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Abstract: To address the industry-wide and policy-driven requirements toward construction site safety 
monitoring, this paper develops a virtual assistant agent based on a large vision-language model (VLM), 
integrated into on-site surveillance camera system for real-time identification and alerting of unsafe 
worker behaviors. First, we designed a semi-automatic image-text labeling pipeline, employing in-
context learning to enhance data annotation efficiency. Then, we established a two-stage curriculum 
learning paradigm to deeply embed construction domain knowledge into the VLM, which is eventually 
embedded into a real-time video analytical engine for safety compliance inspection and interactive 
visual question answering. The system has been deployed on a real construction site, with around 90% 
accuracy in identifying violations of work-at-height safety regulations. 
 
Keywords: Construction Site Safety Monitoring, Data-Efficient Fine-tuning Strategy, Domain-
Tailored Large Vision-Language Model, Multi-modal Safety Compliance Checking, Virtual 
Construction Safety Assistant 
 
1. INTRODUCTION 

The construction sector is recognized as one of the most dangerous sectors worldwide, with a 
history of high accident and casualty rates. From 2013 to 2019, the construction sector in Hong Kong 
has consistently recorded the highest death rates compared to the other 14 primary industry sectors 
(Labour Department, 2018, 2019). Similarly, in 2019, the United States reported that approximately 
20% of work-related deaths took place at construction sites (Occupational Safety and Health 
Administration, 2019). Many of the casualties are related to non-compliance with construction safety 
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rules. Construction sites are characterized by safety risks that arise from complex interactions between 
numerous workers and machinery. To prevent safety risks and serious injuries, it is crucial to detect and 
analyze any unsafe practices among workers in real-time. This can involve monitoring workers’ activity 
on-site and ensuring they’re complying with the safety rules. Traditional site safety monitoring mainly 
involves regular on-site safety inspection by management personnel and safety inspectors, which is 
labor-intensive and easily leads to overlooking unsafe behavior. In recent years, analyzing construction 
images or videos by computer vision (CV)-based deep learning (DL) methods have been widely studied 
for identifying unsafe construction objects and behavior (Cheng et al., 2022), issuing real-time alerts or 
more in-depth safety analyses. 

However, existing CV-based safety analysis characterized by Convolutional Neural Network 
(CNN) models has been faced with several problems. First, developed CV models are specialist models 
only well-trained for a small subset of detection tasks, thus limited by the narrow domain of knowledge. 
For example, an object detection model trained to perform decently in PPE detection may fall short in 
fall or injury detection. Second, the architecture of CNN-based models leads to limited embedded 
semantic information (e.g. object category and localization), while extracting semantic information (e.g., 
construction activities, interactions between different construction objects) from construction images is 
an essential step for further CV-based application in construction management (Paneru & Jeelani, 2021; 
Y. Wang et al., 2022). More high-level tasks like safety compliance checking require a high-level and 
comprehensive semantic understanding of the on-site scene. 

Other researchers have integrated the developed CV models with some other Natural Language 
Processing (NLP) techniques like pre-defined knowledge graphs for further compliance checking (Fang 
et al., 2020; Tang et al., 2020). However, processing information separately with vision and language 
modules may be inefficient and time-consuming. Moreover, during the process of transferring safety 
information across different modalities, features not extracted in the vision modality will inevitably be 
lost and not represented in the language modality. 

The recent advancement in Large Language Model (LLM), based on Generative Pre-trained 
Transformer (GPT), has shown tremendous potential for human-like reasoning and conversation. To 
enable multi-modal tasks like visual question answering (VQA), Large Vision-Language Model (VLM) 
is further developed with an encoder-decoder architecture, where the encoder processes visual 
information and the decoder generates textual representation (Chen et al., 2023). An illustrative example 
is the GPT-4V developed by OpenAI (OpenAI et al., 2024), which has demonstrated human-like 
reasoning capabilities in combining natural language, texts, and images into VQA processes.  

Enabled by the GPT-based pre-trained large vision and language backbones, VLMs can extract 
both intricate visual and linguistic features, undergo deep fusion between them and generate detailed 
image descriptions, and even perform multiple types of instruction-following tasks such as multi-round 
conversion that require sophisticated visual-semantic understanding and reasoning. The strong 
capability of these pre-trained VLMs made them a strong candidate in many traditional vision-language 
tasks like image captioning, visual grounding, and VQA in a zero-shot or few-shot setting without any 
fine-tuning. Compared with CV-NLP-based methods, VLMs enable deep fusion between vision and 
language features for more comprehensive safety analysis. 

