
EPiC Series in Computing
Volume 46, 2017, Pages 227–248

LPAR-21. 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Propagators and Solvers for the Algebra of Modular
Systems

Bart Bogaerts1,2∗, Eugenia Ternovska3, and David Mitchell3

1 Department of Computer Science, Aalto University, Espoo, Finland
2 KU Leuven, Department of Computer Science, Leuven, Belgium

3 Computational Logic Laboratory, Simon Fraser University, Vancouver, Canada

Abstract

Solving complex problems can involve non-trivial combinations of distinct knowledge bases and
problem solvers. The Algebra of Modular Systems is a knowledge representation framework that
provides a method for formally specifying such systems in purely semantic terms. Many practical
systems based on expressive formalisms solve the model expansion task. In this paper, we con-
struct a solver for the model expansion task for a complex modular system from an expression in the
algebra and black-box propagators or solvers for the primitive modules. To this end, we define a gen-
eral notion of propagators equipped with an explanation mechanism, an extension of the algebra to
propagators, and a lazy conflict-driven learning algorithm. The result is a framework for seamlessly
combining solving technology from different domains to produce a solver for a combined system.

1 Introduction
Complex artifacts are, of necessity, constructed by assembling simpler components. Software systems
use libraries of reusable components, and often access multiple remote services. In this paper, we
consider systems that can be formalized as solving the model expansion task for some class of finite
structures. A wide range of problem solving and query answering systems are so accounted for. We
present a method for automatically generating a solver for a complex system from a declarative defi-
nition of that system in terms of simpler modules, together with solvers for those modules. The work
is motivated primarily by “knowledge-intensive” computing contexts, where the individual modules are
defined in (possibly different) declarative languages, such as logical theories or logic programs, but can
be applied anywhere the model expansion formalization can.

The Algebra of Modular Systems (AMS) [48, 49], provides a way to define a complex module in
terms of a collection of other modules, in purely semantic terms. Formally, each module in this algebra
represents a class of structures, and a “solver” for the module solves the model expansion task for that
class. That is, a solver for module M takes as input a structure A for a part of the vocabulary of M ,
and returns either a set of expansions of A that are in M , or the empty set. The operators of the algebra

∗Bart Bogaerts is a postdoctoral fellow of the Research Foundation – Flanders (FWO). This work is supported by the Finnish
Center of Excellence in Computational Inference Research (COIN) funded by the Academy of Finland (under grant #251170).

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 227–248

Propagators and Solvers for the AMS Bart Bogaerts et al.

operate on classes of structures, essentially generalizing Codd’s Relation Algebra [15] from tables to
classes of structures.

While the AMS provides a good account of how to define a module in terms of other modules,
little work has been done on combining solvers (see e.g., [38]). The purpose of this paper is to fill this
gap. To this end, we give general definitions of propagators and solvers in terms of classes of partial
structures, and define algebras that correspond to the AMS, but operate on propagators rather than
classes of structures. The algebra provides a theoretical basis for the practical combination of solvers.

Intuitively, a propagator adds information to a partial structure without eliminating any solutions
that extend that partial structure, while a solver searches through the set of more precise structures for a
complete structure that is in the module. To formalize propagators and the operations of solvers, we use
partial structures defined over the truth values u, f, t, i (unknown, false, true and inconsistent, respec-
tively), with the “precision order” u <p t <p i, u <p f <p i. Extending this order pointwise to structures,
we obtain a complete lattice of partial structures ordered by precision. The least structure in the lattice
carries no information (all formulas are “unknown”), while the greatest structure is inconsistent. (For
simplicity, in this paper we consider only finite vocabularies and finite structures.)

Contributions. Our main contributions are as follows.
(1) We define a propagator for a module M to be an operator on the lattice of partial structures that is

monotone (A≥p A
′ implies P(A)≥p P(A′), and and information-preserving (P(A)≥p A). This

concept generalizes many uses of the term “propagator” in the literature.
(2) We define an algebra of propagators that has the same operators and the same vocabulary as AMS,

but the domain is propagators rather than modules. The propagator algebra is analogous to the
AMS in the following sense. Each propagator P is for a unique module, module(P)). The function
module is a surjective homomorphism from the algebra of propagators to the AMS. For example,
if E1,E2 are modules, then πδ (σ(Q≡R)E1×E2) is a compound module. It represents the class of
structures A such that some structure A ′ exists that coincides with A on δ and such that A ′

satisfies both E1 and E2 and interprets Q the same as R. If P1 and P2 are propagators for E1 and
E2 respectively, then we show that in our extended version of the algebra, πδ (σ(Q≡R)P1×P2) is a
propagator for πδ (σ(Q≡R)E1×E2).

(3) We show how solvers can be constructed from propagators, and vice versa.
(4) We study complexity of the combined propagators in terms of complexity of propagators for the

individual modules and show that in general, our operations can increase complexity. This is
useful, for example, to build a propagator for Quantified Boolean Formulas based on a propagator
that (only) performs unit propagation for a propositional theory. We discuss how this can be done
in Section 5.

(5) To model more interesting algorithms, we define explaining propagators to be propagators that
return an “explanation” of a propagation in terms of simpler (explaining) propagators. That is, an
explaining propagator P maps a partial structure to a more precise partial structure together with
an “explanation” of that propagation in the form of an explaining propagator that is “simpler”
than P. These propagators generalizes lazy clause generation [47], cutting plane generation [16]
and counterexample-guided abstraction-refinement [14]. This generalization shows that many
techniques are actually instances of the same fundamental principles.

(6) We extend the algebra of propagators to explaining propagators.
(7) We show how to construct a conflict-driven learning solver for a module from an explaining

propagator for the module. The resulting algorithm is an abstract generalization of the conflict-
driven clause learning (CDCL) algorithm for SAT, and other algorithms that can be found in the
literature.

(8) We give several examples of techniques for applying the algebra in constructing solvers.

228

Propagators and Solvers for the AMS Bart Bogaerts et al.

Our formal framework results effectively in a paradigm where pieces of information (modules) are
accompanied with implemented technology (propagators) and where composing solving technology is
possible with the same ease as composing modules. The algorithms we propose are an important step
towards practical applicability of the algebra of modular system.

Related Work. The closest related work is research on technology integration. Examples include but
are not limited to [23, 5, 42]. Combined solving is perhaps most developed in the SAT modulo theories
(SMT) community, where theory propagations are tightly interleaved with satisfiability solving [41, 46].
The work we present in this paper differs from SMT in a couple of ways. In SMT, the problem associated
with so-called theories (modules in our terminology) is the satisfiability problem. This has several
ramifications. One of them is that two different decidable theories cannot always be combined into one
decidable theories; this problem is known in the SMT community as the combination problem; a large
body of work has been devoted to the study of this problem, see for instance [40, 52, 3, 20, 12, 13]. In
our approach on the other hand, the focus is not on the satisfiability problem, but on the model expansion
problem, which is, from a complexity point of view, a simpler task than satisfiability checking [30]. As
a consequence, we do not encounter problems such as the combination problem: any combination of
propagators always yields a propagator. Instead, in our work, we focus on different ways to combine
propagators. In SMT, theories are always combined conjunctively. For instance, SMT provides no
support for negation (it is possible to state that the negation of an atom is entailed by a theory, but
not that a theory is not satisfiable) or projection (projecting out certain variables in a given theory).
This kind of combinations, generalizing the AMS to an algebra of propagators, results in a setting
where propagators for simple modules (or “theories” in SMT terminology) can be combined into more
complex propagators for the combined module. These combinations constitute the essence of our work.

