
Kalpa Publications in Computing

Volume 5, 2018, Pages 77–92

Automated Formal Methods

The Measurement Library: Representing Physical Types in

PVS ∗

Ashlie B. Hocking and M. Anthony Aiello

Dependable Computing, Charlottesville, VA
ben.hocking@dependablecomputing.com

tony.aiello@dependablecomputing.com

Abstract

Cyber-physical systems model physical phenomena, implicitly or explicitly, in order
to interact with the real world. Representation of physical phenomena, including dimen-
sionality and units, using the PVS type system provides users with the ability to create
specifications that more accurately describe cyber-physical systems. This paper discusses
two related libraries that each present a different approach to providing functionality for
using units in PVS. Objectives in creating the libraries include: soundness, ease of use,
ease of readability, and effect on provability.

1 Introduction

Creating a strong specification of cyber-physical systems is difficult. Correctly describing a
cyber-physical system with a formal specification requires an accurate and consistent represen-
tation of the physical phenomena shared between the system and the real world. Furthermore,
many proofs of properties guaranteed by the specification rely on accurate modeling of these
phenomena. Failing to accurately represent these phenomena invalidates proofs that would
otherwise be sound. These invalid proofs may lead to an inability to detect failures, which may
in turn lead to accidents.

In this paper, we present two approaches to encoding measurements in PVS specifications
that enable first-class representation of physical phenomena using physical types. When we use
the term measurement, we refer to a value and a unit, where units including dimensionality
(e.g., distance vs. time), system of measurement (e.g., metric or imperial), and scaling (e.g.,
km vs. mm). Both approaches are captured in an open-source library, which can be found at
the dcpvslib project on GitHub [5].

Our objectives in creating the library include:

1. Soundness: the library must enable users to detect mistakes, e.g., in unit composition.

2. Readability: the library must enable readers to easily spot mistakes without using the
prover.

∗Approved for Public Release; Distribution Unlimited (Case Number: 88ABW-2017-1472)

N. Shankar and B. Dutertre (eds.), AFM17 (Kalpa Publications in Computing, vol. 5), pp. 77–92

https://github.com/DependableComputing/dcpvslib


The Measurement Library A. B. Hocking and M. A. Aiello

3. Ease of use: the library must make adding measurements easy to use, since ease of use
increases likelihood that the library will be applied.

4. Effect on provability: use of the library must not unduly increase the complexity of
completing proofs.

Designing approaches that represent systems of units while preventing implicit combination
of units from differing systems requires tradeoffs between simplicity and rigor. To explore these
tradeoffs, we have created two different approaches, a system-templated library (Section 4) and
a system-field library (Section 5).

2 Motivating Examples

To support readability and ease of use, we want to be able to write PVS statements such as
those shown in Listing 1.

Listing 1: Motivating PVS snippets

This notation is not only immediately familiar to readers, but also makes it is easy to combine
units. The expressiveness of the PVS type system allows this representation while ensuring
that operations on measurements will be type correct. For example, PVS generates type-
correctness conditions (TCCs) to verify that dividing Newtons by squared centimeters results
in a pressure. Integrating dimensional analysis into type checking is a key feature of this
approach: no additional effort is required on the part of users to ensure that measurements are
handled correctly in their specifications.

Using measurements, we want to prevent certain types of operations that are indicative of
errors. For example, adding meters to centimeters implicitly or combining units from different
systems of measurement implicitly indicates that the specification may be incorrect. Either
operation may be correct, but we require that such operations include explicit steps so that we
can detect errors.

For example, consider a specification (Figure 1) that adds 10 (meters) to 25 (centimeters).
Without explicitly defined units, this yields 35 (something) instead of 10.25 (meters) or 1,025
centimeters. While the addition of these two values makes physical sense, in order to avoid am-
biguity a specification should define how the result should be represented (meters, centimeters,
or something else). An implicit conversion to the specified unit (meters to centimeters or cen-
timeters to meters) could then be assumed by a type-checking library. However, our experience
with creating specifications for Simulink models convinces us that requiring the conversion to
be explicit (e.g., by multiplying 25 centimeters by 1 meter per 100 centimeters) will reduce the
likelihood that mistakes will be made involving units.