While pre-training of VLMs from a large corpus of image-text pairs can align the visual 
encoder with the language backbone’s word embedding space and achieve all-round performance in 
general tasks, fine-tuning can be performed on a much smaller but more supervised instruction-
following dataset to adapt the model to domain-specific context. However, there remain challenges 
when adapting a pre-trained VLM to tasks related to construction safety analysis and management via 
fine-tuning.  

1) Fine-tuning of VLMs requires a vast amount of labeled and high-quality data. The 
construction industry is known for limited open access to structured data for DL training, and currently, 
there is a lack of public datasets for effectively fine-tuning the VLMs toward diverse construction safety 
tasks. However, the fine-tuning of LLM may require thousands of images, together with high-quality 
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instruction-response annotations, which is a resource and labor-consuming task, compared to those of 
traditional VQA and image-captioning datasets which may just consist of a few words as the response 
for each image. 

2) Similar to CNN-based models, VLMs are mainly pre-trained on internet-crowdsourced 
images, which have notably different image quality from those captured on real construction sites by 
surveillance cameras. There is a significant data distribution shift when trying to adapt a VLM for real-
site downstream tasks. Moreover, the fine-tuning of VLMs in the construction safety domain depends 
on both images and high-quality instruction-response sets for learning domain-specific knowledge. 
Efficient learning of domain knowledge with limited vision and text data remains a critical research gap 
that needs to be addressed by special fine-tuning strategies.  
 
2. METHOD 

To address these fundamental challenges in adapting VLMs for construction safety 
applications, we propose a comprehensive framework that systematically tackles both the data 
scarcity issue and the domain adaptation problem. Our methodology, illustrated in Figure 1, 
encompasses three innovative modules specifically designed to overcome the identified 
limitations: 

(1) A semi-automatic image-text data labeling pipeline to enhance the data preparation 
efficiency; 

(2) A two-stage curriculum learning framework to integrate domain knowledge into the VLM; 
(3) A real-time analytical system for automatic incident reporting and interactive VQA. 

 

 
 

Figure 1: Research Methodology for Developing a VLM-based Safety Monitoring System 
 

2.1  Semi-automatic Data Labeling Pipeline 
This section describes the multi-step process to create a high-quality, multi-modal dataset for 

fine-tuning the VLM for safety compliance and monitoring on construction sites. A semi-automatic 
pipeline is developed to facilitate image-text data labeling, driven by an in-context learning framework, 
as illustrated in Figure 2. 

.  
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Figure 2: A Self-instructed Pipeline for Semi-automatic Image-text Data Labeling 
 

Specifically, the semi-automatic data labeling pipeline will perform several tasks: 
1) Automatic Label and Bounding Box Generation: GPT-4V published by OpenAI is utilized 

to generate preliminary descriptions (pseudo labels) of each image in batches. Figure 2 shows the 
assisting pipeline utilizing GPT-4V for effectively extracting candidate object labels or phrases and also 
a strong open-set object detector named GroundingDINO (S. Liu et al., 2024) for extracting candidate 
bounding boxes for identified objects. 

2) Manual Correction of Pseudo-Labels: The automatically generated pseudo-labels and 
bounding boxes will be manually corrected to ensure accuracy and reliability.   

3) Seed Image Selection: A seed image will be chosen from the images of each scenario (e.g., 
confined space as shown in Figure 3), and the description of the seed image will be hand-crafted based 
on the corrected bounding box labels either as grounded captioning (detailed descriptions) or safety 
compliance analysis examples.  
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Figure 3: A Seed Image Generated by GPT-4V+GroundingDINO 
 

4) In-context Learning: The annotated seed images will be included in the in-context learning 
prompt of GPT-4V to generate candidate image descriptions for remaining images.  The in-context 
learning prompt for automatic dataset generation is shown below: 

5) Polishing Candidate Descriptions: The candidate image descriptions generated by GPT-4V 
will be further polished to create more desired responses in the training dataset triplets. These triplets 
will contain the images, instructions, and the final, polished responses. Lastly, the candidate image 
description will be further polished to the true desired responses in the training dataset triplets 
containing images, instructions, and responses. The styles of the instructions across different images 
will be changed to introduce higher diversity. This diversification of the instructions can help the VLM 
models learn more robust and generalizable capabilities. 
 
