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Abstract 

Achieving an optimised management of water supply infrastructures is a very 

important and challenging task, namely in urban environments. The identification and 

prediction of actual water consumption patterns can be exploited to improve the overall 

performance of water supply infrastructures. This work considers the application of 

pattern recognition techniques on water consumption time-series to quantify the time 

distribution of common consumption behaviours in urban environments. Three groups 

representing typical consumption patterns have been considered: one characterised by 

residual consumptions, which occur during the summer months of June and July, while 

the remaining two consist of significant consumption during the day, with differences 

taking place during night periods – the first group, more prevalent during warmer months, 

is represented by higher consumptions during the night, when compared with the second 

group, more representative of colder months, but showing also some expression all year 

round. Results also demonstrate that an automatic categorisation of urban water 

consumptions can be carried out along with the identification of specific time periods in 

which each pattern occurs. 

Keywords: Pattern recognition, time-series clustering, water consumption patterns, 

water management. 

1 Introduction 

Water is the most important natural resource in our planet and a key element to the settlement and 

growth of communities. Water demands are subjected to changes over time, conditioned by factors such 
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as climate and geographical features, social and economic conditions, buildings scattering and 

population density, just to name out a few. 

A proper understanding of water consumption patterns in urban environments is extremely 

important to water supply companies. By characterising consumption patterns, excess water volumes 

retained in reservoirs can be adjusted with both environmental, economic and energetic impacts. The 

current work presents a contribution in water supply management by analysing historic urban water 

consumptions, identifying common consumption behaviours. 

The remainder of this document is organised as follows: Section 2 introduces the problem and the 

used data set. Section 3 discusses the adopted methodology, while Section 4 presents computed 

consumption categories. Finally, Section 5 concludes the document. 

2 Problem and Data Set Description 

In the field of pattern recognition, the task of grouping a set of objects based on their similarity is 

defined as data clustering [1]. In our problem, urban water consumption time-series data collected 

during one civil year, at a 1-minute time interval, was used. 

Determining the most appropriate groups (clusters) and set of techniques for a new problem instance 

is not an easy task, as the same techniques can produce different results when applied on different data. 

In our approach, different techniques were applied at distinct stages of the clustering problem, 

comprising the methodology presented in the next section. 

3 Methodology 

On a global perspective four main steps compose the proposed approach: (a) data pre-processing; 

(b) data representation; (c) data segmentation; and (d) test and validation. Figure 1 presents this 

methodology in an algorithmic structure. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Data Pre-Processing 

Within the scope of the current work, data pre-processing comprises two main subtasks: determining 

the time-series’ unit of analysis and imputing its invalid and missing values. These two subtasks must 

Figure 1: Work Methodology 
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be performed in this order (imputation of time-series can only be conducted after the unit of analysis 

has been computed). 

3.1.1. Unit of Analysis 

When identifying patterns of recurrent behaviour in time-series it is important to determine the 

periods of time with higher contributions to the overall signal. In other words, the most appropriate time 

horizon for clustering must be determined. 

Similar works [2] [3] conduct a Fourier analysis by means of a Fast Fourier Transform (FFT). Thus, 

the FFT was applied to the whole data set, highlighting a frequency approximating the 24h period as 

the (non-zero) frequency with the largest contribution to the signal, suggesting this to be our unit of 

analysis. 

Based on this finding, an aggregation of the time-series values was conducted: objects to be grouped 

consisted in 1-day consumption records, with an interval of 1h. 

3.1.2. Missing and Invalid Data Imputation 

In almost all real-life applications and scenarios, errors in the data collection procedures are likely 

to occur, forcing data analysis and processing methods to address them properly. Substantial research 

has been performed on the topic of missing data imputation, resulting in different methods and 

techniques being proposed and tested in a variety of problems. 

Steffen Moritz et al. [4] studied the application of different missing data imputation methods on 

univariate time-series. In their work, the authors obtained interesting results for approaches exploring 

linear interpolation, ARIMA and SARIMA models and Kalman Filters. 