Similarly, consider a model of a tank where the height of the liquid in the tank is based on
the tank size and the amount of liquid entering and leaving the tank, as shown in Figure 2.
The PVS specification for this model is shown in Listing 2.

This PVS theory generates no TCCs; it is trivially type consistent. However, if we add units
to this model, as shown in Listing 3 the model generates unprovable TCCs.

78



The Measurement Library A. B. Hocking and M. A. Aiello

25

Twenty-Five
Centimeters

 (cm)

Sum (?)

1
Out (?)

10

Ten Meters
(m)

Figure 1: Attempting to add 10 m and 25 cm in Simulink

Delta
Height

Prelim New
Height

1
Prior Height

2
Flow Rate

3
Delta Time

 > 0

Enforce
Non-Negative0

Zero

1
New Height

Figure 2: Calculating the new fluid height in a tank

The problem with this model is that multiplying the flow rate (volume per second) times the
time (seconds) yields a volume, not a length. For a tank with a cross-sectional area of 1 m2,
the new height can be calculated by adding to the previous height the volume of liquid entering
and the subtracting the volume of liquid leaving. However, the operations in this model do
not yield the correct units. Moreover, if these operations were used without review for a tank
whose cross-sectional area is not 1 m2, the operations would produce entirely incorrect results.

The correct PVS specification for this model, with units, is provided in Listing 4.

Informal representations of units or dimensionality allow the user to detect this kind of
mistake, but require manual verification of the correctness and consistency of measurements.
These informal representations are subject to errors of oversight. For example, consider the
mistake of dividing by a conversion factor when one should be multiplying by a conversion
factor. A careful reader might find this mistake, but a reader who is expecting the formula
to be correct could easily overlook the mistake. Formalization of representations of units and
dimensionality allows these kinds of mistakes to be detected automatically, increasing assurance
that the specification is correct.

3 Methods

Specification of a measurement type should include value, dimensionality, scaling, and system of
measurement. Measurement types should support basic operations (PMDAS — power, multi-

Listing 2: PVS model of tank calculation without units

79



The Measurement Library A. B. Hocking and M. A. Aiello

Listing 3: PVS model of tank calculation with inconsistent units

Listing 4: PVS model of tank calculation with consistent units

plication, division, addition, and subtraction) while preventing invalid operations (e.g., addition
of meters and centimeters).

3.1 Dimensionality

Dimensionality includes those aspects identified by the International System of Units:

• Length

• Mass

• Time

• Electric Current

• Thermodynamic Temperature

• Amount of Substance

• Luminous Intensity

• Angle

The measurement libraries are designed to be extensible: additional dimensionality aspects can
be added as required. Similar to work done elsewhere (see Subsection 6.2), dimensionality can
be thought of as a vector of powers so that length (e.g., 1 m) corresponds to [1, 0, 0, 0, 0, 0, 0, 0]
and speed (e.g., 1 m/s) to [1, 0,−1, 0, 0, 0, 0, 0]. This representation makes operations on mea-
surements straightforward.

80



The Measurement Library A. B. Hocking and M. A. Aiello

3.2 Scaling

Scaling is a conversion factor from an arbitrary scale factor to a base representation. For
example, if meters is the base representation, then centimeters will have a scale factor of 0.01,
so that 10 centimeters = 10 x 0.01 meters. As another example, since watts are defined as kg
* m / s2, if grams, meters, and seconds are used as a base representation, then watts will have
a scale factor of 1,000 and kilowatts will have a scale factor of 1,000,000. Scaling provides two
benefits:

1. a means of discriminating meters (scale = 1) from centimeters (scale = 0.01), and

2. a means of supporting custom measurements, such as RPM per 5 ms [6].