2.2  Two-stage Curriculum Learning Framework for Effective VLM Training 

The architecture of CogAgent (Hong et al., 2023) is chosen as our baseline model, as 
illustrated in Figure 4, CogAgent is built on a pre-trained Vision Language Model (VLM), specifically 
the CogVLM 17B, which is an open-source and state-of-the-art large vision language model. 
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Figure 4: Architecture of the Proposed VLM Architecture (Revised from CogAgent (Hong et al., 
2023)) 

 
It uses EVA2-CLIP-E as the encoder for low-resolution images (490×490 pixels), and an MLP 

adapter to map its output into the feature space of the visual-language decoder. The visual-language 
decoder consists of both vision experts and language backbone for effective deep fusion between image 
feature and language feature. The decoder processes a combined input of the low-resolution image 
feature sequence and text feature sequence, and autoregressively outputs the target text. However, the 
original CogVLM can only accommodate images of relatively low resolution (224 or 490), which is 
insufficient for screen resolution of computers or smart devices is typically 720p (1280 × 720 pixels) 
or higher. To address this, a high-resolution cross-module is introduced in their CogAgent model 
architecture, which not only maintains efficiency with high-resolution images but also offers flexible 
adaptability to a variety of visual-language model architectures. The high-resolution cross-module acts 
as a new branch for higher-resolution input, accepting images of size 1120 × 1120 pixels. Unlike the 
original low-resolution input branch, the high-resolution cross-module adopts a much smaller pre-
trained vision encoder (visual encoder of EVA2-CLIP-L in our implementation, 0.30B parameters), and 
uses cross-attention of a small hidden size to fuse high-resolution image features with every layer of 
VLM decoder, thus reducing the computational cost. 

In terms of the attention procedure, each layer’s attention module is formulated in Equations 
(1) and (2): 

 
𝑋𝑋𝑖𝑖′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 )) + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖                            (1) 

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖′),𝑋𝑋ℎ𝑖𝑖) + 𝑋𝑋𝑖𝑖′                          (2) 
 

MSA and MCA respectively represent multi-head self-attention with visual expert and multi-
head cross-attention. The cross-attention with high-resolution images can be perceived as a complement 
to the features of low-resolution images, thereby effectively utilizing the previous pre-trained model in 
low resolution. CogAgent exhibits exceptional performance on benchmarks that assess referring 
expression comprehension (REC), such as RefCOCO, RefCOCO+, and RefCOCOg, which is 
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comparable to grounding specialists like GroundingDINO. 
Current studies adopted a staged learning scheme to train VLMs more effectively. For instance, 

MiniGPT-v2 was trained with three stages (pretraining, multi-task training and multi-modal instruction 
tuning) for better visual-textual feature alignment (Chen et al., 2023). Inspired by such principle, a two-
stage curriculum learning strategy is proposed to equip our VLM with domain knowledge and 
capabilities in multiple safety-related tasks:  

1) The first stage involves pre-training of our model on construction site images with grounded 
captioning labels, for learning construction-specific domain knowledge given the labeled construction 
site objects. 

2) The second stage focuses on fine-tuning the VLM toward site-specific safety rules to gain 
task-specialized performance in safety compliance inspection from images.  

This two-stage paradigm ensures that our VLM not only understands the nuances of the 
language but also adapts to the specific requirements of the task. The dataset decreases in volume but 
increases in supervision as the training stage progresses. The final stage of instruction tuning aimed to 
enhance the instruction following and conversation ability of CogVLM. 

We also designed a curriculum learning scheme to align the base CogAgent model with 
advanced safety inspection ability. The first stage of the training mainly involved training the model on 
grounded captioning datasets of construction images to equip it with construction domain knowledge. 
Afterwards, the second stage of the training aimed to enhance the inspection ability of the model by 
learning from specific safety rule compliance/violation cases. 

