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Abstract

Research on iterated belief change has focussed mostly on belief revision, only few
papers have addressed iterated belief contraction. Most prominently, Darwiche and Pearl
published seminal work on iterated belief revision the leading paradigm of which is the
so-called principle of conditional preservation. In this paper, we use this principle in a
thoroughly axiomatized form to develop iterated belief contraction operators for Spohn’s
ranking functions. We show that it allows for setting up constructive approaches to tackling
the problem of how to contract a ranking function by a proposition or a conditional, respec-
tively, and that semantic principles can also be derived from it for the purely qualitative
case.

1 Introduction

AGM belief change [1] deals with the problem of how to change (propositional) beliefs of an
agent in a rational way when the agent gets to know new information. The authors distinguished
between three different forms of belief change: Expansion is the most simple form of belief change
that should be used if the new information does not conflict with previously held beliefs; in this
case, the new information should be simply added to the prior beliefs (under logical closure). In
contrast, revision and contraction affect the prior beliefs. In case of revision, the new information
conflicts with previously held beliefs, so some beliefs have to be given up to allow for the
integration of the new informaion. Contraction means the process of eliminating some prior
beliefs without adopting new beliefs. In the AGM framework, revision and contraction are dual
operations because either one can be defined in terms of the other by the so-called Levi and
Harper identities [9], so one might focus on any of them. As was shown [11], AGM revisions
can be easily obtained by using total preorders on possible worlds in that revised beliefs are
specified by the minimal (i.e., most plausible) models of the new information. However, while
total preorders prove to be crucial ingredients to AGM revision, the revision process just yields
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propositional beliefs as output, hence does not provide a revised preorder for a successive
revision step. In their seminal paper [4], Darwiche and Pearl expanded AGM belief revision
[1] to the level of epistemic states represented by total preorders on possible worlds, thereby
providing a base framework for iterated revision in the sense that the objects of the revision
process are now total preorders so that the outcome of the process is also an epistemic state
which might again be used for revision. They illustrated their approach by using Spohn’s ranking
functions [20, 22] that have become one of the standard frameworks for belief revision.

A bit surprizingly, the work on iterated revision has not initiated similar efforts to come up
with basics for iterated contraction, i.e., contraction of total preorders by propositional beliefs.
Except from few works in the last decade [21, 17, 10, 18],

it was only recently that Konieczny and Pino Pérez [16] proposed a close counterpart to
Darwiche and Pearl’s work [4]. Their main theorem

[16] characterizes iterated contraction in terms of conditions that the total preorders associ-
ated with prior and posterior epistemic states, respectively, should fulfill, very similar to what
Darwiche and Pearl did for iterated revision. However, the principle of conditional preservation
that principally inspired Darwiche and Pearl (beyond AGM’s principle of minimal (proposi-
tional) change) was never mentioned in [16].

Indeed, while the connection between revision of epistemic states Ψ and conditionals (B|A)
representing a plausible rule “If A then usually B” is very obvious thanks to the Ramsey test
[19] – Ψ accepts (B|A) iff Ψ ∗A |= B, where Ψ ∗A is the epistemic state resulting from revising
Ψ by A –, the relevance of conditional beliefs for belief contraction is not so clear at first sight.
But since in the framework of belief revision and nonmonotonic reasoning [8], conditionals are
usually evaluated by considering minimal (i.e., most plausible) models of their antecedent, often
according to total preorders, every change of a total preorder also affects conditional beliefs.
Furthermore, same as for iterated revision, unjustified changes of conditional beliefs should also
be avoided for iterated contraction. While one might consider the conditions in the representa-
tion theorem given by Konieczny and Pino Pérez [16, Theorem 4] as an implicit implementation
of the basic ideas of [4] for iterated contraction, the role of conditional preservation for iterated
contraction is still unexplored.

In this paper, we propose an approach to iterated contraction that makes use of the more
comprehensive axiomatization of the principle of conditional preservation of [13, 14] (which
implies the one of [4]) that can handle revision of so-called conditional valuation functions
by sets of conditional beliefs and therefore provides guidelines for much more complex change
processes than those of plain propositional beliefs. Conditional valuation functions are based on
some quantitative structure for aggregating and comparing beliefs, such as probability functions,
possibility distributions [6], or Spohn’s ranking functions [20, 22]. We choose Spohn’s ranking
functions to elaborate our approach to iterated contraction from the principle of conditional
preservation of [13, 14], and thanks to the generality of that belief change framework, we address
iterated contraction of sets of conditionals right from the start. From this, we obtain results
for iterated contraction of a single conditional, which can also be used to deal with iterated
contraction by a single proposition. This is the context of [16], and here we show that our general
principle of conditional preservation for iterated contraction, elaborated for ranking functions,
provides a base for deriving all axioms that have been proposed for iterated contraction in [16].
More precisely, together with AGM-style postulates and a minor, intuitive postulate for iterated
contraction, all axioms of [16] can be motivated by this fundamental principle.

After briefly fixing required formal preliminaries, we discuss related work on interated belief
change (Sec. 3) and present the basic ideas of belief change under the principle of conditional
preservation (Sec. 4). In Sec. 5 and 6, we address iterated contraction by a single proposition or
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conditional under conditional preservation and prove its properties, and in Sec. 7 we conclude
and point out further work.