Alternative techniques can also be considered, ranging from traditional time-series analysis methods 

such as Linear interpolation and autocorrelation and trend analysis [2], to methods such as Artificial 

Neural Networks, Decision Trees, or K-Nearest Neighbours [5] [6]. 

Inspired by the results reported on the literature, an initial study was conducted comparing the 

performance of the following imputation methods: (i) linear interpolation; (ii) ARIMA; and (iii) Kalman 

Filter. Taking into account our unit of analysis, artificial invalid and missing values were injected in 

our data set. Each method was then applied to the individual samples and the correctness of their 

imputations was assessed using the root mean squared error metric. 

Overall, the Kalman Filter provided better estimates than the competing alternatives, leading to 

estimates closer to the real values and also to better estimates in a higher number of days. Considering 

such results, this technique was selected to provide estimates for invalid and missing values in the 

considered data set. 

3.2 Data Representation 

When working with high dimensional data, computational requirements grow both in terms of 

memory and execution time. 

Aghabozorgi et al. [7] points out another motivation for seeking less demanding representations: 

when measuring the distance between raw (high-dimensional) time-series samples, highly unintuitive 

results may be gathered resulting in the clustering of series similar in noise, instead of shape. The 

adopted distance metric also has a high influence on computed clusters. 

Despite their computational burden, raw time-series representations remain quite popular in the 

literature. Dynamic Time Warping (DTW) [8] has strongly contributed for this popularity. Considered 

a more robust distance metric, the DTW has been extensively adopted with this representation. 

Time-series representations based on dimensionality reduction techniques have also been proposed, 

of which Principal Components Analysis (PCA) [2] is an example. In PCA an orthogonal transformation 
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is performed, converting time-dependent observations in a set of values of linearly independent 

variables. By doing such, the temporal sequence of the data is lost and metrics such as the DTW cannot 

be employed. Alternative metrics, such as the Euclidean distance, need to be considered when applying 

these techniques to time-series. 

According to [9], data normalisation techniques must also be carefully chosen. The authors claim 

that when working with raw time-series, performing a Z-Normalisation of the data can significantly 

improve the DTW’s distance computation results. 

Overall, two distinct time-series representation approaches were compared: (i) Raw time-series 

representation, featuring the popular DTW distance metric and a Z-Normalisation; and (ii) 

“Dimensionality-Reduced” time-series representation, obtained by means of PCA, adopting the 

Euclidean distance metric and a Min-Max Normalisation. 

3.3 Data Segmentation 

The choice of segmentation technique to apply in a clustering problem can strongly impact 

computed clusters. It is common to characterise and classify clustering approaches based on how data 

is grouped. Aghabozorgi et al. [7] distinguishes Hierarchical, Partitioning, Model-based, Density-

based, Grid-based, and Multi-step clustering. 

From the literature survey on time-series clustering Hierarchical and Partitioning techniques were 

identified as the most popular choice, with Hierarchical and K-Means Clustering the highlighted 

algorithms of these techniques, often applied together [10]. 

One of the main drawbacks of most time-series clustering techniques is related to the computational 

burden of finding similarities in the data. As the most robust similarity measures rely on a raw 

representation, high computational costs can be expected. 

Motivated by the fact that equally robust and less demanding alternatives to the DTW metric have 

not yet been achieved, researchers have sought to reduce DTW’s computational burden. The TADPole 

[11] algorithm is a popular example, which exploits upper and lower bounds on the DTW to drastically 

reduce the number of computations of this metric. 

Given the dependence of TADPole on the DTW metric, this algorithm requires a raw time-series 

representation. Conversely, algorithms such as Hierarchical and K-Means clustering can be carried out 

on both considered representations. 

Overall, the combination of Hierarchical and K-Means algorithms and the TADPole algorithm were 

applied to our data set, and their segmentation results were compared. 

In the remainder of this subsection, details regarding the implementation and experimental setup of 

these two algorithms are presented. 