Recently, Lierler and Truszczyński [33] introduced a formalism with compositions (essentially, con-
junctions) of modules given through solver-level inferences of the form (M, l), where M is a consistent
set of literals and l is a literal not in M. Such pairs are called inferences of the module. Transition graphs
for modules are constructed, with actions such as Propagate, Fail, Backtrack, and Decide. Solvers based
on the transition graph are determined by the select-edge-to-follow function (search strategy). Solving
templates are investigated for several formalisms, including SAT and ASP. From individual transition
graphs, such graphs are constructed for conjunctions of modules, but more complex combinations of
modules are not studied.

Combining propagators has been studied in constraint programming [9, 25, 29]. This research is of-
ten limited to a subset of the operations we consider here, for instance studying only conjunction [6, 1],
disjunction [39, 55, 31] or connectives from propositional logic [32, 4]. In addition to these, we also
consider selection and projection. The objectives of the current paper are similar to those considered
the CP community; however, there are some key differences. First of all, we generalized the theory
of propagators from constraint programming to the AMS. It can be applied in principle to every logic
with a model semantics. As such, it can serve as a formal basis to transfer the rich body of work from
constraint programming to other fields, such as for instance (Integer) Linear Programming or Answer
Set Programming. Second, the traditional treatment of propagation in CP emphasizes tractability [25]:
the focus is on propagators that can be computed in polynomial time. While it is often important to
constrain the complexity of the propagators, it can be useful as well to allow for complexity increasing
operations. In our framework, one of the operations (projection) increases complexity; as such, contrary
to the propagators considered in constraint programming, it allows to construct propagators for com-
pound modules for which membership checking is not polynomial. As explained above, this is useful to
construct propagators for expressive logics such as QBF. Third, we equip our propagators with a learn-
ing mechanism that generalizes for instance lazy clause generation [47] from constraint programming
and a conflict analysis mechanism that generalizes conflict-driven clause learning [36] from SAT [35].

229

Propagators and Solvers for the AMS Bart Bogaerts et al.

In real-world applications multiple (optimization) problems are often tightly intertwined. This has
been argued intensively by Bonyadi et al. [8], who designed the traveling thief problem as a proto-
type benchmarking problem of this kind. In the current state-of-the-art, such problems are tackled by
special-purpose algorithms [11, 54], illustrating the need for a principled approach to combining solving
technology from different research fields.

2 Modular Systems
Structures. A (relational)1 vocabulary τ is a finite set of predicate symbols. A τ-structure A consists
of a domain A and an assignment of an n-ary relation QA over A to all n-predicate symbols Q ∈ τ . A
domain atom is an expression of the form Q(d) with Q∈ τ , and d a tuple of domain elements. The value
of a domain atom Q(d) in a structure A (notation Q(d)A) is true (t) if d ∈ QA and false (f) otherwise.
From now on, we assume that A is a fixed domain, shared by all structures. This assumption is not
needed for the Algebra of Modular Systems in general, but it is convenient for the current paper since
the input for the task we tackle (model expansion, see below) fixes the domain.

A four-valued τ-structure A is an assignment Q(d)A of a four-valued truth value (true (t), false
(f), unknown (u) or inconsistent (i)) to each domain atom over τ . If Q(d)A ∈ {t, f,u} for each Q(d),
we call A consistent. If Q(d)A ∈ {t, f} for each Q(d), we call A two-valued and identify it with the
corresponding structure. A four-valued structures is sometimes also called a partial structure, as it
provides partial information about values of domain atoms.

The precision order on truth values is induced by u <p t <p i, u <p f <p i. This order is pointwise
extended to (four-valued) structures: A<p A

′ iff for all domain atoms Q(d), Q(d)A <p Q(d)A
′
. The set

of all four-valued τ-structures forms a complete lattice when equipped with the order ≤p. This means
that every set S of (four-valued) structures has a greatest lower bound glb≤p

(S) and a least upper
bound lub≤p(S) in the precision order. Hence, there is a most precise four-valued structure glb(∅),
which we denote I; I is the most inconsistent structure: it maps all domain atoms to i.

Four-valued structures are used to approximate structures. If A is a structure and A a partial struc-
ture, we say that A approximates A if A ≤p A . Below, we use four-valued structures to represent a
solver state: certain domain atoms have been decided (they are mapped to t or f), other domain atoms
atoms have not yet been assigned a value (they are mapped to u), and certain domain atoms are involved
in an inconsistency (they are mapped to i). If a partial structure is inconsistent, it no longer approximates
any structure. Solvers typically handle situations in which their state is inconsistent by backtracking.

If Q(d) is a domain atom and ν ∈ {t, f, i,u}, we use A[Q(d) : ν] for the (four-valued) structure equal
to A except for interpreting Q(d) as ν . We use A[Q : QA′] for the four-valued structure equal to A on all
symbols except for Q and equal to Q on A′. If δ ⊆ τ , we use A|δ for the structure equal to A on δ and
mapping every other domain atom to u, i.e., A|δ is the least precise structure that coincides with A on
δ .

Modules. Let τM = {M1,M2, . . .} be a fixed vocabulary of atomic module symbols (often just referred
to as atomic modules) and let τ be a fixed vocabulary. Modules are built by the grammar:

E ::=⊥ |Mi | E×E | −E | πδ E | σQ≡RE. (1)

We call × product, − complement, πδ projection onto δ , and σQ≡R selection. Modules that are not
atomic are called compound. Each atomic module symbol Mi has an associated vocabulary voc(Mi)⊆ τ .
The vocabulary of a compound module is given by

1Without loss of generality, we restrict to relational vocabularies in this paper.

230

Propagators and Solvers for the AMS Bart Bogaerts et al.

• voc(⊥) = τ ,
• voc(E1×E2) = voc(E1)∪ voc(E2),
• voc(−E) = voc(E),
• voc(πδ E) = δ , and
• voc(σΘE) = voc(E).

Semantics. Let C be the set of all τ-structures with domain A. Modules (atomic and compound) are
interpreted by subsets of C .2 A module interpretation I assigns to each atomic module Mi ∈ τM a set of
τ-structures such that any two τ-structures A1 and A2 that coincide on voc(Mi) satisfy A1 ∈I (Mi) iff
A2 ∈I (Mi). The value of a modular expression E in I , denoted JEKI , is defined as follows.

J⊥KI :=∅.
JMiKI := I (Mi).
JE1×E2KI := JE1KI ∩ JE2KI .
J−EKI := C − JEKI .
Jπδ (E)KI := {A | ∃A ′ (A ′ ∈ JEKI and A |δ = A ′|δ)}.
JσQ≡REKI := {A ∈ EI | QA = RA }.

We call A a model of E in I (denoted A |=I E) if A ∈ JEKI .
In earlier papers [48, 49], the algebra was presented slightly differently; here, we restrict to a minimal

syntax; this is discussed in detail in Section 5.

Example 2.1. Let τ = {Edge,Trans} be a vocabulary containing two binary predicates. Let I be a
model interpretation, Mt a module with vocabulary τ such that A |=I Mt if and only if TransA is the
transitive closure of EdgeA and M f is a module with vocabulary {Trans} such that A |=I M f if and
only if TransA is the full binary relation on A. Consider the following compound module

E := π{Edge}(Mt × (−M f)).

Here, E is a module with vocabulary {Edge} such that A |=I E if and only if EdgeA is a disconnected
graph: the module Mt sets Trans to be the transitive closure of Edge; the term (−M f) ensures that Trans
is not the full binary relation; these two modules are combined conjunctively and the result is projected
onto {Edge}, i.e., the value of Trans does not matter in the result. N

From now on, we assume that a module interpretation I is given and fixed. Slightly abusing nota-
tion, we often omit the reference to I and write, e.g., A |= E instead of A |=I E.

Model expansion for modular systems. The model expansion task for modular systems is: given a
(compound) module E and a partial structure A, find a structure A (or: find all structures A) such that
A ≥p A and A |=I E (if one such exists).