2 Formal preliminaries

Let L be a finitely generated propositional language, with atoms a, b, c, . . ., and with formulas
A,B,C, . . .. For conciseness of notation, we will omit the logical and -connector, writing AB
instead of A∧B, and overlining formulas will indicate negation, i.e. A means ¬A. Let Ω denote
the set of possible worlds over L; Ω will be taken here simply as the set of all propositional
interpretations over L. ω |= A means that the propositional formula A ∈ L holds in the possible
world ω ∈ Ω. By slight abuse of notation, we will use ω both for the model and the corresponding
conjunction of all positive or negated atoms. Given a set of possible worlds Ω′ ⊆ Ω, T (Ω′) =
{A ∈ L | ω |= A for all ω ∈ Ω′} denotes the set of formulas which are true in all elements of
Ω′. By introducing a new binary operator |, we obtain the set (L | L) = {(B|A) | A,B ∈ L}
of conditionals over L. (B|A) formalizes “if A then usually B” and establishes a plausible
connection between the antecedent A and the consequent B. Conditionals with tautological
antecedents are taken as plausible statements about the world. Following De Finetti [5], a
conditional (B|A) can be verified (falsified) by a possible world ω iff ω |= AB (ω |= AB). If
ω 6|= A, then we say the conditional is not applicable to ω.

Ordinal conditional functions (OCFs), (also called ranking functions) κ : Ω → N ∪ {∞}
with κ−1(0) 6= ∅, were introduced (in a more general form) first by [20]. They express degrees
of plausibility of propositional formulas A by specifying degrees of disbeliefs of their negations
A. More formally, we have κ(A) := min{κ(ω) | ω |= A}, so that κ(A ∨ B) = min{κ(A), κ(B)}.
Hence, due to κ−1(0) 6= ∅, at least one of κ(A), κ(A) must be 0. With JκK = {ω | κ(ω) = 0},
we denote the minimal models of κ. In this paper, to avoid technical peculiarities, we only
consider OCFs κ : Ω → N within a finite range; an extension of our approach to the general
case is straightforward. A conditional (B|A) is accepted in the epistemic state represented by
κ, written as κ |= (B|A), iff κ(AB) < κ(AB), i.e. iff AB is more plausible than AB.

In more general settings, epistemic states Ψ will be represented by a total preorder �Ψ

on Ω which is most suitable in the context of belief revision (cf. Section 3). In a natural way
�Ψ can be lifted to a total preorder on the set of propositions via A �Ψ B iff there is a
ω1 ∈ Mod (A) such that ω1 �Ψ ω2 for all ω2 ∈ Mod (B). As usual, ω1 ≺Ψ ω2 iff ω1 �Ψ ω2

and not ω2 �Ψ ω, and ω1 =Ψ ω2 iff both ω1 �Ψ ω2 and ω2 �Ψ ω1. Note that also OCFs
κ induce total preorders on Ω via ω1 �κ ω2 iff κ(ω1) 6 κ(ω2), so everything we state on
general epistemic states will apply to OCFs, but OCFs allow for more expressive statements
because of their usage of natural numbers and the corresponding arithmetics. If Ω′ ⊆ Ω, then
min(�Ψ,Ω

′) = {ω1 ∈ Ω′ | ω1 �Ψ ω2 for all ω2 ∈ Ω′} denotes the set of minimal models in
Ω′ under Ψ. If Ω′ = Ω, then we simply write min(�Ψ) instead of min(�Ψ,Ω). If A ∈ L, then
min(�Ψ, A) = min(�Ψ,Mod (A)). The minimal models of an epistemic state form its associated
belief set: Bel (Ψ) = T (min(Ψ)), i.e., the agent believes exactly the propositions that are valid
in all most plausible models. For an OCF κ, we have accordingly Bel (κ) = T (JκK); thus, a
proposition A is believed under κ if κ(A) > 0 (which implies particularly κ(A) = 0).

3 Related work on iterated belief change

AGM theory [1] deals with belief revision in the context of belief sets, i.e., deductively closed sets
of propositions, which are to represent a basic epistemic state. Whatever the type of epistemic
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state is, the question which epistemic structure is needed to guarantee that belief revision
complies with AGM theory has been answered by [11] and [4]: AGM revision of an epistemic
state Ψ can be ensured by assuming that a so-called faithful ranking underlies Ψ such that
the revised beliefs can be computed from minimal models according to the ranking. Here, a
faithful ranking is a total preorder �Ψ on the possible worlds that is assigned to Ψ in such a
way that the minimal models of �Ψ, denoted by min(�Ψ), are precisely the models of the belief
set K = Bel (Ψ) associated with Ψ.

Proposition 1 ([4]). A revision operator ? that assigns a posterior epistemic state Ψ ? A to
a prior state Ψ and a proposition A is an AGM revision operator for epistemic states iff there
exists a faithful preorder �Ψ for an epistemic state Ψ with associated belief set K = Bel (Ψ),
such that for every proposition C it holds that:

K ? C = Bel (Ψ ? C) = T (min(�Ψ, C))

This proposition allows us to study AGM-style revisions by focussing on total preorders. As
pointed out by Darwiche, Pearl and others some of the revisions characterised by Proposition 1
lead to unintuitive results in the case of iterated revision. An iterative revision should fulfill
further postulates, especially those that ensure that the ordering of specific worlds is kept:

Proposition 2 ([4]). Let ? be an AGM revision operator for epistemic states Ψ with corre-
sponding faithful preorder �Ψ. Then ? is an iterative revision operator in the sense of [4] iff for
every proposition C it holds that:

if ω1, ω2 |= C, then ω1 �Ψ ω2 iff ω1 �Ψ?C ω2 (CR1)

if ω1, ω2 |= C, then ω1 �Ψ ω2 iff ω1 �Ψ?C ω2 (CR2)

if ω1 |= C and ω2 |= C, then ω1 ≺Ψ ω2 implies ω1 ≺Ψ?C ω2 (CR3)

if ω1 |= C and ω2 |= C, then ω1 �Ψ ω2 implies ω1 �Ψ?C ω2 (CR4)

This approach by Darwiche and Pearl has been widely accepted, and is the basis for many
results on iterated belief revision. In comparison to iterated belief revision, the case of iterated
belief contraction is less examined. Spohn [21], Hansson [10], Nayak et al. [17, 18], and [2]
consider special aspects of iterated belief contraction, but to the best of our knowledge the recent
paper by Konieczny and Pino Pérez [16] is the only work on propositional iterated contraction
that addresses the general case. Similar to the work of Darwiche and Pearl, Konieczny and Pino
Pérez adapt a set of AGM contraction postulates for the propositional case; these propositional
contraction postulates where proposed by Caridroit, Konieczny and Marquis [3]. We recall the
postulates from Konieczny and Pino Pérez [16], where − is a contraction operator that assigns
a posterior epistemic state Ψ− C to a prior state Ψ and a proposition C:

Bel(Ψ) |= Bel(Ψ− C) (AGMes-1)

If Bel(Ψ) 6|= C, then Bel(Ψ− C) |= Bel(Ψ) (AGMes-2)

If Bel(Ψ− C) |= C, then C ≡ > (AGMes-3)

Bel(Ψ− C) ∧ C |= Bel(Ψ) (AGMes-4)

If C ≡ B, then Bel(Ψ− C) ≡ Bel(Ψ−B) (AGMes-5)

Bel(Ψ− (C ∧B)) |= Bel(Ψ− C) ∨Bel(Ψ−B) (AGMes-6)

If Bel(Ψ− (C ∧B)) 6|= C, then Bel(Ψ− C) |= Bel(Ψ− (C ∧B)) (AGMes-7)

For an explanation of these postulates we refer to the article of Caridroit et al. [3], where
the authors explain the corresponding postulates for AGM contraction on belief sets for the
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propositional case. Konieczny and Pino Pérez give a characterisation theorem for the postulates
(AGMes-1) to (AGMes-7) in terms of faithful rankings [16].

Proposition 3 ([16]). A contraction operator − that assigns a posterior epistemic state Ψ−A
to a prior state Ψ and a proposition A fulfills (AGMes-1) to (AGMes-7) iff there exists a
faithful preorder �Ψ for an epistemic state Ψ such that for every proposition C it holds that
Bel(Ψ−A) = T (min(�Ψ) ∪min(�Ψ,¬C)), i.e.

JΨ−AK = JΨK ∪min(J¬CK,�Ψ) (1)

Proposition 3 makes clear that the (AGMes-) postulates for contraction constrain which
worlds are in the lowest layer, but they do not constrain the ordering of worlds in higher layers.
Similar to the case of iterated revision this is not enough to ensure intuitive iterative belief
contractions. This problem has been addressed in [16] by introducing a set of postulates the
semantic versions of which are shown in the following proposition:

Proposition 4 ([16]). Let − be an AGM contraction operator for epistemic states Ψ with
corresponding faithful preorder �Ψ. Then − is an iterative contraction operator in the sense of
[16] iff for every proposition C it holds that:

if ω1, ω2 |= C, then ω1 �Ψ ω2 iff ω1 �Ψ−C ω2 (IC1)

if ω1, ω2 |= C, then ω1 �Ψ ω2 iff ω1 �Ψ−C ω2 (IC2)

if ω1 |= C and ω2 |= C, then ω1 ≺Ψ ω2 implies ω1 ≺Ψ−C ω2 (IC3)

if ω1 |= C and ω2 |= C, then ω1 �Ψ ω2 implies ω1 �Ψ−C ω2 (IC4)

Among these postulates for Iterated Contraction, the postulates (IC1) and (IC2), called
rigidity conditions in [16] and ordered preservation conditions in [18], ensure that the order of
worlds does not change if they are equivalent in the perspective of contraction. The postulates
(IC3) and (IC4), called non-worsening conditions in [16], enforce that no world that contradicts
the contracted information is getting relatively more plausible after the contraction than a world
that was already more plausible before and does not contradict the contracted information. For
instance, if we contract with a and ab �κ ab holds, then this order has to be kept, i.e. ab �κ−a ab.
Note that (IC1) and (IC2) directly correspond to (CR1) and (CR2), while (IC3) and (IC4) can
be seen as dual variants of (CR3) and (CR4) obtained essentially by exchanging C and C,
reflecting the inverse aim of contraction with respect to revision.

Another approach to epistemic change is developed in [13] where belief change is considered
in a very general and advanced form: Epistemic states are revised by sets of conditionals, thus
exceeding the classical AGM theory and related approaches which only deal with pieces, or sets
of propositional beliefs. In the following, we will elaborate how this aproach can be employed for
iterated contraction of propositions and conditionals, thereby also covering iterated contraction
in the sense of [16].