A list of essential work-at-height behaviors from construction documents, including the Safety 
Manual established by Drainage Services Department (2018), the Work-at-Height Safety Handbook 
published by Development Bureau and Construction Industry Council (2019) of Hong Kong are 
reviewed to extract some key safety rules for working at height. The list of work-at-height behaviors 
are: 

a. Powered-Operated Elevating Working Platforms (PEWP) 
i. Wear full body safety harness with its lanyard anchored to a specified anchorage 

point 
b. Metal Scaffolds 

i. When erecting, altering dismantling of scaffolds or it is impracticable to erect a 
safe working platform or provide safe access and egress, the use of full body 
safety harness attached to secure anchorage point or an independent lifeline is 
required 

c. Light-Duty Working Platform/ Mobile Working Platform 
i. When ascending or descending, worker should face to the working platform and 

keep 3 points contact 
ii. Only three types of platforms are allowed to carry out work-at-height tasks, 

including hop-up platform, step platform and mobile platform 
iii. The surrounding of working platforms should be kept free from waste and 

miscellaneous materials 
d. Floor Opening/Edge Protection 

i. Provide guard-rails and toe-boards at the floor edge 
ii. Provide secure coverings with warning signs at the floor opening. 

iii. Provide guard-rails, toe boards and warning signs at the floor opening 
iv. Whist installing, alternating or dismantling fall protection facilities at the floor 

edge, opening and windows, suitable fall arresting system should be provided to 
workers 

 
2.3  Real-time on-site analytical system 

The VLM-based safety compliance monitoring system operates in two different modes: (1) 
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automatic reporting and (2) interactive chatbot. In Mode 1, the real-time video from each camera is 
streamed continuously to the computer, where video frames are sampled at regular intervals to be fed 
into the VLM for inference (10 seconds in our field trials). Then, the VLM automatically generates 
appropriate answers to the image. On the other hand, Mode 2 can be user-triggered via a simple button 
to extract the current frame at any time. Based on that frame, safety officers can input any question to 
prompt the VLM to interactively generate personalized answers. 

An alarm mechanism is developed to generate descriptive alert messages to safety officers. As 
illustrated in Figure 5 (left), in case any safety rule violation is identified, such “Failed” safety 
compliance is reported via an alarm from the onsite computer, where the safety officers are notified in 
real-time. A descriptive alert message is then prompted out, concisely summarizing which specific 
safety rules are violated. In case no violation is observed from an image, as illustrated in Figure 5 (right), 
it passes the safety compliance checking by our VLM which results in a simple message “No Safety 
Risk” output without triggering the alarm system. 

 

   
 

Figure 5: Illustrations of With-Alert and No-Alert Messages Generated by our Alarm System 
 

In addition, an incident logging system is developed to store all the processed images and 
generated output. These data are properly indexed/labeled, which constitute a well-managed database 
for record-keeping, which also allows safety officers to query historical incidents and search for 
associated images for verification. As illustrated in Figure 5, each processed frame is indexed with a 
number (e.g. “00250” denotes the 250th frame of a video stream), which serves as the key for future 
queries. All these indexed frames are stored, each of which is then labeled with the final output 
generated by the VLM, which serve as the value for future queries. 

 
3. RESULTS AND DISCUSSION 

 
3.1  Dataset and Experimental Setup 

The developed VLM system is deployed at a real construction site in the Shek Wu Hui Sewage 
Treatment Works. This site is a secondary sewage treatment plant occupying 9.4 hectares of land and 
handling 81,000 m3 of sewage per day produced by a population of 300,000 in Sheung Shui and Fanling 
Districts. 

The dataset for fine-tuning the CogAgent model consists of 1,500 construction site images, 
after applying augmentation techniques including random cropping, horizontal flipping and color space 
alternation. The collected images are then annotated with the assistance of the pipeline mentioned in 
Section 2.1. As shown in Figure 6, the raw images are first processed by the proposed methodology to 
obtain accurate bounding boxes for objects with precise and diverse textual descriptions. The textual 
descriptions are based on the list of safety questions summarized. Some features/objects in the images 
are highly relevant to certain safety rules (e.g. scaffolds, working platforms), thus are specifically 
highlighted in the annotations to incorporate such knowledge into our VLM. 
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Figure 6: Snapshot of the Collected Image Dataset for VLM Fine-tuning and Testing 

 
The data split is 6:4, i.e. 60% (900 images) for fine-tuning and validation, the remaining 40% 