Mitchell and Ternovska [38] have defined methods to apply the lazy clause generation (LCG)
paradigm [19] to solve the model expansion problem for modular systems. In particular, given prop-
agators Pi that explain their propagations by means of clauses for atomic modules Mi, they show how
to build an LCG-solver for modules of the form E = M1× ·· · ×Mn. In this paper, we generalize the
above idea to a setting where E is an arbitrary (compound) module and the learning mechanism is not
necessarily clause learning.

2If the assumption that A is fixed is dropped, modules are classes of structures instead of sets of structures, but this generality
is not needed in this paper.

231

Propagators and Solvers for the AMS Bart Bogaerts et al.

3 Propagators and Solvers
Now, we define a general notion of propagator and show how propagators for atomic modules can be
composed into propagators for compound modules. Intuitively, a propagator is a blackbox procedure
that refines a partial (four-valued) structure by deriving consequences of a given module.

Definition 3.1. A propagator is a mapping P from partial structures to partial structures such that the
following hold:
• P is ≤p-monotone: whenever A≥p A

′, also P(A)≥p P(A′).
• P is information-preserving: P(A)≥p A for each A.

Definition 3.2. Given a module E, a propagator P is an E-propagator if on two-valued structures, it
coincides with E, i.e., whenever A is two-valued, P(A) = A iff A ∈ E.

Note that if A 6∈ E, and A is two-valued, an E-propagator maps A to an inconsistent partial structure
since P is information-preserving. An E-propagator can never “lose models of E”, as is formalised in
the following lemma.

Lemma 3.3. Let P be an E-propagator. If A is a model of E and A ≥p A, then also A ≥p P(A).

Proof. Follows from ≤p-monotonicity and the fact that P(A) = A for two-valued structures A .

Example 3.4. Modern ASP solvers typically contain (at least) two propagators. One, which we call
PP

UP, performs unit propagation on the completion of the program P . The other, which we call PP
UFS

performs unfounded set propagation; that is: it maps a partial structure A to

lub≤p(A,A[p : f | p ∈ lUFS(P,A)]),

where lUFS(P,A) is the largest unfounded set of P with respect to A [53]. It is easy to see that these
two propagators are information-preserving and ≤p-monotone. N

Example 3.5. In several constraint solvers that perform bounds reasoning, (finite-domain) integer vari-
ables are represented by a relational representation of their bounds: a variable c is represented by a
unary predicate Qc≤ with intended interpretation that Qc≤(n) holds iff c≤ n. Consider in this setting a
propagator Pc≤d that enforces bounds consistency for the constraint c≤ d. That is, Pc≤d maps a partial
structure A to a partial structure A′ such that for each n:

• if Qd≤(n)A ≥p t, then Qc≤(n)A
′
= lub≤p(Qc≤(n)A,Qd≤(n)A),

• otherwise, Qc≤(n)A
′
= Qc≤(n)A

and similar equations for Qd≤(n). Intuitively, these equations state that if d ≤ n holds in A, then Pc≤d
also propagates that c ≤ n holds. For instance, assume the domain A = {1, . . . ,100} and that A is such
that

Qc≤(n)A =

 t if n≥ 90
u if 90 > n≥ 10
f otherwise

Qd≤(n)A =

 t if n≥ 80
u if 80 > n≥ 20
f otherwise

This structure encodes that the value of c is in the interval [10,90] and d in the interval [20,80]. In this
case, Pc≤d propagates that also c≤ 80 without changing the value of d. Formally:

Qc≤(n)Pc≤d(A) =

 t if n≥ 80
u if 80 > n≥ 10
f otherwise

Qd≤(n)Pc≤d(A) = Qd≤(n)A N

232

Propagators and Solvers for the AMS Bart Bogaerts et al.

Propagators and modules.

Lemma 3.6. If P is a propagator, then there is a unique module E such that P is an E-propagator.

Proof. Uniqueness follows immediately from Definition 3.2. Existence follows from the fact that we
can define the module E such that A |= E if and only if P(A) = A .

Lemma 3.6 gives rise to the following definition.

Definition 3.7. If P is a propagator, we define module(P) to be the unique module E such that P is an
E-propagator.

Definition 3.8. If E is a module, the E-checker is the propagator PE
check defined by:3

PE
check : A 7→

 A if A is consistent but not two-valued
A if A is two-valued and A |= E
I otherwise

Lemma 3.9. For each module E, PE
check is an E-propagator.

Proof. That PE
check is a propagator follows from the fact that I is more precise than any partial structure

A. It follows immediately from the definition that PE
check coincides with E on two-valued structures.

The E-checker is the least precise E-propagator, as the following proposition states.

Proposition 3.10. For each E-propagator P and each consistent structure A, P(A)≥p PE
check(A).

Propagators and Solvers.

Definition 3.11. Let E be a module. An E-solver is a procedure that takes as input a four-valued
structure A and whose output is the set S of all two-valued structures A with A |= E and A ≥p A.

Intuitively, a solver is a procedure that performs model expansion for a given module. Propagators
can be used to create solvers and vice versa. We first describe how to build a simple generate-and-check
solver from a propagator. Afterwards, we provide an algorithm that uses the solver in a smarter way. In
the next section, we discuss how to add a learning mechanism to this solver.

Definition 3.12. Let P be an E-propagator. We define an E-solver SP
gc as follows.4 SP

gc takes as input
a structure A. The state of SP

gc is a tuple (B,S) of a structure and a set of two-valued structures S ; it
is initialised as (A,∅). SP

gc performs depth-first search on the search space of (four-valued) structures
more precise than A. Choices consist of updating B to B[Q(d) : t] or to B[Q(d) : f] for some domain
atom with Q(d)B = u. Whenever B is two-valued, the solver checks whether P(B) = B. If yes, B
is added to S . After encountering a two-valued structure, it backtracks over its last choice. When
the search space has been traversed, SP

gc returns S . Pseudo-code for this algorithm can be found in
Algorithm 1.

Definition 3.13. Let P be a propagator. We define the solver SP
p as follows. The solver SP

p extends SP
gc

by updating B to P(B) before each choice. If B is inconsistent, SP
p backtracks. Pseudocode for this

solver can be found in Algorithm 2.

3Recall that I denotes the most precise (inconsistent) structure.
4Here, gc stands for Generate-and-Check.

233

Propagators and Solvers for the AMS Bart Bogaerts et al.

Algorithm 1 The solver SP
gc

1: function SP
gc(A)

2: (B,S)← (A,∅)
3: while true do
4: if B is two-valued then
5: if P(B) =B then
6: S← S∪{B}
7: if the last choice updated B′ to B′[Q(d) : t] then
8: B←B′[Q(d) : f]
9: else \\ i.e., if there were no more choices

10: return S
11: else
12: choose B←B[Q(d) : t] for some Q(d) with Q(d)B = u

Algorithm 2 The solver SP
p

1: function SP
p (A)

2: (B,S)← (A,∅)
3: while true do
4: B← P(B)
5: if B is two-valued or inconsistent then
6: if P(B) =B and B is two-valued then
7: S← S∪{B}
8: if the last choice updated B′ to B′[Q(d) : t] then
9: B←B′[Q(d) : f]

10: else \\ i.e., if there were no more choices
11: return S
12: else
13: choose B←B[Q(d) : t] for some Q(d) with Q(d)B = u

Proposition 3.14. If (the domain) A is finite and P is an E-propagator, then both SP
gc and SP

p are E-
solvers.

Sketch of the proof. Finiteness of A guarantees that depth-first search terminates. Correctness of SP
gc

follows from the fact that P is an E-propagator (since {A | P(A) = A }= {A |A |= E}).
Correctness of SP

p follows from Lemma 3.3 which states that no models are lost by propagation.

In the above proposition, the condition that A is finite only serves to ensure termination of these two
procedures that essentially traverse the entire space of structures more precise than B. All the concepts
defined in this paper, for instance propagators, and operations on propagators, can also be used in the
context of an infinite domain.