3.3.1. Centroid Computation in K-Means 

Besides specifying the target number of clusters, K-Means allows different centroid computation 

methods. A widely used method involves computing, for each dimension, the average of all samples 

assigned to the cluster in question. 

When working with time-series, the average centroid computation method tends to be applied only 

for equal length series and a none-elastic distance metric (such as the Euclidean distance) [1]. 

When considering time-series of different lengths, or when distance metrics of other natures are 

employed (namely the DTW) simply performing the mean of the time-series at each point can fail to 

capture the average shape of all the time-series in a given cluster. As a result, alternative centroid 

computation methods more adequate to these distance metrics have been studied. 

The medoid is a popular alternative to the average method, for raw representations. The medoid of 

the cluster is the sample that minimizes the sum of squared distances to all the other samples within the 
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cluster. However, this method does not appear to be a recurrent choice among researchers when 

dimensionality reduction techniques are adopted. 

A more recent centroid computation method is the DTW Barycenter Averaging (DBA) [12]. This 

method was specified for the DTW metric and is claimed to outperform other centroid computation 

techniques when applied to UCR Archive’s datasets. DBA seeks to minimise the sum of squared DTW 

distances from the average sequence (that is, the centroid) to all the sequences assigned to that group. 

A local optimisation strategy is implemented, with a strong dependency on the initial centroid guess. 

Despite their popularity and documented ability to produce adequate cluster structures, both the 

DBA and medoid centroid computation methods lead to inadequate cluster structures for our 

consumption data set. A graphical evaluation revealed considerably inadequate centroids, poorly related 

to the consumption profiles assigned to each cluster. Such findings were also supported by the 

application of evaluation metrics described in Section 3.4. 

As a result, concerning the centroid computation methods applied in the Hierarchical + K-Means 

combination only the average method was employed, for both raw and PCA representations. 

3.3.2. TADPole 

The TADPole algorithm requires the specification of a window size and a cut-off distance. TADPole 

assesses samples’ similarity by computing the DTW distance in centred windows of a fixed size. 

Upper and lower bounds on the DTW are explored to reduce its computation time and find time-

series with many close neighbours. A cut-off distance is used as a threshold to determine time-series 

neighbours. Time-series that lie in dense areas are taken as the cluster centroids. 

Initial experiments were performed with different values for this threshold, obtaining a value of 1.5. 

A window size of 23 was defined, although further research on this value can be performed. 

3.4 Test and Validation 

Evaluating algorithms’ performance in unsupervised learning problems is a challenging task and is 

still considered an open research problem [1], mostly because of the ambiguity and subjectivity of the 

cluster definition. 

In unsupervised problems evaluation metrics involving internal indexes are applied, with cluster 

quality summarised to a single score without resorting to any labels or ground truth. Several internal 

indexes have been proposed in the literature, with the following being adopted in the current work: 

• Sum of Squared Errors (SSE) [7]. In this context, the error of a sample is its distance to its 

cluster centroids. As clusters are desirably as dense as possible, smaller values of this metric 

suggest a more adequate cluster structure. 

• Average Within-Cluster Sum of Squared Errors (AWCSS) [7]. This metric computes the 

average dissimilarity of samples belonging to the same cluster. Such a metric is necessary for 

the elbow method, a graphical inspection technique used to select the number of clusters for a 

given dataset. 

• Silhouette Coefficient (SC) [13]. SC measures how similar a sample is to others in its own 

cluster in comparison to other clusters. SC takes a value in the range [-1, 1] where values 

closer to 1 suggests more dense and well-separated clusters: 

                                                   𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max {𝑏(𝑖); 𝑎(𝑖)}
                                                          (1) 

• Calinski Harabaz Index (CH) [14], also referred to as the Variance Ratio Criterion (VRC). 

CH is unbounded and best suited for Euclidean distances: higher values of CH signal more 

dense and well-separated clusters: 
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                                                              𝐶𝐻 =  
𝑆𝑆𝐵

𝑆𝑆𝑊

×
(𝑁 − 𝐾)

(𝑘 − 1)
                                                          (2) 

Where 𝑆𝑆𝐵 and 𝑆𝑆𝑊 are the between and within-cluster variances, respectively, 𝑘 is the 

number of clusters and 𝑁 is the number of samples. 