3.3 Operations

3.3.1 Multiplication/Division

Multiplying (dividing) measurement m1 by m2 should return a measurement with the following
properties:

• a value equal to the value of m1 multiplied (divided) by the value of m2,

• dimensions equal to the dimensions of m2 added to (subtracted from) the dimensions of
m1,

• the same system of measurement as m1 and m2, and

• a scale equal to the scale of m1 multiplied (divided) by the scale of m2,.

A precondition of multiplying (dividing) m1 by m2 is that they belong to the same system of
measurement.

3.3.2 Exponentiation

The operation of raising a measurement m to a power p should return a measurement with the
following properties:

• a value equal to the value of m raised to the power p,

• dimensions equal to the dimensions of m multiplied by the power p,

• the same system of measurement as m, and

• a scale equal to the scale of m raised to the power p.

Negative exponentiation should obviously be allowed, for example to support speed (distance
per time). However, less obviously, non-integer exponentiation should also be supported, for
example to support the statcoulomb, which is represented in CGS as cm3/2 g1/2 s−1.

81



The Measurement Library A. B. Hocking and M. A. Aiello

3.3.3 Addition/Subtraction

Adding (subtracting) measurement m1 and m2 should return a measurement with the following
properties:

• a value equal to the value of m2 added to (subtracted from) the value of m1,

• dimensions equal to the dimensions of m1 and m2,

• the same system of measurement as m1 and m2, and

• the same scale as m1 and m2.

Preconditions of adding (subtracting) m1 and m2 are:

• m1 and m2 must have the same dimensions,

• m1 and m2 must have the same system of measurement, and

• m1 and m2 must have the same scale.

3.3.4 Comparisons

Comparing measurement m1 and m2 naturally requires that the two measurements have the
same dimensions. As discussed in Section 2, our goal is to not allow implicit conversions between
units with different scales (e.g., m and cm). To that end, comparisons also require that the
two measurements have the same scale and system of measurement. While we could allow
comparison between measurements with different scales by having the comparison be between
the base values, or the product of the scale and the value, such comparisons would not yield
the same results as the comparisons done within typical model-based development packages or
in typical programming languages (unless explicitly including a package that supports units).
E.g., if a Simulink model compared a constant of 2 m and a constant of 15 cm, it would find
that 15 cm < 2 m, so this is not a comparison we support. Thus, comparisons have the same
preconditions as addition and subtraction. Note that such comparisons can still be made by
performing explicit conversions, so that one could verify that 15 * cm * m / (100 * cm) < 2

* m. Similarly, if one wants to check to see if 10 * m = 1000 * cm, one first needs to explicitly
convert the equality to 10 * m * 100 * cm / m = 1000 cm in order to properly form the
question. As with addition, our goal is to reduce the chances of inadvertently using the wrong
units, and in our experience requiring explicit conversions between units with different scales
(or systems of measurement) is the best way to achieve this.

3.4 System of Measurement

Systems of measurement represent a set of base units, standard combinations of those units,
and rules relating them to each other. The measurement library current supports the SI and
Imperial systems of measurement. Other systems can be added by users.

In this paper, we discuss two approaches to specifying a system of measurement:

1. specify the system of measurement as a template variable to the theory, and

2. specify the system of measurement as a field in the measurement type.

We discuss the advantages and disadvantages of these two approaches in the following sections.

82



The Measurement Library A. B. Hocking and M. A. Aiello

4 System-Templated Library

The system-templated library is parameterized by measurement systems: an enumeration of
METRIC, IMPERIAL, as shown in Listing 5.

Listing 5: Header of the measurement theory in the system-templated library

Within this library a measurement type is defined as shown in Listing 6.

Listing 6: Measurement type in the system-templated library

Units are defined in this library by instantiated versions of templated theories, where different
systems use different scaling factors. For example, the imperial lengths theory is defined in
Listing 7.

