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Abstract 

The dimension design of components in reinforced concrete frame structures 

heavily relies on engineering experience and iterative calculations, leading to 

significant inefficiencies. Existing intelligent design methods struggle to conduct 

component size design because it is challenging to accurately and densely represent 

information such as component layout, dimensions, and design conditions. This study 

proposes a method for intelligent component size design based on feature space for 

accurate and dense representation of design information, as well as a diffusion design 

process constrained by multi-channel masks. Firstly, the method substitutes the feature 

space for the traditional RGB space to represent component layout, dimensions, and 

design conditions, thereby enhancing data representation and neural network learning 

capabilities. Secondly, the study introduces an image-guided diffusion model with 

multi-channel mask tensors, and the corresponding training method is derived. 

Experimental results demonstrate that this model exhibits strong feature extraction 

capabilities and performs well in component dimension design tasks. Lastly, the study 

discusses the impact of parameters such as multi-channel masks and different dataset 

construction methods on the final prediction results. 

1 Introduction 

Reinforced concrete (RC) frame structures are widely used in modern structural engineering, with 

the design of sectional dimensions being of significant importance for ensuring structural safety, cost-

effectiveness, and environmental sustainability (Zhang et al., 2024). However, the traditional design 

process typically relies on the experience of structural engineers, leading to a high level of 

subjectivity and uncertainty in the design outcomes (Qin et al., 2024; Liao et al., 2024). 

Kalpa Publications in Computing

Volume 22, 2025, Pages 292–301

Proceedings of The Sixth International Confer-
ence on Civil and Building Engineering Informatics

I. Hkust, J. Cheng and Y. Yantao (eds.), ICCBEI 2025 (Kalpa Publications in Computing, vol. 22),
pp. 292–301



Traditional intelligent design methods for frame structure component dimension mainly consist of 

various optimization methods. Heuristic algorithms, such as genetic algorithms (Mariniello et al., 

2022; Trapani et al., 2022; Xu and Gong, 2001), simulated annealing (Li et al., 2010), particle swarm 

optimization, artificial bee colony algorithm (Kaveh et al., 2020), are widely used in the optimization 

of RC frame component dimensions. These traditional optimization methods, especially in the 

application of complex structural design, are constrained by the design space scale and solution 

efficiency (Chang and Cheng, 2020). For example, heuristic algorithm-based optimization methods, 

while capable of providing effective solutions in certain scenarios, come with a significant 

computational burden, making it challenging to meet the design requirements of large RC frame 

structures (Peng et al., 2021). Additionally, the complexity of RC structures lies in the interactions 

between components and load effects, leading to highly nonlinear and coupled features in the design 

space (Trapani et al., 2022). The layout and section design of beams, columns, and slabs must 

comprehensively consider the influence of seismic loads, vertical loads, and other external factors (Xu 

et al., 2018). These complexities further compound the challenges posed by traditional design 

methods. 

The emergence of models such as Generative Adversarial Networks (GANs) and Graph Neural 

Networks (GNNs) has introduced new methods for automated and efficient structural design. These 

algorithms, which learn from existing design drawings, can capture implicit knowledge in structural 

design. In comparison to traditional optimization algorithms, they have demonstrated significant 

improvements in both computational efficiency and design rationality. In recent years, the Diffusion 

Model has garnered attention in the field of structural engineering as an emerging generative model. 

The Diffusion Model operates by simulating data from high noise to low noise in a reverse process to 

gradually produce high-quality images (Ho et al., 2020). However, existing studies have primarily 

concentrated on shear wall layout design. To the best of the authors’ knowledge, there is currently no 

method available for the dimension design of RC frame components based on the Diffusion Model. 

In conclusion, the optimization of the dimension design of RC frame components encounters 

challenges stemming from the highly nonlinear space of traditional methods, the fitting limitations of 

GNN, and the sparse feature representation in GAN and Diffusion Models. Building on these 

identified challenges, this study seeks to investigate the utilization of the Diffusion Model in the 

dimension design of RC frame components. Through the integration of multi-channel masks, a design 

method is proposed that densely considers the features of beam, slab, and column components. 