4 Iterated belief change under the principle of conditional
preservation

The principle of conditional preservation proposed in [14] for iterated conditional revision is an
invariance condition that aims to maintain conditional relationships in the prior epistemic state
if there is no reason to alter them, and any reason for changes must be explained by obvious
differences with respect to the new information. So far, this principle has only been applied
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to revision scenarios, but in fact, preservation of conditional beliefs is a principle for general
epistemic change processes which is as basic as the paradigm of minimal (propositional) change
in the AGM framework. In the following, we formalize the principle of conditional preservation
for general multiple change operators ◦ in the context of Spohn’s ranking functions, carry over
the characterization theorem from [14], and apply this to iterated contractions by single pieces
of conditional information.

The theory of conditional structures [13, 14] provides a suitable basis to axiomatize the
principle of conditional preservation. Conditional structures are kind of footprints that sets of
conditionals leave on possible worlds. They base on the three-valued approach to conditionals by
De Finetti [5], representing verification, falsification, and non-applicability by abstract symbols
that are assigned to conditionals (or propositions) in a general information set. Since different
conditionals are assigned different symbols, each conditional is treated as an independent piece
of information. More formally, let R = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L) be a finite set of
conditionals, and let a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n be distinct algebraic symbols that are used as generators

of a (free abelian1) group [7] FR = 〈a+
1 ,a

−
1 , . . . ,a

+
n ,a

−
n 〉. In short, this group structure provides

us with a multiplication (written as juxtaposition) that we can relate to the summation of κ-
values, and with a neutral element 1 we can use for symbolizing non-applicability. Furthermore,
free abelian ensures a parallel handling of the conditionals (without any order of application
assumed) as well as independence between different conditionals (by forbidding cancellations
between different symbols). For each i, 1 6 i 6 n, we define a function σi = σ(Bi|Ai) : Ω→ FR
by setting

σi(ω) :=


a+
i if ω |= AiBi (verification)

a−i if ω |= AiBi (falsification)
1 if ω |= Ai (non-applicability)

σi(ω) represents the manner in which the conditional (Bi|Ai) applies to the possible world ω.
The function σR : Ω→ FR given by

σR(ω) :=
∏

16i6n

σi(ω) =
∏

16i6n
ω|=AiBi

a+
i

∏
16i6n

ω|=AiBi

a−i

describes the all-over effect of R on ω. Furthermore, σR(ω) is called the conditional structure
of ω with respect to R. Since FR is a free (abelian) group, the conditional structures of worlds
are uniquely determined by their σi-components and hence by their logical relation to each
conditional: For any two worlds ω1, ω2, we have

σR(ω1) = σR(ω2) iff σi(ω1) = σi(ω2) for all i, 1 6 i 6 n. (2)

Conditional structures also work for propositions Ai ≡ (Ai|>) ∈ R. Propositions can only be
verified resp. satisfied, or falsified. There is no non-applicability in this case, so σi(ω) ∈ {a−i ,a

+
i }

for each ω. Nevertheless, conditional structures are helpful to distinguish between the effects of
different pieces of information also in this case.

Example 5 As a running example we use the knowledge baseRpen = {r1, r2, r3} which consists
of conditionals describing our knowledge about penguins. Let Σ = {p, b, f} be the set of atoms
with p meaning “something is a penguin”, b “something is a bird” and f “something is able to
fly”. Then we can model that “birds normally fly” with the conditional r1 = (f |b), “penguins
normally do not fly” with r2 = (f |p) and “penguins are normally birds” with r3 = (b|p).
Assigning symbols a+

i ,a
−
i to any ri, we compute the following conditional structures for some

1Free abelian groups have no relations except for those induced by commutativity.
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of the possible worlds:
σR(pbf) = a+

1 a
−
2 a

+
3 , σR(pb f) = a+

2 a
−
3 , σR(p bf) = 1.

With these notations, the principle of conditional preservation of [14] can be stated concisely
for multiple iterated change operators ◦ that assign a posterior ranking function κ◦R to a prior
ranking function κ and a set R of conditionals, representing the new information:

(PCPocf◦ ) Let ◦ be a change operation on OCFs, and letR = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L)
be a finite set of conditionals. If two multisets of possible worlds Ω = {ω1, . . . , ωm} and
Ω′ = {ω′1, . . . , ω′m} with the same cardinality fulfill

∏m
j=1 σR(ωj) =

∏m
j=1 σR(ω′j), i.e.,

for each conditional (Bi|Ai) in R, Ω and Ω′ show the same number of verifications resp.
falsifications, then prior κ and posterior κ◦ = κ ◦ R are balanced by:

(κ(ω1) + . . .+ κ(ωm))− (κ(ω′1) + . . .+ κ(ω′m))

= (κ◦(ω1) + . . .+ κ◦(ωm))− (κ◦(ω′1) + . . .+ κ◦(ω′m))

Of course, (PCPocf◦ ) requires the ranking framework to provide basic arithmetic features. Nev-
ertheless, in the following, we will consider simple applications of (PCPocf◦ ) to obtain purely
qualitative derivatives of it. First, if |Ω| = |Ω′| = 1, we have the following simple, straightforward
consequence:

(PCP1ocf◦ ) If two possible worlds ω1, ω2 ∈ Ω fulfill σR(ω1) = σR(ω2), i.e., ω1, ω2 verify resp.
falsify exactly the same conditionals in R, then κ◦(ω1)− κ(ω1) = κ◦(ω2)− κ(ω2).