(600 images) for testing. The fine-tuning was done with a single Nvidia A40 GPU with 48 GB of 
available VRAM. For the training configuration, Low-Rank Adaptation (LoRA) is used for Parameter-
Efficient Fine-Tuning (PEFT) while all the original weights are frozen. 5 types of LoRA modules, each 
with a rank of 64, and a LoRA alpha value of 128, are injected into the visual language backbone, the 
high-resolution cross-attention layers, the large ViT encoder, the MLP adapter and the lightweight ViT 
encoder respectively. The VLM was trained with a batch size of 2 for 2 epochs for each of the two 
stages, with a warmup ratio of 0.1, an initial learning rate of 3e-5, and a cosine learning rate scheduler. 
The lora dropout is set to 0.1 and the weight decay is set to 0.05. After finetuning, the VLM was 
quantized to 8 bit and deployed in one RTX-4090 GPU with 24 GB of VRAM. 

 
3.2  Quantitative Evaluation 

The collected images are fed into our VLM to carry out VQA. The performance of safety 
compliance checking is evaluated with the protocol summarized in Table 1. In the context of safety 
compliance checking in this project, two possible outcomes are defined: (1) Compliance – Pass, where 
no safety rule is violated, and (2) Compliance – Failed, where a particular safety rule is violated. 
Therefore:  

• True Positive (TP) means that an image does contain violation scenario(s), and the VLM 
correctly identifies them. Note that the evaluation is counted on per-rule basis rather than 
per-image basis. 

• False Negative (FN) means that an image does contain violation scenario(s), but the VLM 
cannot identify them and wrongly output “Pass – No Safety Risk”. 

• False Positive (FP) means that an image has no safety violation, but the VLM wrongly 
outputs “Failed” for a particular safety rule. 

• True Negative (TN) means that an image has no safety violation, and the VLM correctly 
outputs “Pass – No Safety Risk”. 

These metrics form the foundation for our two primary evaluation measures, Sensitivity 
and Specificity, defined in Equations (3) and (4): 

• Sensitivity denotes the percentage of violation scenarios correctly identified by the VLM. 
• Specificity denotes the percentage of compliant scenarios correctly passed without any 

false alert. 
 

Table 1: Proposed Evaluation Metrics for Safety Compliance Checking 
Ground-truth \ Output Compliance – Failed Compliance – Pass 
Compliance – Failed TP FN 
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Compliance – Pass FP TN 
*The values denote the number of safety rules being checked one-by-one 

 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (%) =  

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

  (3) 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (%) =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
  (4) 

 
In the context of construction safety monitoring, these metrics carry significant practical 

implications. Sensitivity measures the system's ability to correctly identify actual safety violations, such 
as missing PPE or unsafe behaviors at heights. This metric is particularly crucial as missing violations 
(false negatives) could lead to serious accidents or fatalities. Complementarily, specificity measures the 
system's accuracy in correctly identifying safe conditions while avoiding false alarms. High specificity 
is essential for maintaining operational efficiency, as false positives can cause unnecessary work 
interruptions and diminish trust in the monitoring system. 

Our analysis reveals significant improvements through the two-stage curriculum learning 
framework. The baseline model initially showed sensitivity and specificity rates of 76.3% and 74.3% 
respectively. Our enhanced framework substantially improved these metrics to 84.7% and 91.7%. 
Statistical validation through Fisher's Exact Test yielded p-values of 0.0132 for sensitivity and <0.0001 
for specificity, confirming the statistical significance of these improvements (both <0.05). 

The detailed results in Tables 3 and 4 demonstrate the tangible impact of our approach, showing 
an increase of 77 correct samples (25 TP + 52 TN), representing approximately 13% of the testing set. 
This improvement reflects enhanced accuracy in safety compliance identification and validates the 
effectiveness of our integrated approach for construction safety monitoring. 