Specifically, the contributions of this study include the following points: 

a) A dimension design method for RC frame components based on the Diffusion Model is 

proposed, which enhances the model’s accuracy by introducing multi-channel masks. 

b) A dataset construction method suitable for the dimension design of RC frame components is 

developed, taking into account story-related features such as story height and building-related features 

such as seismic design acceleration, and integrating multi-standard story information for the Diffusion 

Model learning. 

The subsequent organization of this paper is as follows: Section 2 will provide an overview of the 

overall methodology, Section 3 will detail the construction method of the dataset; Section 4 will 

introduce the model architecture and its implementation details; Section 5 will discuss the impact of 

various factors on the generation effectiveness of the Diffusion Model. Finally, Section 6 will present 

the conclusion of this study. 
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2  The Diffusion-based Component Dimension Design Method 

for RC Frame Structures 

 
Figure 1: Diffusion-based design method for component size of RC frame structures. (a) dataset generation, (b) 

multi-mask diffusion model training, and (c) multi-mask diffusion model application. 

 

This study introduces a dimension prediction method for RC frame components based on the 

diffusion process, named Frame-dimension-diffusion. As illustrated in Figure 1, the proposed method 

comprises three main components: (a) dataset generation, (b) multi-mask diffusion model training, 

and (c) multi-mask diffusion model application. 

(a) Dataset generation (Figure 1(a)): A novel representation method for RC frame structures is 

introduced in this section to align with the input and output requirements of the diffusion model. In 

this study, the RC frame structure is represented layer by layer as images, with each image containing 

multiple channels representing information on component dimensions, layout, or design conditions. 

Based on the proposed structural representation method, this study extensively explores dataset 

construction, the incorporation of design conditions, and techniques for data augmentation, as 

outlined in Section 3. 

(b) Multi-mask diffusion model training (Figure 1(b)): Gu et al. (2024) introduced a mask-based 

shear wall generation model, Struct-diffusion, which improved the density of shear wall structure data 

representation in images. This study extends the concept by proposing a diffusion model 

incorporating multi-channel masks. This approach mitigates the challenge of inadequate prediction 

performance for components with limited pixel proportions. The specific training process of the 
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diffusion model will be presented in Section 4, with the benefits of the multi-channel masks discussed 

in Section 5. 

(c) Multi-mask diffusion model application (Figure 1(c)): Based on the training method outlined 

above, a dimension design model for RC frame components is obtained, enabling a more precise 

generation of RC frame component dimensions. The process for predicting the dimensions of frame 

components through the model is depicted in Figure 1(c). The detailed inference process of the 

diffusion model will be presented in Section 4. 

3 Dataset Generation 

The architectural design information of frame structures can be conveniently processed into 

structured data (Chang and Cheng, 2020). The utilization of text-prompt methods may not provide 

direct guidance and can result in redundant information. Therefore, this study adopts an image-prompt 

method to guide the diffusion process (Gu et al., 2024). Moreover, the generation strategy of Stable 

Diffusion mainly focuses on producing the complete image (Rombach et al., 2022). However, in 

practice, the pixel count occupied by frame columns and beams is considerably smaller than the total 

pixel count in the image (O(1)<<O(N) << O(N2), where N represents the number of pixels on the 

longer side of the image). Therefore, using the full-image generation approach directly would result in 

significant inefficiency and could introduce biases during neural network training. Additionally, 

unlike the shear wall design task in Struct-diffusion, there are notable variations in the number of 

pixels occupied by beams, columns, and slabs. Therefore, a tailored multi-channel mask method 

needs to be devised. Based on the above content, this section will delve into the dataset construction 

method. 