(PCP1ocf◦ ) claims that the amount of change between prior epistemic state κ and the posterior
epistemic state κ◦R = κ◦ depends only on the conditionals in the new information set R, more
precisely, on the conditional structure of the respective world. (PCP1ocf◦ ) can also be written
in the form

κ ◦ R(ω1)− κ ◦ R(ω2) = κ(ω1)− κ(ω2) (3)

and then claims that the epistemic distance between two worlds that behave the same with
respect to the new information R should be kept constant under change. On the qualitative
level, the postulate (PCP1ocf◦ ) implies that ω1 �κ◦R ω2 iff ω1 �κ ω2. Replacing �κ by a more
general faithful ranking of an epistemic state �Ψ yields a qualitative (semantic) principle for
epistemic states Ψ which are specified by a total preorder �Ψ on Ω:

(QPCP1sem◦ ) Let R = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L) be a finite set of conditionals. If
ω1, ω2 ∈ Ω, then σR(ω1) = σR(ω2) implies ω1 �Ψ ω2 iff ω1 �Ψ◦R ω2.

Now, we transfer the characterisation of the change of ranking functions under the principle of
conditional preservation (i.e., in the context of revision by sets of conditionals) from [13] to the
case of multiple conditional change:

Theorem 6. Let R = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L) be a finite set of conditionals, and
let κ ◦ R = κ◦ be a belief change of κ by R. Then this change satisfies (PCPocf◦ ) iff there are
rational2 numbers κ0, γ

+
i , γ

−
i , 1 6 i 6 n such that

κ◦(ω) = κ0 + κ(ω) +
∑

16i6n
ω|=AiBi

γ+
i +

∑
16i6n

ω|=AiBi

γ−i . (4)

Iterated belief change operators of the form (4) are called c-change operators.

2Note that indeed, κ0, γ
+
i , γ

−
i can be rational, but κ◦ has to satisfy the requirements for OCF, in particular,

all κ◦(ω) must be non-negative integers.
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The proof of this theorem is exactly the same as the proof of Theorem 4.6.1 in [13] since no
specific information on the kind of change was used there. γ+

i and γ−i are constants associated
with each conditional affecting verifying and falsifying worlds in a uniform way, and κ0 is a
normalizing constant ensuring that κ◦ is an OCF, i.e. there is at least one world ω such that
κ◦(ω) = 0.

Note that the way the principle of conditional preservation was axiomatized for iterated
revision by sets of conditionals in [13] consists of two independent steps: First, (PCPocf◦ ) was
established for revisions, and afterwards combined with the success condition for revision. Hence,
to obtain a schema for an effective iterated change operator from (4), one has to further impose
a suitable success condition that specifies what the change operator is meant to achieve.

While the general case of this kind of belief change was already examined [14], let us now
focus on revising an OCF κ by a singleton set R = {(B|A)} as a special case of this framework.
Hence the success postulate in this case is κ∗ |= (B|A) with κ∗ = κ ∗ (B|A), which is equivalent
to

κ∗(AB) < κ∗(AB). (5)

In this case combining the principle of conditional preservation represented by equation (4)
with the success postulate given by (5) yields the constraint (see e.g. [15] for details):

γ− − γ+ > κ(AB)− κ(AB) (6)

Given this, we can simplify κ0 from equation (4) to κ0 = −min{γ+ + κ(AB), κ(A)}. Thus,
when specializing Theorem 6 to the case of revision by a single conditional (B|A), equation (4)
simplifies to

κ ∗ (B|A) (ω) = −min{γ+ + κ(AB), κ(A)}+ κ(ω) +


γ+ if ω |= AB

γ− if ω |= AB

0 otherwise

(7)

Obviously, the postulates for conditional revision as elaborated by Kern-Isberner [14] are also
fulfilled by revisions in this special case; a detailed elaboration of the properties of revisions
under the principle of conditional preservation by a single conditional can be found in [12, 15].

5 Iterated contraction by a single proposition resp. con-
ditional

We will now show how we can derive a general approach for iterated contraction operations
from Theorem 6 (Sec. 5.1), refine the general setting to two special cases (Sec. 5.2), and in
Sec. 5.3 we will focus on iterated contraction by a single proposition.

5.1 General case

In the case that we focus on in this paper, ◦ = � is an iterated contraction operator handling a
single piece of conditional information, i.e., R = {(B|A)}, and returning a c-contracted ranking
function κ� = κ�(B|A). Note that this also covers the case of contracting a single proposition A
when A is identified with (A|>). In this setting, success reads κ� 6|= (B|A), which is equivalent
to κ�(AB) 6 κ�(AB). For this case, equation (4) from Theorem 6 reads

κ�(ω) = κ0 + κ(ω) +


γ+ if ω |= AB
γ− if ω |= AB
0 if ω |= A

, (8)
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where the constraint κ�(>) = 0 together with the success condition immediately yields

κ0 = −min{γ− + κ(AB), κ(A)}. (9)

By applying the success condition to (8), we obtain the following crucial condition for the
parameters γ+, γ− to provide successful contraction operators:

γ− − γ+ 6 κ(AB)− κ(AB). (10)

Note the similarities, but also differences between (8), (9), and (10), on the one hand, and (6),
(7) on the other. Summarizing so far, the equations (8), (9), and (10) provide a compact schema
for iterated c-contractions of ranking functions by a conditional (B|A). In dependance of the
parameters γ+, γ−, we obtain a whole family of c-contractions, all respecting the principle of
conditional preservation (PCPocf� ) for iterated contraction.