We now show how to construct a propagator from a solver. We call this propagator optimal, since it
always returns the most precise partial structure any propagator could return (cf. Proposition 3.17). In
this sense, this propagator performs skeptical reasoning.

Definition 3.15. Let S be an E-solver. We define an E-propagator PS
opt : A 7→ glb≤p

S(A).

234

Propagators and Solvers for the AMS Bart Bogaerts et al.

Notice that if S′ is an E-solver as well, as a function, PS
opt = PS′

opt. However, we include S in the
notation since for practical purposes, we need a way to compute PS

opt(A); for this, a call to S is used.

Proposition 3.16. If S is an E-solver, PS
opt is an E-propagator.

Proof. We first show that PS
opt is a propagator. First, for each A ∈ S(A), it holds that A ≥p A,

hence also PS
opt(A) ≥p A. Second, notice that whenever A1 ≥p A2, S(A1) ⊆ S(A2), hence PS

opt(A1) =

glb≤p
S(A1) ≥p glb≤p

S(A2) = PS
opt(A2). From these two properties, it follows that PS

opt is indeed a
propagator.

The fact that it is also an E-propagator follows from the property that for two-valued A , S(A) =
{A } if A |= E and S(A) =∅ otherwise.

Proposition 3.17. Let P be any E-propagator and S an E-solver. For each structure A, it holds that
PS

opt(A)≥p P(A).

Proof. From Lemma 3.3, we find that P(A) ≤p A if A ∈ S(A). Hence also P(A) ≤p glb≤p
S(A) =

PS
opt(A).

Combining propagators. First, we discuss how propagators for the same module can be combined.
Afterwards, we extend the algebra of modular systems to propagators.

Proposition 3.18. Composition P1 ◦P2 of two E-propagators is an E propagator. In particular, if P is
an E-propagator, also Pn (an abbreviation for P ◦P ◦ · · · ◦P (n times)) is an E-propagator. We use P∞

for lim≤p Pn = lub≤p{Pn | n ∈ N}.

Proposition 3.19. If P1 and P2 are two E-propagators, then (P1 ◦P2)(A)≥p P1(A) and (P1 ◦P2)(A)≥p
P2(A) for each A.

Now, we show how checkers for compound expressions in the algebra can be built from propagators
for atomic modules. These checkers are sufficient for defining the algebra on propagators: if propagators
for atomic modules are given, Proposition 3.21 provides us with the means to obtain a propagator
for compound expressions. However, for practical purposes, we are often interested in better, i.e.,
more precise propagators. Hence, after this proposition, we investigate for which operations better
propagators can be defined.

Definition 3.20. Let P be an E-propagator, P′ an E ′-propagator and δ ⊆ τ . We define following checkers
(we only define their behaviour on two-valued structures since otherwise the behaviour of checkers is
trivial):
• P⊥check : A 7→ I

• PE×E ′
check : A 7→ lub≤p{P(A),P′(A)}

• P−E
check : A 7→

{
A if P(A) = I
I otherwise

• Pπδ E
check : A 7→

{
A if SP

p (A |δ) 6=∅
I otherwise

• P
σQ≡RE
check : A 7→

{
A if P(A) = A and QA = RA

I otherwise

Proposition 3.21. The operations defined in Definition 3.20 define checkers. Furthermore for each
compound module E ′′, PE ′′

check is an E ′′-checker.

235

Propagators and Solvers for the AMS Bart Bogaerts et al.

Sketch of the proof. Correctness for each of the above follows easily from the definition of the semantics
of modular systems.

Now, we present for several of the operations a better (more precise) propagator (compared to only
checking).

Proposition 3.22. Let P be an E-propagator, P′ an E ′-propagator and δ a sub-vocabulary of τ . We
define the following operations:
• P×P′ : A 7→ lub≤p{P(A),P′(A)}.

• πδ P : A 7→


I if A is inconsistent
I if A is two-valued on δ and SP

p (A|δ) =∅
lub≤p(P(A|δ)|δ ,A|τ\δ) otherwise.

• σQ≡RP : A 7→ (P(A))[Q : L,R : L] where L = lub≤p(Q
P(A),RP(A)).

It holds that P×P′ is an E×E ′-propagator, πδ P is a πδ E propagator and σQ≡R is a σQ≡RE-propagator.

Proof. We provide a proof for projection; the other operations are analogous.
We show that πδ P is a propagator.
First, for each four-valued structure A, P(A|δ) ≥p A|δ since P is a propagator, hence also

πδ P(A)|δ = P(A|δ)|δ ≥p A|δ . Furthermore, πδ P(A)|τ\δ = A|τ\δ . Combining these two yields that
πδ P(A) ≥p A and hence that πδ P is indeed information preserving (the cases where P(A) = I are
trivial).

We show ≤p-monotonicity of πδ P. Assume A1 ≥p A2. If A2 is inconsistent, then so is A1 and
thus πδ P(A1) = πδ P(A2). If A2 is two-valued on δ and SP

p (A1|δ) = ∅, then either A1 is inconsistent,
or A1|δ = A2|δ . In both cases, the result is trivial. If πδ P(A1) = I, the result is trivial as well, hence
we can assume that both A1 and A2 fall in the “otherwise” category in the definition of πδ P. The
≤p-monotonicity of πδ P now follows from the fact that if A1 ≥p A2 then also (1) A1|δ ≥p A2|δ and
thus P(A1|δ) ≥p P(A2|δ) and (2) A1|τ\δ ≥p A2|τ\δ . Hence, we conclude that πδ P indeed defines a
propagator.

Now, we show that πδ P is a πδ E-propagator. Let A be a two-valued structure.
First suppose A |= πδ E. In this case, there exists a two-valued A ′ such that A ′ |= E and A |δ =

A ′|δ . Thus, SP
p (A|δ) 6=∅ in this case. Also, in this case P(A |δ) is consistent and thus P(A |δ)|δ =A |δ .

We conclude that in this case indeed πδ P(A) = A .
Now suppose A 6|= πδ E. In this case, there exists no structure A ′ such that A ′|δ = A |δ and

A ′ |= E. Thus SP
p (A |δ) =∅ and πδ (A) is indeed inconsistent.

The intuitions in the above proposition are as follows. For P×P′, P computes consequences of E,
while P′ computes consequences of E ′, given an input structure A. The propagator P×P′ combines
the consequences found by both: it returns the least upper bound of P(A) and P′(A) in the precision
order. That is, it returns the structure in which all domain literals derived by any of the two separate
propagators hold (and nothing more). For projection πσ P, in the two-valued case, the solver SP

p is used
to check whether A ∈ πδ E. For the three-valued case, P is used to propagate on A|δ , i.e., using only
the information about the projected vocabulary δ . From this propagation, only the information that
is propagated about δ is kept (this is P(A|δ)|δ). Indeed πδ E enforces no restrictions on symbols in
τ \δ . Furthermore, we transfer all knowledge we previously had on symbols in τ \δ (this is some form
of inertia); the resulting structure equals P(A|δ) on symbols in δ and equals A on symbols in τ \ δ .
For selection σQ≡RP, propagation happens according to P. Afterwards, all propagations for Q are also
transferred to R and vice versa. This is done by changing the interpretations of both Q and R to the least
upper bound (in the precision order) of their interpretations in P(A).

236

Propagators and Solvers for the AMS Bart Bogaerts et al.