3.1 Method of Dataset Construction 

Each standard story is regarded as a data point for analysis in this study. For each story, the 

method shown in Figure 2, as recommended by Han et al. (2024), was employed to encode features in 

the feature space and alleviate the impact of erroneous priors on the model. This study categorizes 

features into two groups: story-related features, demonstrated in Figure 2(a), and building-related 

features, illustrated in Figure 2(b). Story-related features may vary between different standard stories, 

such as the dimensions of beams, columns, and slabs, the arrangement of beams, columns, and slabs, 

loads on slabs, story heights, story numbers, etc. Building-related features, on the other hand, remain 

consistent within the same building, such as the total number of stories in the building, seismic design 

acceleration, characteristic period of the site, frame seismic resistance grade, etc. 

The specific method entails transforming the current dimensions of frame components into 

pixelated story plans. In this study, the image pixels are configured at 256 × 256, with a scaling ratio 

of 1 px = 300 mm between the image and the drawings. Due to the small dimension of most 

components after scaling by this ratio, which is not conducive for AI training, all columns are denoted 

by 3 × 3 pixel rectangles, while beams are fixed as 1-pixel-wide rectangles. It is crucial to highlight 

that adjusting the 1 px = 300 mm scale ratio does not significantly affect this study, as it does not 

pertain to layout design. The key criterion is ensuring each component can be distinctly identified on 

the drawing. 

After converting into pixelated story plans, dimension information is allocated to the component 

locations channel by channel, constructing the corresponding tensors. Figure 2(a) illustrates an 

example within a 3 × 3 pixel range. Here, column lx signifies the column width in the x-direction 

(measured in mm), while column ly denotes the column width in the y-direction (measured in mm). It 

is essential to clarify that in this study, the x and y directions do not align with the strong and weak 

axes of the structure but rather with the local coordinate system of the columns. For non-rectangular 
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columns like circular or pentagonal columns, are approximated as rectangular columns following 

engineering conventions. The interpretations of beam height, beam width, and slab thickness tensors 

are self-evident. The column mask, beam mask, and slab mask indicate the positions of columns, 

beams, and slabs, where a value of 1 signifies the presence of the corresponding component at that 

pixel point, while 0 denotes absence. The load tensor embodies the building loads, with values 

sourced from the Load Code for the Design of Building Structures (MOHURD, 2012). Scalar values 

such as story height and story number in Figure 2(a), as well as concrete material grade, total number 

of stories in the building, seismic design acceleration, characteristic period of site, and frame seismic 

resistance grade in Figure 2(b), which are independent of component positions, are directly expanded 

into 256 × 256 tensors. These tensors collectively constitute the feature tensors delineating the RC 

frame structure. 

 

 
Figure 2: Representation of RC frame structures. (a) feature of the stories, and (b) feature of the building. 

3.2 Data Augmentation 

The dataset utilized in this study is an enhanced version of the dataset introduced by Qin et al. 

(2024). The dataset comprises 109 buildings, with a total of 380 standard stories. The dataset is 

segmented into training, validation, and testing sets, with the precise allocation detailed in Table 1. To 

avert data leakage, the standard stories of the test buildings in dataset are ensured to be excluded from 

the training or validation sets. 

Table 1: Dataset split 

Type Datasets size 

Train & Validation (K-fold) 362 
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To address the limited number of training samples about the parameters of the diffusion model, 

data augmentation methods were also incorporated in this study to increase the amount of training 

data. The data augmentation techniques employed primarily encompass horizontal flipping, vertical 

flipping, and translation transformations to maintain the features of the training samples. By utilizing 

data augmentation techniques (Shorten and Khoshgoftaar, 2019), a training and validation dataset that 

is 196 times larger than the original dimension ( = 4 × 7 × 7) was generated. This is beneficial for the 

training of the diffusion model. 