Listing 7: The imperial lengths theory

4.1 Predicates

In this approach, the predicates dimension match? and unit match? are required to support
operations on measurements. The dimension match? predicate is shown in Listing 8, and tells
us that two measurements have identical dimensions.

The unit match? predicate, which uses the dimension match? is shown in Listing 9 and
is true when two measurements have the same dimensions and scale.

We also define a comparable? predicate that is identical to the unit match? predicate to
support the comparison operations discussed in Subsection 3.3.4

In addition to the generic predicates defined above, measurement subtypes (e.g., length)
have predicates defined as part of their type definition. For example, the type length is defined
in terms of the predicate length? shown in Listing 10.

83



The Measurement Library A. B. Hocking and M. A. Aiello

Listing 8: Specification of dimension match? predicate

Listing 9: Specification of unit match? predicate

4.2 Operations

4.2.1 Multiplication/Division

Multiplication and division are defined by the rules provided in Subsection 3.3.1. The specifica-
tion of the multiplication operation is shown in Listing 11. Because the system of measurements
is specified as a theory template variable, the precondition that the systems match is not ex-
plicit.

4.2.2 Exponentiation

Exponentiation is defined in terms of multiplication (or division for negative powers). The
specification of the ^ operation is shown in Listing 12. While the function expt only allows
non-negative integers, the ^ operator handles all integers.

Fractional powers can be attained through the use of sqrt, as shown in Listing 13. While
using integer exponentiation and square roots to create units such as the statcoulomb discussed
in Subsection 3.3.2 is somewhat awkward, these units can be defined once and reused with
ease. Currently, the library does not support arbitrary powers (e.g., one-third), but this is only
because there has not yet been a reason to support arbitrary powers.

4.2.3 Addition/Subtraction

Addition and subtraction are defined by the rules provided in Subsection 3.3.3. The specification
of the addition operator is shown in Listing 14. The unit match? predicate is used to guarantee
the precondition requirements for addition that the two measurements have the same dimensions
and scale.

4.2.4 Comparisons

Comparison operations (e.g., <) have the same preconditions as addition/subtraction. For
example, the < operator is defined as shown in Listing 15, where base value is the product of
value and scaling.

Listing 10: Specification of length? predicate

84



The Measurement Library A. B. Hocking and M. A. Aiello

Listing 11: Specification of the multiplication operator

Listing 12: Specification of the ^ operator

4.3 Analysis

Unfortunately, with the system-templated library, it becomes possible to inadvertently combine
units from different systems so that m * ft is valid. One could define a predicate to check for
whether a unit is consistently scaled as a power of ten as shown in Listing 16.

Because imperial units are always defined with a scaling factor that is not a power of ten
(with the exception of units that are system-agnostic such as seconds), measurements that
are metric can be identified by the power of ten measurement? predicate. However, this
predicate will miss certain situations where custom metric units have scaling factors that are
not powers of ten. The decision to use METRIC as a baseline (so that m has a scaling factor of
1 and ft has a scaling factor of 0.3048, for example) instead of IMPERIAL was made primarily
for our preference of the metric system, but is also supported by the potential utility of the
power of ten measurement? predicate.

The system-field library addresses this limitation.

Listing 13: Specification of the sqrt operation

85



The Measurement Library A. B. Hocking and M. A. Aiello

Listing 14: Specification of the addition operator

Listing 15: Specification of the less than operator

5 System-Field Library

The system-field library uses a field to track the system of measurement. In the system-field
library, a measurement type is defined as shown in Listing 17.

In this library, possible values for system enum are NOT APPLICABLE (for dimensionless mea-
surements), ANY (for units that are system agnostic, such as seconds), METRIC, and IMPERIAL.
Units are defined in this library by specifying the appropriate system of measurement (and
scaling where applicable) as shown in Listing 18.

Both meters and other lengths are defined in the lengths theory, with other lengths shown
in Listing 19.

As mentioned previously, some units are defined to be system agnostic, such as s defined in
the times theory and Hz defined in the frequencies theory.