5.2 Special cases of c-contractions

In the following, we will elaborate on specific iterated c-contraction operators based on the
schema for singleton c-contractions (equation (8) - (10)) which we call type α and type β
c-contractions:

Type α c-contraction: The AB worlds are made more plausible while the AB worlds are not
affected, i.e., γ− 6 0, γ+ = 0. In the following we use κ�α,γ− to indicate a c-contracted

ranking function of type α with a concrete impact value γ−.

Type β c-contraction: The AB worlds are made less plausible while the AB worlds are not
affected, i.e., γ+ > 0, γ− = 0. We use κ�β,γ+ for a c-contracted ranking function of type β

with a specific γ+.

Note that equation (10) immediately yields γ− 6 min{0, κ(AB) − κ(AB)} for type α c-
contractions and γ+ > max{0, κ(AB)− κ(AB)} for type β c-contractions.

A desirable goal for any belief change operator is the minimal change paradigm, meaning
that the beliefs only change as much as necessary. One way of achieving this is by doing nothing
if the success condition is already satisfied, i.e. κ� = κ if κ 6|= (B|A). Another possibility is
to change the beliefs that contradict the new information in a minimal way just so that the
success condition is satisfied. If we look at contractions with minimal change, meaning that |γ+|
and |γ−| are minimal, the constraints for both previously c-contraction types α and β can be
further specified. We will now consider this second approach.

We consider at first type α c-contractions, where we have γ+ = 0. The minimal value for γ−

is then γ−min = min{0, κ(AB)− κ(AB)}. If the conditional is accepted by the ranking function,
i.e. κ |= (B|A), we have κ(AB) − κ(AB) < 0 and hence γ− = κ(AB) − κ(AB). This leads to
the general form of minimal type α c-contractions:

κ�α,min(ω) = −min{κ(AB), κ(A)}+ κ(ω) +

{
κ(AB)− κ(AB) if ω |= AB

0 otherwise
(11)

In the case of κ 6|= (B|A), we get γ− = 0. So in the case of minimal type α c-contractions the
paradigm of minimal change is fulfilled and we have κ�α,min = κ.

Secondly we consider type β c-contractions, where we have γ− = 0 which leads imme-
diately to κ0 = −min{κ(AB), κ(A)}. By choosing the minimal possible change for a type
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ω κ(ω) κ�α,−1(ω) κ�α,−3(ω) κ�β,1(ω) κ�β,3(ω)

b f p 2 1 1 2 2
b f p 0 0 2 0 0

b f p 1 1 3 2 4

b f p 1 1 3 1 1

bf p 4 3 3 4 4

bf p 0 0 2 0 0

b f p 2 2 4 3 5

b f p 0 0 2 0 0

Table 1: Ranking functions for the simple penguin example. The ranking functions are computed
by contracting with (f |p), i.e. κ�α|β,γ+|γ− = κ� (f |p).

β c-contraction we get the constraint γ+
min = max{0, κ(AB) − κ(AB)}, which leads to the

following general form of minimal type β c-contractions by adapting equation (8):

κ�β,min(ω) = −min{κ(AB), κ(A)}+ κ(ω) +

{
κ(AB)− κ(AB) if ω |= AB

0 otherwise
(12)

In the case that the conditional is not accepted by the ranking function, we have γ+ = 0 which
leads to κ0 = 0. With this we get the same equation as for a type α contraction, i.e. we have
κ�β,min = κ.

Example 7 Consider the knowledge base Rpenof Example 5 describing the connection about
penguins and birds. We use the ranking function κ given in Table 1 which gives us κ(pf) = 1
and κ(pf) = 2, so we have κ |= (f |p). Now we want to contract that penguins cannot fly.

If we apply our schema of c-contractions (see equation (8)) to this example, we obtain the
following equation:

κ�α,γ−(ω) = −min{1, γ− + 1, 0}+ κ(ω) +

{
γ− if ω |= pf

0 otherwise
,

with γ− 6 −1. By choosing γ− = −1 we obtain a minimal type α c-contractions. This gives us
the ranking function shown in the third column of Table 1. Furthermore we have the ranking
function for γ− = −3 with κ0 = 2 in the fourth column.

A type β c-contraction makes the worlds ω with ω |= pf less plausible, leading to

κ�β,γ+(ω) = −min{γ+ + 1, 1, 0}+ κ(ω) +

{
γ+ if ω |= pf

0 otherwise
,

with the restriction γ+ > 1. Independent of the choice of γ+ it is always κ0 = 0 for this example.
A minimal change is achieved by choosing γ+ = 1, see fifth column in Table 1. Additionally we
have also the ranking function for γ+ = 3 in the sixth column of the table.