4 The Architecture of the Neural Network Model 

4.1 The Derivation of the Image-prompt Diffusion Model with Multi-

mask Tensor 

The diffusion model primarily consists of a forward diffusion process and a reverse denoising 

process. As Equation 1, the forward diffusion process is a Markov process where Gaussian noise is 

added at each step (Ho et al., 2020): 

𝑞(𝑦𝑡|𝑦𝑡−1) = 𝒩(𝑦𝑡; √1 − 𝛽𝑡𝑦𝑡−1, 𝛽𝑡𝐼), 𝑞(𝑦1:𝑇|𝑦0) = ∏ 𝑞(𝑦𝑡|𝑦𝑡−1)

𝑇

𝑡=1

 (1) 

where 𝛽𝑡 are hyperparameters of the noise schedule, 𝑦𝑡 are input tensor in time t, t=0, 1, 2, 3, …, T, 

T is the time steps of the diffusion model, 𝑞(𝑥|𝑦) means the conditional probability distribution of x 

given y, 𝒩(𝑥; 𝜇; 𝜎2𝐼)  means a multivariate normal distribution with a vector mean of 𝜇  and a 

covariance matrix of 𝜎2𝐼. In this study, T=2000, and the noise schedule is linear, which means that 𝛽𝑡 

varied linearly from 0.000001 to 0.01 (Dhariwal and Nichol, 2021). When 𝑡 = 𝑇 , there is no 

distinction between 𝑦𝑇 and Gaussian noise. It is noteworthy that we can obtain the Equation 2: 

𝑞(𝑦𝑡|𝑦0) = 𝒩(𝑦𝑡; √ 𝛼̅𝑡𝑦0, (1 − 𝛼̅𝑡)𝐼) (2) 

where 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼̅𝑡 = ∏ 𝛼𝑖
𝑡
𝑖=1 . 𝛼̅𝑡 actually measures the noise level, meaning that a smaller 𝛼̅𝑡 

indicates that the image contains more noise. Ho et al. (2020) show a closed form of the posterier 

distribution of 𝑦𝑡−1 given (𝑦0, 𝑦𝑡) as 

𝑞(𝑦𝑡−1|𝑦0, 𝑦𝑡) = 𝒩 (𝑦𝑡−1;
√𝛼𝑡(1 − 𝛼̅𝑡−1)

1 − 𝛼̅𝑡
𝑦𝑡 +

√𝛼̅𝑡−1

1 − 𝛼̅𝑡
𝛽𝑡𝑦0,

1 − 𝛼̅𝑡−1

1 − 𝛼̅𝑡
𝛽𝑡𝐼) . (3) 

Based on the work of Gu et al. (2024) and Ho et al. (2020), this study additionally incorporates a 

multi-mask tensor. Given a noisy tensor 𝑦̃𝑡 = 𝑦̃𝑏ℎ,𝑡 ⊕ 𝑦̃𝑏𝑤,𝑡 ⊕ 𝑦̃𝑐𝑥,𝑡 ⊕ 𝑦̃𝑐𝑦,𝑡 ⊕ 𝑦̃𝑠𝑡,𝑡: 

𝑦̃𝑘,𝑡 = (√𝛼̅𝑡𝑦𝑘,0 + √1 − 𝛼̅𝑡𝜀𝑘,𝑡) ⊙ 𝑦𝑘_𝑚𝑎𝑠𝑘 + 𝑦0 ⊙ (1 − 𝑦𝑘_𝑚𝑎𝑠𝑘), 𝜀𝑘,𝑡 ∼ 𝒩(0, 𝐼), 𝑘 

∈ {𝑏ℎ, 𝑏𝑤, 𝑐𝑥, 𝑐𝑦, 𝑠𝑡};  
𝑦𝑏ℎ_𝑚𝑎𝑠𝑘 = 𝑦𝑏𝑤_𝑚𝑎𝑠𝑘 = 𝑦𝑏𝑒𝑎𝑚_𝑚𝑎𝑠𝑘;  𝑦𝑐𝑥_𝑚𝑎𝑠𝑘 = 𝑦𝑐𝑦_𝑚𝑎𝑠𝑘 = 𝑦𝑐𝑜𝑙𝑢𝑚𝑛_𝑚𝑎𝑠𝑘; 𝑦𝑠𝑡_𝑚𝑎𝑠𝑘