5.1 Predicates

The system-field library requires far more predicates. While the dimension match? predicate
in this library is defined identically to the dimension match? predicate in the system-templated
library, the unit match? predicate requires multiple helper predicates. The explicit system?

predicate is used to separate the METRIC and IMPERIAL explicit systems of measurement from
the NOT APPLICABLE and ANY system enum options. Because the NOT APPLICABLE option is only
valid for dimensionless quantities, not all measurements are valid. The valid measurement?

predicate, shown in Listing 20 is true for valid measurements.

In the system-field library, determining whether two systems “match” is more complicated
than determining if the systems are identical. The system match? predicate shown in Listing 21
is true if two measurements have matching systems.

Note that the system match? predicate is not transitive. For example, if measurement x is
METRIC, measurement y is ANY, and measurement z is IMPERIAL, then system match?(x, y)

is true, and system match?(y, z) is true, but system match?(x, z) is not.

The unit match? predicate is shown in Listing 22.

The preferred system? predicate is used when determining what system of measurement
to use for the result of mathematical operations. For example, if dividing two measurements and
the first measurement is METRIC and the second measurement is ANY, then the first measurement
is the preferred system and the preferred system? predicate will be true.

Listing 16: Specification of the power of ten measurement predicate

86



The Measurement Library A. B. Hocking and M. A. Aiello

Listing 17: Measurement type in the system-field library

Listing 18: Specification of meters

Listing 19: Specification of various length units

Listing 20: Specification of the valid measurement? predicate

Listing 21: Specification of the system match? predicate

Listing 22: Specification of unit match? predicate

Listing 23: Specification of preferred system? predicate

87



The Measurement Library A. B. Hocking and M. A. Aiello

We also define a comparable? predicate that is similar to the unit match? predicate, but
allows zero values to be compared regardless of whether units match.

In addition to the generic predicates defined above, measurement subtypes (e.g., length)
have predicates defined as part of their type definition.

5.2 Operations

5.2.1 Multiplication/Division

Multiplication and division are defined similarly to how they are defined in Subsection 4.2.1.
However, because the system of measurements is specified by a field, the precondition that
the systems match is explicit. The specification of the multiplication operation is shown in
Listing 24. As with addition, the preferred system? predicate is required to ensure that
multiplication is commutative.

Listing 24: Specification of the multiplication operator

5.2.2 Exponentiation

As shown in Listing 25, exponentiation is defined similarly to how it is defined in Subsec-
tion 4.2.2. The primary difference in this library is that the raising a measurement to the zero
power results in a dimensionless quantity with scale and value 1, but with the same system of
measurement as the original measurement. The choice to preserve the system of measurement,
rather than using NOT APPLICABLE or ANY was made for both simplicity of implementation and
ease of use.

5.2.3 Addition/Subtraction

Addition and subtraction are defined similarly to how they are defined in Subsection 4.2.3.
The specification of the addition operator is shown in Listing 26. The preferred system?

predicate is used to determine which system of units the result should be in cases where one of
the measurements is zero-valued and without an explicit system. This predicate is required to
ensure that addition is commutative.

88



The Measurement Library A. B. Hocking and M. A. Aiello

Listing 25: Specification of the ^ operator

Listing 26: Specification of the addition operator

5.2.4 Comparisons

Comparison operations (e.g., <) are defined similarly to how they are defined in Subsection 4.2,
except that these operations rely on the comparable? predicate as defined in this section.

5.3 Analysis

The system-field library prevents accidental mixtures of systems of units (such as befell the
Mars Climate Orbiter [13]). Conversions from one system of units to another require their own
theory and must be explicitly defined as transmutations as shown in Listing 27.

Listing 27: Specification of the transmutation type

A consequence of the system-field library being more rigorous than the system-template
library is that far more TCCs are generated, and these TCCs are often more complex.