Example 3.23 (Example 3.4 continued). We already mentioned that typical ASP solvers have two
propagators PP

UP and PP
UFS. The actual propagation is done according to PP

ASP =PP
UP×PP

UFS. Furthermore,
typically, this propagation is executed until a fixed point is reached, hence the entire propagation is
described by

(
PP

ASP

)∞.
Now let MP be the module such that A |= MP if and only if A is a stable model of P . It is

well-known that a structure is a stable model of P if and only if it is a model of the completion and it
admits no non-trivial unfounded sets [45]. From this, it follows that MP = MP

UP×MP
UFS, where MP

UP is
a module such that A |= MP

UP iff A is a model of the completion of P and MP
UFS is a module such that

A |= MP
UFS iff A admits no non-trivial unfounded sets with respect to P . It is easy to see that PP

UP and
PP

UFS are MP
UP- and MP

UFS-propagators respectively. From this it follows by Propositions 3.22 and 3.18
that PP

ASP and also
(
PP

ASP

)∞ are MP -propagators. N

Up to this point, we have described three different ways to construct E-propagators: PS
opt is the most

precise E-propagator if S is an E-solver, Proposition 3.21 describes how to build E-checkers (the least
precise propagators) from propagators for subexpressions of E and Proposition 3.22 illustrates how to
build more precise propagators for compound expressions. However, precision is not the only criterion
for “good” propagators. In practice, we expect propagators to be efficiently computable. We now show
that this is indeed the case for the propagators defined in Proposition 3.22.

Proposition 3.24. Assume A is finite; furthermore assume access to an oracle that computes P(A) and
P′(A). The following hold
• (P×P′)(A) can be computed in polynomial time (in terms of the size of A),
• (σQ≡RP)(A) can be computed in polynomial time,
• (πδ P)(A) can be computed in nondeterministic polynomial time.

Sketch of the proof. The first two statements follow easily from the definitions. For instance (P×P′)(A)
is defined as lub≤p{P(A),P′(A)}. Computing this least upper bound can be done by comparing Q(d)P(A

and Q(d)P′(A for each domain atom Q(d). There are only polynomially many domain atoms.
For the last statement, the complexity is dominated by a call to SP

p (A|δ), which is essentially depth-
first search.

Proposition 3.24 shows that product and selection do not increase complexity when compared to
the complexity of the propagators they compose. However, the situation for projection is different.
That is not surprising, since Tasharrofi and Ternovska [50] already showed that the projection operation
increases the complexity of the task of deciding whether a structure is a member of a given module
or not. As such, Proposition 3.24 shows that our propagators for compound expressions only increase
complexity when dictated by the complexity of checking membership of the underlying module.

4 Explanations and Learning
In many different fields, propagators are defined that explain their propagations in terms of simpler
constructs. For instance in CDCL-based ASP solvers [22, 2, 17], the unfounded set propagator explains
its propagation by means of clauses. Similar explanations are generated for complex constraints in
constraint programming (this is the lazy clause generation paradigm [47]) and in SAT modulo theories
[21]. The idea to generate clauses to explain complex constraints already exists for a long time, see e.g.
[37]. In integer programming, the cutting plane method [16] is used to enforce a solution to be integer.
In this methodology, when a (rational) solution is found, a cutting plane is learned that explains why this
particular solution should be rejected. Similarly, in QBF solving, counterexample-guided abstraction-
refinement (the CEGAR methodology) [14, 27, 43] starts from the idea to first solve a relaxed problem

237

Propagators and Solvers for the AMS Bart Bogaerts et al.

(an abstraction), and on-the-fly add explanations why a certain solution to the relaxation is rejected.
More QBF algorithms are based on some of learning information on the fly [44, 28, 56, 24]. De Cat et
al. [18] defined a methodology where complex formulas are grounded on-the-fly. This is a setting where
inference made by complex formulas is explained in terms of simpler formulas (in this case, formulas
with a lower quantification depth).

The goal of this section is to extract the essential building blocks used in all of the aforementioned
techniques to arrive at an abstract, algebraic, framework with solvers that can learn new constraints/prop-
agators during search. We generalize the common idea underlying each of the above paradigms by
adding explanations and learning to our abstract framework. We present a general notion of an ex-
plaining propagator and define a method to turn such a propagator into a solver that learns from these
explanations. An explaining propagator is a propagator that not only returns the partial structure that is
the result of its propagations (P(A)), but also an explanation (C(A)). This explanation takes the form of
a propagator itself. Depending on the application, explanations must have a specific form. For instance,
for lazy clause generation, the explanation must be a (set of) clause(s); in integer linear programming,
the explanation must be a (set of) cutting plane(s). In general, there are two conditions on the expla-
nation. First, it should explain why the propagator made certain propagations: C(A) should derive at
least what P derives in A. Second, the returned explanation should not be arbitrary, it should be a
consequence of the module underlying the propagator P.

Definition 4.1. An explaining propagator is tuple (P,C) where P is a propagator and C maps each
partial structure either to UNEXPLAINED (notation ♦) or to an explaining propagator C(A) = (P′,C′)
such that the following hold:

(1) (explains propagation) P(A)≤p P′(A).
(2) (soundness): module(P′)⊆ module(P)

Example 4.2. Integer linear programs are often divided into two parts: some solver performs search
using linear constraints. When a solution is found, a checker checks whether this solution is integer-
valued. If not, this checker propagates inconsistency and explains this inconsistency by means of a
cutting plane. This process fits in our general definition of explaining propagator: a cutting plane can
be seen itself as a propagator: during search it can propagate that its underlying constraint is violated .
This propagator explains the inconsistency and is a consequence of the original problem (namely of the
integrality constraint). N

As can be seen, we allow an explaining propagator to not explain certain propagations. For instance,
whenever P(A) = A, nothing new is derived, hence there is nothing to explain. We say that (P,C)
explains propagation from A if either P(A)=A or C(A) 6=♦. Each propagator P as defined in Definition
3.1 can be seen as an explaining propagator (P,C♦), where C♦ maps each partial structure to ♦.

Example 4.3 (Example 3.5 continued). For each natural number n let cln denote the clause Qc≤(n)∨
¬Qd≤(n) and let Pn denote the propagator that performs unit propagation on cln. For each A, let UA

denote the set of all n’s such that at least one literal from cln is false in A. Furthermore, let Cc≤d denote
the mapping that maps each four-valued structure A to{

♦ if Pc≤d(A) = A(×n∈UA
Pn,C♦

)
otherwise,

where×n∈UA
Pn denotes the product of all Pn with n ∈UA. In this case, (Pc≤d ,Cc≤d) is an explaining

propagator. It explains each propagation by means of a set of clauses (the product of propagators Pn for
individual clauses). This particular explanation is used for instance in MinisatID [17] and many other
lazy clause generation CP systems. N

238

Propagators and Solvers for the AMS Bart Bogaerts et al.

In general, using anything as explanation is a bad idea: what we are hoping for is that a propagator
explains its propagations in terms of simpler propagators (where the definition of “simple” can vary from
field to field). In order to generalize this idea, in what follows we assume that ≺ is a strict well-founded
order on the set of all explaining propagators, where smaller propagators are considered “simpler”. In
the following definition, we also require that all propagations need to be explained, except for≺-minimal
propagators.

Definition 4.4. We say that an explaining propagator (P,C) respects ≺ if
• Whenever C(A) = ♦, P(A) = A or (P,C) is ≺-minimal,
• In all other cases, C(A)≺ (P,C) and C(A) respects ≺.

Example 4.5. For lazy clause generation, the order on propagators would be (P,C) ≺ (P′,C′) if P
performs unit propagation for a set of clauses and P′ does not. The conditions in Definition 4.4 guarantee
that each non-clausal propagator explains its propagation in terms of these ≺-minimal propagators; i.e.,
in terms of clauses. N

Example 4.6. When grounding lazily [18], one can consider propagators Pϕ that perform some form
of propagation for a first-order formula ϕ . A possible order ≺ is then: (Pϕ ,Cϕ) ≺ (Pϕ ′ ,Cϕ ′) if ϕ has
strictly smaller quantification depth then ϕ ′. For instance, a propagator for a formula ∀x : ∃y : ψ(x,y) can
explain its propagations by means of a propagator for the formula ∃y : ψ(d,y), where d is an arbitrary
domain element. N

We now show how explaining propagators can be used to build solvers.