= 𝑦𝑠𝑙𝑎𝑏_𝑚𝑎𝑠𝑘 

(4) 

where 𝑦̃𝑏ℎ,𝑡  means beam height channel of noisy tensor 𝑦̃𝑡 . 𝑏𝑤  means beam width, 𝑐𝑥  means 

column lx, 𝑐𝑦 means column ly, and 𝑠𝑡 means slab thickness, ⊕ means concatenate operator. We 

denote 𝑦𝑚𝑎𝑠𝑘 = 𝑦𝑏𝑒𝑎𝑚_𝑚𝑎𝑠𝑘 ⊕ 𝑦𝑏𝑒𝑎𝑚_𝑚𝑎𝑠𝑘 ⊕ 𝑦𝑐𝑜𝑙𝑢𝑚𝑛_𝑚𝑎𝑠𝑘 ⊕ 𝑦𝑐𝑜𝑙𝑢𝑚𝑛_𝑚𝑎𝑠𝑘 ⊕ 𝑦𝑠𝑙𝑎𝑏_𝑚𝑎𝑠𝑘 . The goal 

is to recover the target tensor 𝑦0 ⊙ 𝑦𝑚𝑎𝑠𝑘 , where ⊙ is the hadamard product operator. A neural 

network 𝑀𝜃(𝑦𝑐𝑜𝑛𝑑 , 𝑦̃𝑡 , 𝛼̅𝑡) can be constructed, which takes condition tensor 𝑦𝑐𝑜𝑛𝑑, input tensor with 

noise 𝑦̃𝑡 and noise level  𝛼̅𝑡 as input and fits the noise vector 𝜀 by optimizing the objective 

𝔼(𝑦0,𝑦𝑐𝑜𝑛𝑑,𝑦𝑚𝑎𝑠𝑘) 𝔼𝛼̅,𝜀[‖(𝑀𝜃(𝑦𝑐𝑜𝑛𝑑 , 𝑦̃𝑡 , 𝛼̅𝑡) − 𝜀𝑡) ⊙ 𝑦𝑚𝑎𝑠𝑘‖𝑝
𝑝

]. (5) 

Based on this, the process of training the denoising diffusion model can be obtained, as outlined in 

Table 2. The inference process is the same as Struct-diffusion. 
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Table 2: The process of denoising diffusion model training and inference 

Algorithm 1 Training 

1: repeat 

2:   𝑦𝑐𝑜𝑛𝑑 , 𝑦0, 𝑦𝑚𝑎𝑠𝑘 ∼ 𝑞(𝑦𝑐𝑜𝑛𝑑 , 𝑦0, 𝑦𝑚𝑎𝑠𝑘) 

3:   𝑡 ∼ Uniform({1, … , 𝑇}) 

4:   𝜀 ∼ 𝒩(0, 𝐼) 

5:   Take gradient descent step on 

     ∇𝜃‖(𝑀𝜃(𝑦𝑐𝑜𝑛𝑑 , (√𝛼̅𝑡𝑦0 + √1 − 𝛼̅𝑡𝜀) ⊙ 𝑦𝑚𝑎𝑠𝑘 + 𝑦0 ⊙ (1 − 𝑦𝑚𝑎𝑠𝑘), 𝛼̅𝑡) − 𝜀𝑡) ⊙ 𝑦𝑚𝑎𝑠𝑘‖
2
 

6: until converged 

 

Algorithm 2 Inference 

1: 𝑧 ∼ 𝒩(0, 𝐼)   
2: 𝑦̂𝑇 ← 𝑧 ⊙ 𝑦𝑚𝑎𝑠𝑘 + 𝑦0 ⊙ (1 − 𝑦𝑚𝑎𝑠𝑘)  

3: for 𝑡 = 𝑇, … , 1 do 

4:   𝑧 ∼ 𝒩(0, 𝐼) if 𝑡 > 1, else 𝑧 = 0 

5:   𝑦̂𝑡−1 ← (
1

√𝛼𝑡
(𝑦̂𝑡 −

1−𝛼𝑡

√1−𝛼̅𝑡
𝑀𝜃(𝑦𝑐𝑜𝑛𝑑 , 𝑦̂𝑡 , 𝛼̅𝑡)) + √𝛽𝑡𝑧) ⊙ 𝑦𝑚𝑎𝑠𝑘 + 𝑦0 ⊙ (1 − 𝑦𝑚𝑎𝑠𝑘) 