5.3 Iterated contraction by a single proposition

Equation (8) - (10) can be specialized for belief contraction by single propositions by identifying
proposition A with the conditional (A|>). In contrast to contractions with conditionals, there
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are only two options, either a proposition A is true in a world ω or not. For a successful c-
contraction with a proposition A, namely κ � A = κ�, we must have κ� 6|= A. This is the
case if κ�(A) 6 κ�(A) holds. Since κ(A) = 0 or κ(A) = 0 holds for every ranking function
we can conclude that κ�(A) = 0. Transferring (9) to the propositional case, we get κ0 =
−min{γ+ + κ(A), γ− + κ(A)} = −γ− − κ(A). By this, we can obtain a general schema for
contracting by a proposition A:

κ�(ω) = −γ−−κ(A)+κ(ω)+

{
γ+ if ω |= A
γ− if ω |= A

= κ(ω)−κ(A)+

{
γ+ − γ− if ω |= A
0 if ω |= A

, (13)

such that γ− − γ+ 6 κ(A) − κ(A). We call c-contractions of the form (13) propositional c-
contractions. We will now check whether this specialized case fulfills the (AGMes-1) - (AGMes-7)
postulates.

Theorem 8. A propositional c-contraction as defined in (13) fulfills the (AGMes-1) -
(AGMes-7) postulates iff for κ(A) > 0, it has the form

κ�(ω) = κ(ω) +

{
γ+ − γ− if ω |= A with γ+ − γ− > κ(A)− κ(A)
0 if ω |= A

(14)

while for κ(A) = 0, it has the form

κ�(ω) = κ(ω) +

{
0 if ω |= A
−κ(A) if ω |= A

(15)

Proof. For the proof of Theorem 8 we use Proposition 3. A contraction operation satisfies
(AGMes-1) - (AGMes-7) iff (1) holds, so we have to show that the models of the contracted
ranking function Jκ− AK consists of the previous models JκK and the minimal models of J¬AK
regarding the total pre-order �κ. We will show this in two steps: First we prove that (14) and
(15) fulfill (1) and then show that every c-contraction defined by equation (13) that fulfills (1)
is of the form (14) or (15).

If we look at (14), where we have κ(A) > 0, it is possible that the worlds that satisfy A are
changed whereas the rank of the other worlds remain the same. To ensure that it is a successful
c-contraction it is necessary that κ�(A) = 0 holds, which is only possible if κ(A) = 0 holds.
According to (14) we have the constraint γ+ − γ− > −κ(A). If we look at the minimal models
of the contracted ranking function we see that Jκ − AK = min(JAK,�κ) = JκK. So for the first
special form (1) is fulfilled.

Equation (15) describes a c-contraction that moves the worlds of A to the bottom of the
ranking function and do not change the other worlds. So we have κ�(A) = 0 after the contrac-
tion, meaning min(JAK,�κ) ⊆ Jκ−AK. For worlds that satisfy A, we have κ�(ω) = 0 only if the
world had the rank in the original ranking function, i.e. κ(ω) = 0. So in the case that κ(A) = 0
holds, we have Jκ−AK = JκK ∪min(JAK,�κ), so (1) is fulfilled.

We now show that every c-contraction, that is defined by (13) and fulfills Proposition 3,
is of the form (14) or (15). Let κ � A = κ� be such a c-contraction that fulfills (1), i.e.
Jκ−AK = JκK ∪min(JAK,�κ). We have to distinguish between different cases:

case 1: In the first case we have κ(A) = 0, which implies γ− − γ+ 6 −κ(A). There are two
possibilities for a world ω to be an element of the minimal models of κ�, i.e. κ�(ω) = 0:

For the case 1.A we assume ω |= A. Then we have κ(ω) = κ(A) − (γ+ − γ−) 6 κ(A) +
κ(A) − κ(A) = κ(A) 6 κ(ω), which implies κ(ω) = κ(A) and therefore ω ∈ min(JAK,�κ) and
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γ−− γ+ = κ(A)−κ(A). In case 1.B we assume ω |= A, which yields κ(ω) = κ(A), respectively
ω ∈ min(JAK,�κ). If we combine these two cases we get the following equation:

Jκ�K =

{
min(JAK,�κ) ∪min(JAK,�κ) if γ− − γ+ = κ(A)− κ(A)
min(JAK,�κ) if γ− − γ+ < κ(A)− κ(A)

With κ(A) = 0 we have that min(JAK,�κ) ⊆ JκK holds. Assume that γ−−γ+ < κ(A)−κ(A) =
−κ(A). In this case we have with (1) that min(JAK,�κ) = min(JAK,�κ)∪ JκK. From this we can
derive that JκK ⊆ min(JAK,�κ) holds, which is a contradiction to the assumption that κ(A) = 0
holds. So the only possible case left is case 1.A. There we have γ−−γ+ = κ(A)−κ(A) = −κ(A)
and with (1) we can conclude that min(JAK,�κ) ∪ min(JAK,�κ) = min(JAK,�κ) ∪ JκK holds
which leads to min(JAK,�κ) ⊆ JκK. This leads to the following equation for a c-contraction:

κ�(ω) = κ(ω)− κ(A) +

{
κ(A)− κ(A) if ω |= A
0 if ω |= A

= κ(ω)−
{

0 if ω |= A
κ(A) if ω |= A

which corresponds to equation (15).
case 2: In the second case we have κ(A) > 0, which implies κ(A) = 0, JκK = min(JAK,�κ).
This gives us the following equation:

κ�(ω) = κ(ω) +

{
γ+ − γ− if ω |= A with γ− − γ+ 6 κ(A)
0 if ω |= A

(16)

We now want to show that from these constraints we can derive that γ− − γ+ < κ(A) holds.
Assume we have γ− − γ+ = κ(A). Then we have