Definition 4.7. Let (P,C) be an explaining propagator that respects ≺. We define a learning solver
ls(P,C) as follows. The input of ls(P,C) is a partial structure A. The state of ls(P,C) is a triple (P,B,S)
where P is a set of explaining propagators, B is a (four-valued) structure, and S is a set of (two-
valued) structures. The state is initialised as ({(P,C)},A,∅). The solver performs depth-first search on
the structure B, where each choice point consists of assigning a value to a domain atom unknown in B.
Before each choice point, until a fixed point is reached, B is updated to P∗(B) and P to P∪{C∗(B)},
where (P∗,C∗) is≺-minimal among all elements of P that have P∗(B) 6=B. If no such element exists,
no more propagation is possible and the solver makes another choice. Whenever B is inconsistent, the
solver backtracks over its last choice. If this search encounters a model (a two-valued structure A with
A = P(A)), it stores this model in S and adds (P−{A }check ,C♦) to P . After the search space has been
traversed (i.e., inconsistency is derived without any choice points left), it returns S . Pseudocode for
this solver can be found in Algorithm 3.

Example 4.8 (Examples 3.23 and 4.5 continued). Consider the order ≺ from Example 4.5. Note that
PP

UP performs unit propagation on a set of clauses and hence is≺-minimal. In many modern ASP solvers
[17, 22, 2], PP

UFS explains its propagations in terms of clauses as well, resulting in an explanation mech-
anism CP

UFS. These clauses are typically obtained by applying acyclicity algorithms to the dependency
graph of the program; for details, see for instance [34]. In ls, the order ≺ is then used to prioritize unit
propagation over unfoundedness propagation, conform modern ASP practices. N

Proposition 4.9. Assume A is finite. If (P,C) is an E-explaining propagator, then ls(P,C) is an E-solver.

Sketch of the proof. As before, termination follows from the fact that A is finite. It follows from
the second condition in Definition 4.1 that during execution of ls(P,C) , for all P′ ∈P , it holds that
module(P′)⊆ module(P), hence propagation is indeed correct for E.

239

Propagators and Solvers for the AMS Bart Bogaerts et al.

Algorithm 3 The solver ls(P,C)

1: function SP
p (A)

2: (P,B,S)← ({(P,C)},A,∅)
3: while true do
4: while At least one (P∗,C∗) ∈P has P∗(B) 6=B do
5: Let (P∗,C∗) be a ≺-minimal propagator with P∗(B) 6=B in P
6: B← P∗(B)
7: P ←P ∪{C∗(B)}
8: if B is two-valued or inconsistent then
9: if P(B) =B and B is two-valued then

10: S← S∪{B}
11: P ←P ∪{(P−{A }check ,C♦)}
12: if the last choice updated A′ to A′[Q(d) : t] then
13: B←B′[Q(d) : f]
14: else \\ i.e., if there were no more choices
15: return S
16: else
17: choose B←B[Q(d) : t] for some Q(d) with Q(d)B = u

The next question that arises is: how can explaining propagators for individual modules be combined
into explaining propagators for compound modules? The answer is not always simple. As for regular
propagators, each operation can be defined trivially. In Section 3, being defined trivially meant simply
defining the checker. In this case, additionally, it means that for C we take C♦. Below, we discuss some
more interesting cases. We will use the following notations. If d is a tuple of domain elements, we use
Pd

Q≡R for the propagator that maps each structure A to a structure equal to A except that it interprets

Q(d) and R(d) both as lub≤p(Q(d)A,R(d)A). We use PQ≡R for the propagator×{d∈An}P
d
Q≡R where A

is the domain and n is the arity of Q and R. Furthermore, we use CQ≡R for the mapping that sends A to{
♦ if PQ≡R(A) = A(×{d∈An|Q(d)A 6=R(d)A}P

d
Q≡R,C♦

)
otherwise

Definition 4.10. Assume (P,C) and (P′,C′) are explaining propagators. We define the following ex-
plaining propagators:
• Product of explaining propagators: (P,C)× (P′,C′) = (P×P′,C×C′) where

C×C′ : A 7→

 C(A)×C′(A) if both (P,C) and (P′,C′)
explain propagation from A

♦ otherwise

• Projection of an explaining propagator: πδ (P,C) = (πδ P,πδC), where

πδC : A 7→

 ♦ if A is inconsistent or C(A|δ) = ♦
♦ if A is two-valued on δ and s(P)(A|δ) =∅
πδ (C(A)) otherwise

• Selection of an explaining propagator: σQ≡R(P,C) = (P,C)× (PQ≡R,CQ≡R).

240

Propagators and Solvers for the AMS Bart Bogaerts et al.

Proposition 4.11. The mappings in Definition 4.10 indeed define explaining propagators.

Proof. The proof is similar for all cases. We only give the proof for projection. The proof is by induction
on the structure of C. First assume that C =C♦. In this case, πδ (P,C) = (πδ P,C♦), which is indeed an
explaining propagator.

For the induction case, we can assume that for each A with C(A) 6= ♦, πδC(A) is an explaining
propagator. We show that πδ (P,C) is an explaining propagator. Choose some A with (πδC)(A) 6= ♦.
Let (P′,C′) denote (πδC)(A) and (P′′,C′′) denote C(A). From Definition 4.10, we know that P′ = πδ P′′.

First, we show that πδ (P,C) explains propagation, i.e., that πδ P(A) ≤p P′(A). We know that
P(A) ≤p P′′(A) since (P,C) is an explaining propagator. It follows immediately from the definition
of πδ P that also πδ P(A)≤p πδ P′′(A) = P′(A).

We now show that πδ (P,C) only derives consequences, i.e., that module(P′) |= module(πδ P). We
know that module(P′′) |= module(P). From the definition of the semantics of modular systems, it fol-
lows that then also πδ module(P′′) |= πδ module(P). Furthermore, from Proposition 3.22, we know that
πδ module(P′′) = module(πδ P′′) = module(P′) and πδ module(P) = module(πδ P). The result then fol-
lows.

A Conflict-Driven Learning Algorithm
The CDCL algorithm for SAT lies at the heart of most modern SAT solvers, and also many SMT solvers,
ASP solvers, and others. We now give an algorithm scheme that generalizes the CDCL algorithm to
modular systems.

Definition 4.12. The solver cdl(P,C) is obtained by modifying ls(P,C) as follows. Each time propa-
gation leads to an inconsistent state, we update B,P ← B′,P ∪ {(P′,C′)}, where (B′,(P′,C′)) =
HandleConflict(B,P), and HandleConflict is a function such that

(1) (P′,C′) is an explaining propagator that respects ≺,
(2) A≤p B

′ <p B (backjumping),
(3) (P ∪{(P′,C′)})(B′)>p P(B′) (learning),
(4) module(P)⊆ module(P′) (consequence)

After executing HandleConflict, it is optional to restart by re-setting B to A.
Pseudocode for this solver can be found in Algorithm 4.

The intuition is that HandleConflict is some function that returns a state to backtrack to, and a new
propagator to add to the set of propagators. This new propagator should, in the structure to which we
backtrack, propagate something that was not propagated before. Thus, by analyzing the conflict, we
obtain better information and avoid ending up in the same situation again.

Proposition 4.13. Assume A is finite. If (PE ,CE) is an E-explaining propagator that respects ≺, then
cdl(PE ,CE) is an E-solver.

Sketch of the proof. Correctness of cdl(PE ,CE) follows from correctness of ls(P,C) combined with the
fourth condition for HandleConflict in Definition 4.12. The hardest thing to prove is termination of
this algorithm in case restarts are involved. It can be seen that this algorithm terminates by the fact that
after each conflict, by the third condition in HandleConflict, for at least one partial structure (namely
for B′), strictly more is propagated by (P ∪{(P′,C′)}) than by P . Since the number of propagators is
finite, there cannot be an infinite such sequence, hence only a finite number of conflicts can occur.