6: end for 

7: return 𝑦̂0 

 

It is worth noting that when 𝑦𝑏𝑒𝑎𝑚_𝑚𝑎𝑠𝑘 = 𝑦𝑐𝑜𝑙𝑢𝑚𝑛_𝑚𝑎𝑠𝑘 = 𝑦𝑠𝑙𝑎𝑏_𝑚𝑎𝑠𝑘 = 𝑦𝑚𝑎𝑠𝑘 , this method 

degenerates to Struct-diffusion. In this study, we consider 𝑦′𝑏𝑒𝑎𝑚_𝑚𝑎𝑠𝑘 = 𝑦′𝑐𝑜𝑙𝑢𝑚𝑛_𝑚𝑎𝑠𝑘 =
𝑦′𝑠𝑙𝑎𝑏_𝑚𝑎𝑠𝑘 = 𝑦𝑏𝑒𝑎𝑚_𝑚𝑎𝑠𝑘 | 𝑦𝑐𝑜𝑙𝑢𝑚𝑛_𝑚𝑎𝑠𝑘 | 𝑦𝑠𝑙𝑎𝑏_𝑚𝑎𝑠𝑘  as a single mask scenario, where 

𝑦𝑏𝑒𝑎𝑚_𝑚𝑎𝑠𝑘 , 𝑦𝑐𝑜𝑙𝑢𝑚𝑛_𝑚𝑎𝑠𝑘 , 𝑦𝑠𝑙𝑎𝑏_𝑚𝑎𝑠𝑘 represent the layout of beams, columns, and slabs obtained in 

Section 3.1. 

4.2 Training Details 

This study employed a U-Net network with an attention mechanism and temporal encoding 

(Dhariwal and Nichol, 2021) as the denoising model. To investigate the impact of the various factors 

mentioned above on the model results, this study conducted two sets of training. The specific training 

IDs and corresponding model parameters can be found in Table 3. In the table, the ID column 

represents the name of the trained model. The ID names are designated based on the presence of 

multi-channel masks. For example, for model with multi-channel masks, the model ID is labeled as M. 

Here, “M” stands for Multi-mask, and “S” stands for Single-mask. The term Epoch denotes the 

number of training cycles, whereas Epoch 21600 signifies a total of 21600 training cycles. The Seed 

indicates the chosen random seed, which controls processes such as neural network weight 

initialization and Gaussian noise sampling. If the random seeds are the same, it indicates identical 

outcomes for these processes. It is crucial to mention that each set of training has three random seeds, 

indicating that each set underwent three training runs to reduce the impact of random errors on the 

research conclusions. The Training hours column represents the total training time. Further 

explanations on Mask type is provided in Section 4.1. 

Table 3: Training details 

ID Epoch Seed Training hours Mask type 

S 6400 42, 88, 8888 58.30 Single 

M 11200 42, 88, 8888 110.00 Multi 
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The training strategy for the aforementioned experiments was consistently maintained, wherein 

the models were trained with a learning rate of 5 × 10-5 following optimization of other 

hyperparameters. Mean square error calculation was employed for both training and validation 

processes. Validation error assessment occurred every 200 Epochs, and training concluded after 30 

consecutive validations without enhancement. The model with the minimal validation error was 

chosen for prediction and subsequent metric computations. Furthermore, to ensure model 

reproducibility, the random seed specified in Table 3 governed the model’s random initialization, 

irrespective of the dataset splitting methodology. To ensure equitable comparisons, the dataset-

splitting method remained uniform. Table 3 also presents the training duration of the models (on a 

single GPU, measured in hours). The computing platform configuration included OS: Ubuntu 22.04 

LTS; CPU: Intel Xeon E5-2682 v4 @ 64x 3GHz; RAM: 32GB; GPU: NVIDIA GeForce RTX 3090 

24GB. 

