.a. (-78.4%) (-78.4%) (-77.9%) (-49.6%) (-43.91%) (-77.10%) (-62%)
k cost n.a. n.a. n.a. 14 26 54 53 5 10 8

 20

 40

 60

 80

 100

Ex glc

GAPD

TPI
PFL

GLCptsspp

Lo
ca

l R
ob

us
tn

es
s

Fluxes

A1
A2
A3
A4

GDLS
OptKnock

Figure 3: Local Robustness with respect to the acetate production metric. Details are shown
in Table 1.

are less than 100 just for a few fluxes, which are shown in Table 1 together with the reactions
and the corresponding genes.

6 Conclusions

In this paper we have highlighted a relationship between the cell and the von Neumann archi-
tecture. In particular, given a Boolean string y (considered as it is stored in the “cell memory”),
a control function gΦ translates and makes use of it to govern the cell metabolism by turning on
and off the gene sets, with the aim of observing the behaviour of the chemical reaction network
and optimising the cell according to multiple objective functions. This relationship is based on
the mapping between the cell metabolism and a RM (equivalent to a TM). Indeed, the reactions
that take place in the cell can be thought of as increment/decrement instructions of the RM,
where the RM registers count the number of molecules of each metabolite.

The methodology we propose allows to optimise simultaneously several biotechnological
targets, i.e. the output of the computation carried out by bacteria. This approach highlights
the complex behaviour that may arise in molecular machines, and hints at future investigation of

12

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

 8

 10

 12

 14

 16

 18

 20

 22

0.05 0.08 0.12 0.16 0.20 0.24

A
ce

ta
te

Biomass

Anaerobic condition
A

 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28

0.05 0.15 0.25 0.35 0.45 0.55 0.65

A
ce

ta
te

Biomass

Aerobic condition
A B

M=1
M=2
M=3
M=4

GDMO

Figure 4: Maximisation of biomass formation and acetate production in anaerobic (A) and
aerobic (B) conditions with glucose uptake rate 10 mmolh−1 gDW−1 in iAF1260. Pareto fronts
obtained by GDMO are in black, and the results obtained by GDLS in red, purple, green and
blue, set with M=1,2,3,4 and k=1,2,3,4 respectively. M and k are parameters of GDLS [8].

 0
 4
 8

 12
 16
 20
 24
 28
 32

0.05 0.15 0.25 0.35 0.45 0.55 0.65

A
ce

ta
te

Biomass

A

O2 = 10, GLC = 10
O2 = 0, GLC = 10
O2 = 10, GLC = 5
O2 = 0, GLC = 5

 0

 4

 8

 12

 16

 20

 24

 28

 0 3 6 9 12 15 18 21

A
ce

ta
te

Number of knockouts

A B

Figure 5: In A the Pareto front obtained maximising biomass [h−1] and acetate production
[mmolh−1 gdW−1] in E. coli model, and in 4 different environmental conditions as reported in
the legend. Figure B shows the number of knockouts associated to acetate production rates.

optimal multi-objective computation in bacteria. All organisms experience oscillating conditions
that range from starvation to food richness. In particular, environmental changes represent the
availability of different sources of food. Therefore, the simultaneous optimisation tells us what
could be the capability of the organism to cope with these changes.
Although the synthetic biology is still in its infancy, we foresee the need to build and optimise
synthetic organisms that produce more than one single product at a time. A program embedded
in a bacterium, whose metabolism works like a TM, could be able to implement the robust
knockout strategy found by GDMO and PoSA. The minimisation of the number of knockouts
ensures a low-effort, reliable and reproducible result, allowing cells to become programmable
manufacturers of biochemical products of interest.

References

[1] L.M. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266(5187):1021–1024, 1994.

13

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250

σ*

µ*

Cofactor and Prosthetic Group Biosynthesis
Methionine Metabolism

Threonine and Lysine Metabolism
Purine and Pyrimidine Biosynthesis

Valine, Leucine, and Isoleucine Metabolism
Tyrosine, Tryptophan, and Phenylalanine Metabolism