The purpose of HandleConflct is to perform a conflict analysis analogous to that in standard CDCL.
This procedure can be anything; in practice, it will depend on the form ≺-minimal propagators take and
on the proof system used for these minimal propagators. Below, we present a sufficient restriction on
≺-minimal propagators to ensure that a procedure HandleConflict exists.

241

Propagators and Solvers for the AMS Bart Bogaerts et al.

Algorithm 4 The solver ls(P,C)

1: function SP
p (A)

2: (P,B,S)← ({(P,C)},A,∅)
3: while true do
4: while At least one (P∗,C∗) ∈P has P∗(B) 6=B do
5: Let (P∗,C∗) be a ≺-minimal propagator with P∗(B) 6=B in P
6: B← P∗(B)
7: P ←P ∪{C∗(B)}
8: if B is two-valued then
9: S← S∪{B}

10: P ←P ∪{(P−{A }check ,C♦)}
11: else if B is inconsistent then
12: if No choices were made then return S
13: (B′,(P′,C′))← HandleConflict(B,P)
14: (B,P)← (B′,P ∪{(P′,C′)}
15: else
16: choose B←B[Q(d) : t] for some Q(d) with Q(d)B = u

Proposition 4.14. Suppose that there exists a function F that takes as arguments two ≺-minimal ex-
plaining propagators (P1,C1) and (P2,C2) that respect ≺, and a partial structure B, and returns an
explaining propagator (P,C) that respects ≺, such that the following hold.

If A<p P1(B)<p P2(P1(B)) and B<p P2(B)<p P2(P1(B)), then module(P1)×module(P2)⊆
module(P) and there exists a structure B′ ≤p B such that P(B′)>p P2(P1(B

′)).

In that case, a procedure HandleConflict that satisfies the restrictions in Definition 4.12 exists.

Sketch of the proof. The idea is that it suffices to be able to combine ≺-minimal propagators since all
propagations can (by iterated calls to the explanation mechanism) be explained in terms of these prop-
agators. Furthermore, the above condition can be applied iteratively to combine more than two ≺-
minimal propagators.

The intuition for F is that it effectively analyses the source of a conflict found by a sequence of
propagations. We want to be able to determine a minimum collection of points in the partial structure
relevant to the conflict. For this, it suffices that we can take two ≺-minimal propagators and “resolve”
them to obtain one with stronger propagation power. Observe that, if we assume that all ≺-minimal
propagators have a representation as clauses, this function can be implemented by means of the standard
resolution used in CDCL conflict analysis process. In general, other resolution mechanisms might be
used. The chosen implementation for F essentially determines the proof system that will be used in the
solver.

Iterated applications of F , starting from the last two propagators that changed state and working
back to earlier propagators allow us to handle conflicts. Note that F is only defined on ≺-minimal
propagators. However, the explanation mechanism in explaining propagators allows us to always reduce
propagators to ≺-minimal propagators by means of calling the explanation method until a minimal
propagator is obtained (this is possible since ≺ is a well-founded order).

242

Propagators and Solvers for the AMS Bart Bogaerts et al.

5 Modular patterns
Sometimes, defining a propagator compositionally does not yield the best result. We identify three
patterns for which we can define a better (more precise) propagator by exploiting a global structure.
The first two optimizations consist of direct implementations for propagators for expressions in the
algebra of modular systems that are not in the minimal syntax (for details, see, e.g., [49]). The third
optimization is based on techniques that were recently used to nest different SAT solvers to obtain a
QBF solver.

Disjunction of Modules. The disjunction of two modules is defined as E1 +E2 = −(−E1×−E2).
Such an operation can be used for instance in the context of a web-shop offering different shipping
option. If the constraints related to each shipping option are specified by the shipping company itself,
possibly in different languages, say in modules MSi for different shipping companies and the desires of
the user are specified in a module MU , then MU × (MS1 + · · ·+MSn) represents a module in which the
users desires are satisfied by at least one shipping company. This can be used to see if the web shop can
satisfy the request or not.

Definition 5.1. Let P1 and P2 be an E1-, respectively E2-, propagator. We define a propagator

P1 +P2 : A 7→ glb≤p
(P1(A),P2(A)).

Intuitively, this propagator only propagates what holds in both P1(A) and P2(A). As such, it indeed
only derives consequences of the disjunction.

Proposition 5.2. The following hold:
• P1 +P2 is a −(−E1×−E2) propagator
• For each consistent partial structure A,

(P1 +P2)(A)≥p −(−P1×−P2)(A).

Sketch of the proof. It is easy to see that A |= −(−E1×−E2) iff A |= E1 or A |= E2. The first point
now follows directly from the definition of P1 +P2. The second point follows from Proposition 3.10
since −(−P1×−P2) is a checker.

Extended selection. It is also possible to allow expressions of the form σΘE where Θ consists of
expressions of the form Q ≡ R or Q 6≡ R and propositional connectives applied to them (for semantics,
see, e.g., [49]). Each such expression can be rewritten to the minimal syntax used in this paper, for
instance σP 6≡QE is equivalent to E×−σP≡QE. By taking an entire such formula into account at once,
more precise reasoning is possible.

Proposition 5.3. Let P be a σΘE-propagator with Θ an expression as above. If Θ |=Q≡ R, then σQ≡RP
is also a σΘE propagator and for all partial structures A, (σQ≡RP)(A)≥p P(A).

Proof. Follows directly from the fact that in this case σQ≡R(σΘE) = σΘE.

Proposition 5.3 states that we can use (symbolic) equality reasoning on Θ to derive more conse-
quences. The following example illustrates the extra propagation power Proposition 5.3 yields.

Example 5.4. Consider the module σ(Q 6≡R∨R≡U)∧(Q≡R)E. It is easy to see that R≡U is a consequence
of the selection expression in this module. As such, Proposition 5.3 guarantees that we are allowed to
improve propagators, to also propagate equality between Q and R. N

243

Propagators and Solvers for the AMS Bart Bogaerts et al.

Improved Negation. Janhunen et al. [26] recently defined a solver that combines two SAT solvers.
The essence of their algorithm can be translated into our theory as follows. Let τ and δ be vocabularies,
E a τ ∪ δ -module and S an E-solver. Assume that there is a procedure Explain such that for each
two-valued τ-structure A such that S(A) 6=∅, A= Explain(A) is a partial τ-structure such that
• A≤p A
• For each two-valued τ structure B ≥p A, S(B) 6=∅.

Thus, Explain explains why a certain module is satisfiable. Given this, Janhunen et al. defined an
explaining propagator P for−πτ E. If A is two-valued on τ , P calls S(A|τ). If the result of this call is not
empty, it propagates a conflict and generates an explanation using Explain(A|τ); this explanation is a
propagator that performs unit propagation for a clause, the negation of the returned partial interpretation
(see [26] for details). Otherwise, P maps A to itself.

This idea has been generalized to work for arbitrary QBF formulas [7]. It forms the essence of many
SAT-based QBF algorithms [44, 56, 24, 28]. Janhunen et al. [26] improved this method by introducing a
notion of an underapproximation. That is, instead of using an E-solver S, they use an Ē-solver S̄, where
Ē is some module derived from E. This allows them to run S̄ before A is two-valued on τ . The module
Ē is constructed in such a way that from runs of S̄, a lot of information can already be concluded without
having a two-valued A. Researching how these underapproximations generalize to modular systems is
a topic for future work.

6 Conclusion and Future Work
In this paper, we defined general notions of solvers and propagators for modular systems. We extended
the algebra of modular systems to modular propagators and showed how to build solvers from propaga-
tors and vice versa. We argued that our notion of propagator generalizes notions from various domains.
Furthermore, we added a notion of explanations to propagators. These explanations generalize concepts
from answer set programming, constraint programming, linear programming and more. We used these
explanations to build learning solvers and discussed how learning solvers can be extended with a con-
flict analysis method, effectively resulting in a generalization of CDCL to other learning mechanisms
and hence also to other proof systems. Finally, we discussed several patterns of modular expressions for
which more precise propagation is possible than what would be obtained by creating the propagators
following the compositional rules.