 
Table 2: Quantitative Results among the Baseline and Proposed Methods 

Method Sensitivity Specificity 
Baseline 76.3% (71.1% ~ 81.0%) 74.3% (69.0% ~ 79.2%) 

Two-stage Learning 84.7% (80.1% ~ 88.6%) 91.7% (87.9% ~ 94.5%) 
*The ranges inside brackets denote the results at 95% Clopper-Pearson confidence intervals 

 
Table 3: Contingency Table for Sensitivity of Safety Compliance Checking 

Method TP FN Total 
Baseline 229 71 300 

Two-stage Learning 254 46 300 
 

Table 4: Contingency Table for Specificity of Safety Compliance Checking 
Method TN FP Total 
Baseline 223 77 300 

Two-stage Learning 275 25 300 
 

3.3  Qualitative Evaluation 
Based on the safety rules listed in Section 2.2, the output generated by our VLM (for 

compliance “Pass” and “Failed” respectively) are illustrated below. 
Case 1: Working on Light-duty Mobile Platform (Safe Ascending/Descending Required) 
• “Pass”: In Figure 7, the worker ascending/descending the step platform is facing directly 

to the platform and maintaining three-point contact with it. Hence, the safety compliance 
checking correctly results in a “Pass”. 
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• “Failed”: As shown in Figure 8, the worker is facing away from the step platform, and 
his hands are not holding the step platform safely. In that cases, the alarm system is 
triggered with an alert message prompted out, stating the safety rules being violated. 
 

 
 

Figure 7: Result of Facing to the Platform and Three-point Contact Compliance (“Pass”) 
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Figure 8: Result of Facing to the Platform and Three-point Contact Compliance (“Failed”) 
 

For monitoring worker safety when climbing the mobile platform, our VLM can analyze the 
orientation of the worker’s face and body relative to the mobile platform. However, the identification 
of three-point contact with the mobile platform is slightly more challenging. The worker’s limbs may 
be partially occluded when climbing the mobile platform (e.g. when facing to the right, his left hand 
and left leg are occluded respectively by his body and right leg). More systematic prompt engineering 
may be explored in the future to further enhance the identification accuracy. 

Case 2: Working on PEWP (Safety Harness Required) 
• “Pass”: As shown in Figure 9, the worker standing on top of the PEWP is wearing a safety 

harness, with its lanyard attached to a secure anchorage point. The VLM simply prints 
“Pass: No Safety Risk” on the screen to verify his safety compliance, without triggering 
any alarm. 

• “Failed”: As shown in Figure 10, the worker on the PEWP is not wearing a safety harness. 
Our VLM correctly identified such safety violation and generated the corresponding alert 
message. 

 
 

Figure 9: Result of Safety Harness and Anchorage Compliance (“Pass”) 
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Figure 10: Result of Safety Harness and Anchorage Compliance (“Failed”) 
 

Overall, our VLM can accurately identify the presence/absence of safety harness when being 
worn by a worker. However, it remains challenging to determine whether the harness is attached to a 
secure anchorage point (in the site trial, attaching to the PEWP is considered safe), due to the very thin 
rope and small size of the anchor. More crucially, the anchor is usually occluded by the worker or the 
PEWP itself, making the anchorage detection inaccurate. In the future, more sophisticated strategies of 
image/video analytics, such as small-object attention mechanism, can be further incorporated into our 
framework, to enhance the harness detection robustness. 

Nevertheless, the preliminary results show that the CogAgent model show some hallucination 
when transferring the visual information into textual information. This may be due to the frozen visual 
encoder and shallow alignment method in the model architecture during the model training. Further 
investigation may be needed on the multi-modal feature alignment capability and contextual awareness 
toward safety monitoring. 

 
4. CONCLUSION AND FUTURE WORK 

This paper addresses critical challenges in adapting VLMs for construction safety monitoring 
through a comprehensive framework. Our semi-automatic pipeline, combining GPT-4V and 
GroundingDINO for image captioning, successfully overcame data scarcity. Our two-stage curriculum 
learning framework demonstrated remarkable effectiveness in domain knowledge integration, 
achieving 84.7% sensitivity and 91.7% specificity in work-at-height safety compliance checking, 
substantially improved over the baseline method. 

These findings have significant implications for both research and industry. Our framework 
provides a scalable solution for adapting AI systems to specialized domains with limited data 
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availability, while the demonstrated success in real-world deployment establishes a practical pathway 
for automating construction safety monitoring. The high accuracy achieved in safety compliance 
inspection suggests potential for widespread adoption in construction site management, enabling more 
proactive and efficient safety protocols. Future research will focus on enhancing the system through 
architectural modifications for improved multi-modal feature alignment and contextual awareness. The 
framework's generalizability will be validated across diverse safety rules, and be extended to real-time 
video analytics for automated safety monitoring practices. 
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