Alternate Carbon Metabolism
Nucleotide Salvage Pathway

Cell Envelope Biosynthesis
Inorganic Ion Transport and Metabolism

Arginine and Proline Metabolism
Histidine Metabolism

Citric Acid Cycle
Glycine and Serine Metabolism

Cysteine Metabolism
Glycolysis/Gluconeogenesis

Alanine and Aspartate Metabolism
Membrane Lipid Metabolism

Folate Metabolism
Pentose Phosphate Pathway

Lipopolysaccharide Biosynthesis / Recycling
Anaplerotic Reactions

Transport, Inner Membrane
Glycerophospholipid Metabolism

Oxidative Phosphorylation
ATP maintenance

Murein Biosynthesis
Murein Recycling

Glutamate metabolism
Transport, Outer Membrane

Pyruvate Metabolism
Transport, Outer Membrane Porin

Glyoxylate Metabolism
Methylglyoxal Metabolism

Nitrogen Metabolism
tRNA Charging

Figure 6: Sensitivity index values [µ∗ , σ∗] obtained by PoSA for model of E. coli, iAF1260. The
model is composed by 36 pathways whose reactions are clustered according to their functionality
in the metabolic network.

[2] M. Amos. Cellular Computing. Series in Systems Biology. Oxford University Press, 2004.

[3] D. Bray et al. Protein molecules as computational elements in living cells. Nature, 376(6538):307–
312, 1995.

[4] R. Brent and J. Bruck. 2020 computing: Can computers help to explain biology? Nature,
440(7083):416–417, 2006.

[5] Burgard et al. Optknock: a bilevel programming framework for identifying gene knockout strategies
for microbial strain optimization. Biotechnology and Bioengineering, 84(6):647–657, 2003.

[6] Deb et al. A fast and elitist multiobjective genetic algorithm : NSGA-II. Evolutionary Computa-
tion, IEEE Transactions on, 6(2):182–197, April 2002.

[7] Feist et al. A genome-scale metabolic reconstruction for escherichia coli k-12 mg1655 that accounts
for 1260 orfs and thermodynamic information. Mol Syst Biol, 3(121):291–301, June 2007.

[8] Lun et al. Large-scale identification of genetic design strategies using local search. Mol Syst Biol.,
5(296).

[9] Patil et al. Evolutionary programming as a platform for in silico metabolic engineering. BMC
Bioinformatics, 6(1):308, 2005.

[10] Rocha et al. Natural computation meta-heuristics for the in silico optimization of microbial strains.
BMC Bioinformatics, 9(1):499, 2008.

[11] Soloveichik et al. Computation with finite stochastic chemical reaction networks. Natural Com-
puting, 7(4):615–633, 2008.

[12] B. Görke and J. Stülke. Carbon catabolite repression in bacteria: many ways to make the most
out of nutrients. Nature Reviews Microbiology, 6(8):613–624, 2008.

[13] L.F. Landweber and L. Kari. Universal molecular computation in ciliates. Evolution as Compu-

14

Computing with Metabolic Machines Angione, Carapezza, Costanza, Lió, and Nicosia

tation, pages 257–274, 2003.

[14] W.A. Lim. The modular logic of signaling proteins: building allosteric switches from simple binding
domains. Current opinion in structural biology, 12(1):61–68, 2002.

[15] Morris M.D. Factorial sampling plans for preliminary computational experiments. Technometrics,
33(2):161–175, May 1991.

[16] M.L. Minsky. Computation. Prentice-Hall, 1967.

[17] G. Nicosia, S. Rinaudo, and E. Sciacca. An evolutionary algorithm-based approach to robust analog
circuit design using constrained multi-objective optimization. In Max Bramer, Frans Coenen, and
Miltos Petridis, editors, Research and Development in Intelligent Systems XXIV, pages 7–20.
Springer London, 2008. 10.1007/978-1-84800-094-02.

[18] P. Pharkya and C. Maranas. An optimization framework for identifying reaction activation/inhi-
bition or elimination candidates for overproduction in microbial systems. Metabolic Engineering,
8(1):1–13, January 2006.

[19] K.E. Prehoda and W.A. Lim. How signaling proteins integrate multiple inputs: a comparison of
n-wasp and cdk2. Current opinion in cell biology, 14(2):149–154, 2002.

[20] D. Stanton and D. White. Constructive combinatorics. Springer, 1986.

[21] G. Stracquadanio and G. Nicosia. Computational energy-based redesign of robust proteins. Com-
puters & chemical engineering, 35(3):464–473, 2011.

[22] A.M. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society
of London. Series B, Biological Sciences, 237(641):37–72, 1952.

[23] R. Weiss, T. Knight, and G. Sussman. Cellular computation and communication using engineered
genetic regulatory networks. Cellular computing, pages 120–1, 2001.

15

	Introduction: From Turing to Bray
	Bacteria as von Neumann architectures
	Genetic design of (living) computers
	Algorithmic complexity
	Pathway-oriented Sensitivity Analysis
	Robustness Analysis

	Results
	Conclusions