6 Discussion

6.1 Comparison of Libraries

The four primary objectives in creating the libraries are:

1. Soundness

2. Ease of use

89



The Measurement Library A. B. Hocking and M. A. Aiello

3. Ease of readability

4. Effect on provability

6.1.1 Soundness

Both libraries are logically sound. However, the system-field library prevents the acciden-
tal combination of systems of units, while the system-templated library does not. Thus, for
specifications where implicit combinations of units from different systems should not be al-
lowed, the system-templated library may allow specifications that violate this requirement. For
specifications where implicit conversions from one system of units to another are allowed, the
system-templated library performs the necessary unit checking to ensure units are consistently
used, since units are defined in this library so that conversions happen automatically per their
scaling field.

6.1.2 Ease of Use and Ease of Readability

Both libraries are virtually identical in terms of ease of use and readability The libraries only
differ in this objective for specifications where different systems of units are combined. In
specifications with mixed systems of units, in the system-field library conversions from one
system to another must be made explicitly, making this library slightly harder to use than the
system-templated library. Which library is more readable for specifications with mixed systems
of units depends on preferences for explicitness or implicitness.

6.1.3 Effect on Provability

In the system-templated library, all measurements are valid and compatible with respect to
multiplication. This results in fewer TCCs and often simpler proofs. While the system-field
library supports rigorous analysis of units and eliminates the possibility of multiplying m * ft,
its use often results in complex type-correctness conditions (TCCs) and increases the difficulty
of proving theorems, compared to the system-templated library. In most cases, these TCCs
are automatically proven by the built-in prover strategies, but occasionally these TCCs must
be manually proven. When TCCs must be manually proven, the proofs are usually simple to
complete, with the (grind) strategy frequently sufficing.

6.2 Related Work

Previous work has been done to use dimensional analysis in specifications, both in Z [3] and
Simulink [9, 11].

In the Z implementation of Hayes and Mahoney [3], a measurement is defined using the
� operator between a value and a unit. To represent a speed of 5 m/s, they would use the
notation 5� L · (T ⇑ −1). Systems of measurement are embedded in the definition of L and T.
Scales are not part of measurement, so the unit mm would be represented as 0.001 � L. This
implementation does not support exponentiation to non-integer values.

In DimSim, dimensions are defined by annotating specific Simulink blocks (e.g., source/sink
blocks) using a form of vector notation [9]. In this notation, a speed measurement would
be annotated with 〈L = 1,M = 0, T = −1〉. The system of measurement is implicit (not
specified), and scaling is not a part of this annotation, so it does not detect mistakes such as
adding centimeters to meters.

90



The Measurement Library A. B. Hocking and M. A. Aiello

SimCheck uses a similar approach to DimSim with annotations being associated with specific
Simulink blocks using a form of vector notation [11]. For example, to indicate that block
RelativeSpeed is a speed, an annotation block would be created in the model containing
the statement unit(RelativeSpeed) = [1, 0, -1, 0, 0, 0, 0]. As with DimSim, the system of
measurement is implicit (not specified), and scaling is not a part of this annotation.

While these approaches are useful, we believe that our approach of indicating a speed of 5
m/s by the notation of 5 ∗m/s is more intuitive to read and write. Our approach also makes
the system of measurement explicit, allowing our libraries to detect mistakes caused by mixing
systems of measurement. Finally, we include a scale factor, so that both cm and m can be used
in a specification and mistakes can be found if the two are used incorrectly.

Dimensional and unit analysis is also supported in a variety of programming languages
(e.g., F# [7], Fortress [1], GHC Haskell [2], and Java [10]). Of particular interest is a prototype
application from Xiang et al. that binds real-world types (including measurements) associated
with cyber-physical systems with the supporting software [12, 8].

7 Conclusion

7.1 Future Work

The two libraries discussed in this paper focus on value, dimensionality, scaling, and system
of measurement. However, there are other properties of physical phenomena that could be
represented, including uncertainty of measurements, latency, and reference frames[4]. Future
work will research means to incorporate additional real-world information into PVS in a manner
that is easy to read, easy to use, and practical for proving important properties in PVS.