5 Discussion 

5.1 Evaluation Metrics and Postprocessing 

Following the methodology proposed by Qin et al. (2024), this study employed the Root Mean 

Square Error (RMSE) metric for evaluation. The metric calculates the root mean square error between 

the results obtained from the diffusion model design and the engineering design (Ground Truth, GT). 

The reason for choosing this metric is that it maintains the same units as the original data, allowing 

for a direct assessment of the variability in the corresponding predicted results. In this study, we 

primarily compared the RMSE values for beam height, beam width, column length in the x-direction, 

column length in the y-direction, and slab thickness. It is noteworthy that in practical design, the 

modulus is often applied. For instance, if the designed beam width is 195mm, it might be rounded up 

to 200mm. Typically, the modulus for beams and columns is 50mm, while for slabs, it is 20mm. 

For the predictions produced by the diffusion model, the average value of the respective channel 

for each component was extracted to acquire the dimensional details of that component. Subsequently, 

by consolidating all the dimensional information of the building, the RMSE was computed as the 

evaluation metric in this study. Hence, the RMSE is component-centric rather than pixel-centric, 

aligning with real-world applications. 

5.2 Test Results 

Using the RMSE metric provided in Section 5.1, the two sets of models shown in Table 3 were 

tested, and Table 4 presents the average performance of these models on the prediction dataset. Each 

column in the table represents the model’s ID, as well as the RMSE values for beam width, beam 

height, column length in the x-direction, column length in the y-direction, and slab thickness, all 

measured in millimeters. 

Table 4: RMSE error on the Test dataset (unit: mm) 

ID Beam height Beam width Column lx Column ly Slab thickness 

S 152.0696 44.4171 122.5505 128.0622 13.5619 

M 114.3256* 32.4199* 62.6379* 76.3565* 13.3414* 

 

Comparing the results of IDs S with M, it can be observed that the multi-channel masks 

outperform the single-channel masks. In the case of column and beam channels, the absence of multi-

channel masks leads to a high number of zero values, significantly surpassing the valid values. This 

scenario can mislead the neural network during backpropagation, as it may predict the positions 
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directly as zeros, thereby causing larger prediction errors. Additionally, it is noticeable that the 

improvement in prediction errors for slabs is relatively minor compared to beams and columns, which 

aligns with the aforementioned discussion. 

5.3 Summary 

This section analyzed the impact of various factors on the results generated by the diffusion model. 

Among them, the model utilizing multi-channel masks achieved the best performance. Furthermore, 

the top-performing model had all dimension predictions within two modulus, except for beam height 

prediction which was within three modulus. It can be concluded that this method is suitable for 

predicting the dimension of RC frame components. 

6 Conclusion 

This study introduces a novel diffusion model-based approach for predicting component 

dimensions in RC frame structures, effectively addressing the limitations of traditional heuristic 

methods and GAN-based approaches in capturing the nonlinear and coupled features of structural 

design. By integrating multi-channel masking, the proposed Frame-dimension-diffusion model offers 

a more robust and precise prediction of beam, column, and slab dimensions. The principal 

contributions of this research are as follows: 

(a) A novel framework based on diffusion models has been developed specifically to predict the 

component dimensions of RC frames. This approach leverages advanced generative modeling 

techniques inherent to diffusion processes, enabling more precise estimations of component 

dimensions. 

(b) The framework incorporates multi-channel masks to improve feature representation for 

individual components. By applying this technique, the model achieves higher density and accuracy 

in capturing the nuanced features of RC frame components. 

(c) A novel dataset construction methodology is proposed, capturing key characteristics of 

standard stories and building seismic conditions, thereby enhancing the training process and efficacy 

of the diffusion model. 

The findings indicate that the Frame-dimension-diffusion model is capable of generating 

component dimensions that comply with engineering standards, exhibiting reduced prediction error. 

Future research should focus on improving model efficiency through advanced architectural 

techniques, such as model distillation, and incorporating spatial layout information to extend the 

diffusion model’s applicability to more complex structural design scenarios. 
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