κ�(ω) = κ(ω) +

{
−κ(A) if ω |= A
0 if ω |= A

(17)

We now want to look further into the minimal models of the contracted ranking function:

κ�(ω) = 0⇔
{
ω |= A : κ(ω) = κ(A) ⇔ ω ∈ min(JAK,�κ)
ω |= A : κ(ω) = 0 ⇔ ω ∈ min(JAK,�κ)

which is equivalent to ω ∈ min(JAK,�κ) ∪ min(JAK,�κ). From this, together with (1), we
can conclude that Jκ�K = min(JAK,�κ) ∪ min(JAK,�κ) = min(JAK,�κ) ∪ JκK holds. We have
κ(A) > 0 and hence JκK = min(JAK,�κ) which gives us min(JAK,�κ) ∩ JκK = ∅ and so (1)
cannot be fulfilled. So we can conclude that γ− − γ+ < κ(A) which gives us equation (14). So
(14) and (15) are the only possible equations for a c-contraction that fulfills Proposition 3.

Note that (15) is a c-contraction in the spirit of the previously defined type α because the
falsifying worlds of A are made more plausible whereas the ranks of the other worlds remain
the same. However, (14) is a c-contraction in the spirit of type β, i.e., making A-worlds less
plausible and not changing the ranks of the other worlds only if γ+ − γ− > 0.

6 Conditional preservation for iterated propositional con-
traction

We will now see that the approach of Konieczny and Pino Pérez [16], namely the axioms (IC1) -
(IC4), can be derived from the principle of conditional preservation, together with (AGMes-1) -
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(AGMes-7) and the following prerequisite that implements the intuition that under contraction
by A, models of A should not be made more plausible:

κ�A(ω) > κ(ω) for all ω |= A. (18)

Theorem 9. The axioms (PCPocf� ), (18), and (AGMes-1) - (AGMes-7) imply the axioms
(IC1) - (IC4) in the context of OCFs. More precisely, (QPCP1sem◦ ) implies the axioms (IC1)

and (IC2) in the context of belief change by a proposition; (PCPocf� ) together with (18) and
(AGMes-1) - (AGMes-7) imply the axioms (IC3) and (IC4).

Proof. We will first show that (QPCP1sem◦ ) ⇒ (IC1) - (IC2) holds. Let ◦ be a belief change
operator for propositions that fulfills (QPCP1sem◦ ). For every proposition A ∈ L and ω1, ω2 ∈ Ω
we know that σR(ω1) = σR(ω2) implies ω1 �Ψ ω2 iff ω1 �Ψ◦R ω2 for R = {(A|>)}. From
σR(ω1) = σR(ω2) we can derive that either ω1, ω2 |= A or ω1, ω2 |= A must hold which
corresponds to the axioms (IC1) and (IC2). Since every (PCPocf◦ ) change is also a (QPCP1sem◦ )
change we obtain the desired result.

Assume that � fulfills (PCPocf◦ ), (AGMes-1) - (AGMes-7) and (18). We will now prove that
� fulfills (IC3) - (IC4) under the given presuppositions. According to Theorem 6 and 8, every

contraction that satisfies (PCPocf� ) and (AGMes-1) - (AGMes-7) has either the form (14) or

the form (15). Let ω1 ∈ JAK, ω2 ∈ JAK and κ� = κ�A. For axiom (IC3) we have to show that
ω1 ≺κ ω2 ⇒ ω1 ≺κ� ω2 holds, and for axiom (IC4) we have to show that ω1 �κ ω2 ⇒ ω1 �κ� ω2

holds. In the context of ranking functions we have ω1 �κ ω2 iff κ(ω1) 6 κ(ω2). We first consider
c-contractions of the form (14) and directly obtain κ�(ω1) < κ�(ω2) iff κ(ω1) < κ(ω2)+γ+−γ−.
Since the prerequisite (18) ensures that γ+ − γ− > 0, we have if κ(ω1) < κ(ω2) holds then also
κ�(ω1) < κ�(ω2). For every c-contraction of the form (15), κ(A) > 0 yields that κ(ω1) < κ(ω2)

implies κ(ω1) − κ(A) < κ(ω2) and hence κ�(ω1) < κ�(ω2). So if we have (PCPocf� ), (18), and
(AGMes-1) - (AGMes-7) we can derive the axiom (IC3). The proof of (IC4) is analogue.

The following proposition is an immediate consequence of Theorem 9:

Proposition 10. Every belief contraction for OCFs that fulfills (PCPocf� ), (18), and
(AGMes-1) - (AGMes-7) also fulfills (IC1) - (IC4).

7 Conclusion and future work

In this paper we showed how the thoroughly axiomatized principle of conditional preservation of
[14] can also be a leading paradigm for iterated contraction, and for iterated change operations
in general. Based on this principle, we proposed a family of iterated contraction operators that
follow the same schema as iterated revisions [14] but are shaped by constraints that implement
success conditions and other goals of contraction. Our approach is compatible with the epistemic
AGM postulates for contraction and further postulates for iterated contraction [16] which are
similar to those of [4] for iterated revision. Even more, we were able to prove that the principle
of conditional preservation together with natural constraints for contractions is powerful enough
to bring forth all advanced postulates of [16]. Moreover, it also provides a schema for multiple
iterated contraction by several propositions and / or conditionals. Elaborating such more general
forms of iterated contraction is part of our ongoing work.
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