7.2 Summary

Mistakes in specifications arising from the improper representation of physical phenomena can
mask fundamental flaws in those specifications. Identifying these mistakes during the specifica-
tion phase of development can reduce the total cost of development. The PVS libraries discussed
here provide a manner to accurately model dimensionality, scaling, and system of measurement
in cyber-physical systems in a manner that is easy to read, easy to use, and without significant
proof overhead. These libraries can be incorporated in automatic translations from Simulink
models into the PVS specification language to allow useful properties to be proven about the
Simulink models[6].

The measurement libraries are part of an open source project that is publicly available on
GitHub at https://github.com/DependableComputing/dcpvslib.

Acknowledgment

The authors thank Toyota InfoTechnology Center, USA and Toyota Motor Corporation for their
support. This work was funded in part by USAF AFLR/RQQA contract FA8650-14-C-2528.

References

[1] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu,
Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund, et al. The fortress language
specification. 2007.

91



The Measurement Library A. B. Hocking and M. A. Aiello

[2] Adam Gundry. A typechecker plugin for units of measure: Domain-specific constraint solving in
ghc haskell. In ACM SIGPLAN Notices, volume 50, pages 11–22. ACM, 2015.

[3] Ian J Hayes and Brendan P Mahony. Using units of measurement in formal specifications. Formal
Aspects of Computing, 7(3):329–347, 1995.

[4] Ashlie B. Hocking. Real-world contracts - rich semantics for formal interfaces, June 2015.

[5] Ashlie B. Hocking. Dependable Computing PVS libraries, 2017.

[6] Ashlie B Hocking, M Anthony Aiello, and John C Knight. Static analysis of physical proper-
ties in Simulink models. In Software Reliability Engineering Workshops (ISSREW), 2015 IEEE
International Symposium on, pages 8–11. IEEE, 2015.

[7] Andrew Kennedy. Types for units-of-measure: Theory and practice. In Central European Func-
tional Programming School, pages 268–305. Springer, 2010.

[8] John Knight, Jian Xiang, and Kevin Sullivan. A rigorous definition of cyber-physical systems.
Trustworthy Cyber-Physical Systems Engineering, page 47, 2016.

[9] Sam Owre, Indranil Saha, and Natarajan Shankar. Automatic dimensional analysis of cyber-
physical systems. In FM 2012: Formal Methods, pages 356–371. Springer, 2012.

[10] JSR-108 project. Unit (Java Units API), 2004.

[11] Pritam Roy and Natarajan Shankar. SimCheck: a contract type system for Simulink. Innovations
in Systems and Software Engineering, 7(2):73–83, 2011.

[12] Jian Xiang, John Knight, and Kevin Sullivan. Real-world types and their application. In Inter-
national Conference on Computer Safety, Reliability and Security (SAFECOMP), 2015.

[13] T. Young, J. Arnold, T. Brackey, M. Carr, D. Dwoyer, R. Fogleman, R. Jacobson, H. Kottler,
P. Lyman, and J. Maguire. Mars Program Independent Assessment Team Report. NASA STI/Re-
con Technical Report N, page 32462, March 2000.

92


	Introduction
	Motivating Examples
	Methods
	Dimensionality
	Scaling
	Operations
	Multiplication/Division
	Exponentiation
	Addition/Subtraction
	Comparisons

	System of Measurement

	System-Templated Library
	Predicates
	Operations
	Multiplication/Division
	Exponentiation
	Addition/Subtraction
	Comparisons

	Analysis

	System-Field Library
	Predicates
	Operations
	Multiplication/Division
	Exponentiation
	Addition/Subtraction
	Comparisons

	Analysis

	Discussion
	Comparison of Libraries
	Soundness
	Ease of Use and Ease of Readability
	Effect on Provability

	Related Work

	Conclusion
	Future Work
	Summary