3.5 Experimental Setup 

Figure 2 highlights the representation and segmentation techniques employed in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

4 Results and Discussion 

With respect to data representation and segmentation techniques, the following strategies were 

compared: (i) raw representation and the TADPole algorithm; (ii) raw representation and the 

Hierarchical and K-Means clustering algorithms; and (iii) PCA representation and the Hierarchical and 

K-Means clustering algorithms. 

Despite its lightweight approach, the TADPole algorithm was unable to compute adequate cluster 

structures. Registered SC values were mostly negative or, when positive, very low. Hierarchical and K-

Means clustering algorithms enabled more adequate cluster structures. As a result, Table 1 Evaluation 

of the clusters computed with the Hierarchical and K-Means clustering algorithms. presents the 

evaluation of consumption groups computed with the Hierarchical and K-Means algorithms. 

 
Table 1 Evaluation of the clusters computed with the Hierarchical and K-Means clustering algorithms. 

Data 

Representation 

Number 

Clusters 

SC CH SSE AWCSS 

Time-Series 2 0.855 702.506 2738.524 7.482 

Time-Series 3 0.493 626.264 1279.169 3.495 

Time-Series 4 0.438 452.708 1218.914 3.330 

Time-Series 5 0.330 500.096 792.516 2.165 

Time-Series 6 0.325 390.614 773.739 2.114 

Time-Series 7 0.313 385.900 630.291 1.722 

Time-Series 8 0.314 321.103 639.261 1.747 

PCA 2 0.820 793.033 89.561 0.245 

PCA 3 0.522 736.965 56.257 0.154 

PCA 4 0.601 1351.579 23.333 0.064 

PCA 5 0.601 1210.748 19.748 0.054 

Figure 2: Experimental Setup 
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PCA 6 0.582 1106.588 17.391 0.048 

PCA 7 0.446 1195.557 13.568 0.037 

PCA 8 0.562 983.494 14.072 0.038 

Analysing the elbow plot for the PCA representation, its elbow is located at four clusters. For the 

time-series representation, the elbow appears to be between three and five clusters. A closer analysis of 

the computed consumption groups with both representations revealed that three main consumption 

groups were always being computed: 

• Residual Consumptions, predominant during summer months (June and July), 

characterised by low consumptions throughout the entire day (Figure 3, cluster 0). 

• Intense Consumptions, predominant during warm months (July - September), characterised 

by high consumptions during business hours: 7am – 8pm (Figure 3, cluster 1). 

• Intense Consumptions, predominant during colder months with some expression around 

the year. (Figure 3, cluster 2). 

Despite the similarities between both intense consumption groups, their consumption profiles 

diverge during the night period. Between 3am and 6am lower water consumptions are registered during 

warmer months (Figure 3, cluster 1). The fact that consumption groups with similar profiles were 

obtained for both representations is a relevant result. Even though raw representations are more popular, 

PCA groups sets of few linearly independent variables, resulting in a smaller computation cost. 

 

5 Conclusion 

The current work categorises 1-year of urban domestic water consumptions. Results show that it is 

possible to obtain an automatic identification of recurrent behaviours and pinpoint time-dependent 

patterns on annual time-series. The ability to perform such categorisation is important to water 

companies, enabling them to manage their water supply infrastructures more accurately and efficiently. 

Different techniques were applied to all stages of our clustering problem: data pre-processing, 

representation, segmentation and cluster assessment. Overall, three consumption profiles were 

computed: one representing residual and the remaining two representing intense consumptions, similar 

throughout the day except at night periods. 

On a final remark, further extensions to this work can be considered by adopting nonlinear and more 

robust data representation techniques, as well as density-based segmentation strategies. 

Figure 3 Consumption groups (Time-Series representation and Hierarchical and K-Means combination) 
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