The main contribution of the paper is that we provide an abstract account of propagators, solvers,
explanations, learning and conflict analysis, resulting in a theory that generalizes many existing algo-
rithms and allows integration of technology of different fields. Our theory allows one to build actual
solvers for modular systems and hence provides an important foundation for the practical usability of
modular systems.

Several topics for future work remain. While the current theory provides a strong foundation, an
implementation is still needed to achieve practical usability. We intend to research more patterns for
which improved propagation is possible, and generalize the aforementioned underapproximations to
our framework. The Algebra of Modular Systems has been extended with a recursion operator (see for
instance [51]); the question “What are good propagators for this operator?” remains an open challenge.

References
[1] Slim Abdennadher and Thom W. Frühwirth. Integration and optimization of rule-based constraint solvers. In

Maurice Bruynooghe, editor, Logic Based Program Synthesis and Transformation, 13th International Sympo-
sium LOPSTR 2003, Uppsala, Sweden, August 25-27, 2003, Revised Selected Papers, volume 3018 of Lecture
Notes in Computer Science, pages 198–213. Springer, 2003.

244

Propagators and Solvers for the AMS Bart Bogaerts et al.

[2] Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and Francesco Ricca. WASP: A native ASP
solver based on constraint learning. In Cabalar and Son [10], pages 54–66.

[3] Franz Baader, Silvio Ghilardi, and Cesare Tinelli. A new combination procedure for the word problem that
generalizes fusion decidability results in modal logics. Inf. Comput., 204(10):1413–1452, 2006.

[4] Fahiem Bacchus and Toby Walsh. Propagating logical combinations of constraints. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages 35–40. Professional Book
Center, 2005.

[5] Marcello Balduccini, Yuliya Lierler, and Peter Schüller. Prolog and ASP inference under one roof. In Cabalar
and Son [10], pages 148–160.

[6] Frédéric Benhamou. Heterogeneous constraint solving. In Michael Hanus and Mario Rodrı́guez-Artalejo, edi-
tors, Algebraic and Logic Programming, 5th International Conference, ALP’96, Aachen, Germany, September
25-27, 1996, Proceedings, volume 1139 of Lecture Notes in Computer Science, pages 62–76. Springer, 1996.

[7] Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi. Solving QBF instances with nested SAT solvers. In
Adnan Darwiche, editor, Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February
12, 2016., volume WS-16-05 of AAAI Workshops. AAAI Press, 2016.

[8] Mohammad Reza Bonyadi, Zbigniew Michalewicz, and Luigi Barone. The travelling thief problem: The first
step in the transition from theoretical problems to realistic problems. In Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2013, Cancun, Mexico, June 20-23, 2013, pages 1037–1044. IEEE, 2013.

[9] Sebastian Brand and Roland H. C. Yap. Towards ”propagation = logic + control”. In Sandro Etalle and
Mirosław Truszczyński, editors, Logic Programming, 22nd International Conference, ICLP 2006, Seattle,
WA, USA, August 17-20, 2006, Proceedings, volume 4079 of LNCS, pages 102–116. Springer, 2006.

[10] Pedro Cabalar and Tran Cao Son, editors. Logic Programming and Nonmonotonic Reasoning, 12th Inter-
national Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings, volume 8148 of
LNCS. Springer, 2013.

[11] Shelvin Chand and Markus Wagner. Fast heuristics for the multiple traveling thieves problem. In Tobias
Friedrich, Frank Neumann, and Andrew M. Sutton, editors, Proceedings of the 2016 on Genetic and Evolu-
tionary Computation Conference, Denver, CO, USA, July 20 - 24, 2016, pages 293–300. ACM, 2016.

[12] Paula Chocron, Pascal Fontaine, and Christophe Ringeissen. A gentle non-disjoint combination of satisfiabil-
ity procedures. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, Automated Reasoning
- 7th International Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 19-22, 2014. Proceedings, volume 8562 of Lecture Notes in Computer Science, pages
122–136. Springer, 2014.

[13] Paula Chocron, Pascal Fontaine, and Christophe Ringeissen. A polite non-disjoint combination method: The-
ories with bridging functions revisited. In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction
- CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings, volume 9195 of Lecture Notes in Computer Science, pages 419–433. Springer, 2015.

[14] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

[15] E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM, 13(6):377–
387, 1970.

[16] G Dantzig, R Fulkerson, and S Johnson. Solution of a large-scale traveling-salesman problem. Operations
Research, 2:393–410, 1954.

[17] Broes De Cat, Bart Bogaerts, Jo Devriendt, and Marc Denecker. Model expansion in the presence of function
symbols using constraint programming. In 2013 IEEE 25th International Conference on Tools with Artificial
Intelligence, Herndon, VA, USA, November 4-6, 2013, pages 1068–1075. IEEE Computer Society, 2013.

[18] Broes De Cat, Marc Denecker, Maurice Bruynooghe, and Peter J. Stuckey. Lazy model expansion: Interleav-
ing grounding with search. J. Artif. Intell. Res. (JAIR), 52:235–286, 2015.

[19] Thibaut Feydy and Peter J. Stuckey. Lazy clause generation reengineered. In Ian P. Gent, editor, Principles and
Practice of Constraint Programming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal,

245

Propagators and Solvers for the AMS Bart Bogaerts et al.

September 20-24, 2009, Proceedings, volume 5732 of Lecture Notes in Computer Science, pages 352–366.
Springer, 2009.

[20] Pascal Fontaine. Combinations of theories for decidable fragments of first-order logic. In Silvio Ghilardi
and Roberto Sebastiani, editors, Frontiers of Combining Systems, 7th International Symposium, FroCoS 2009,
Trento, Italy, September 16-18, 2009. Proceedings, volume 5749 of Lecture Notes in Computer Science, pages
263–278. Springer, 2009.

[21] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. DPLL(T): fast
decision procedures. In Rajeev Alur and Doron Peled, editors, Computer Aided Verification, 16th Interna-
tional Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings, volume 3114 of LNCS, pages
175–188. Springer, 2004.

[22] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set solving: From theory to
practice. Artif. Intell., 187:52–89, 2012.

[23] Michael Gelfond, Veena S. Mellarkod, and Yuanlin Zhang. Systems integrating answer set programming
and constraint programming. In Marc Denecker, editor, Second Workshop on Logic and Search, 2008, pages
145–152. ACCO, 2008.

[24] Alexandra Goultiaeva, Martina Seidl, and Armin Biere. Bridging the gap between dual propagation and cnf-
based QBF solving. In Enrico Macii, editor, Design, Automation and Test in Europe, DATE 13, Grenoble,
France, March 18-22, 2013, pages 811–814. EDA Consortium San Jose, CA, USA / ACM DL, 2013.

[25] Martin James Green and Christopher Jefferson. Structural tractability of propagated constraints. In Peter J.
Stuckey, editor, Principles and Practice of Constraint Programming, 14th International Conference, CP 2008,
Sydney, Australia, September 14-18, 2008. Proceedings, volume 5202 of Lecture Notes in Computer Science,
pages 372–386. Springer, 2008.

[26] Tomi Janhunen, Shahab Tasharrofi, and Eugenia Ternovska. SAT-to-SAT: Declarative extension of SAT
solvers with new propagators. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages
978–984. AAAI Press, 2016.

[27] Mikolás Janota, William Klieber, Joao Marques-Silva, and Edmund M. Clarke. Solving QBF with counterex-
ample guided refinement. Artif. Intell., 234:1–25, 2016.

[28] Mikolás Janota and Joao Marques-Silva. Solving QBF by clause selection. In Qiang Yang and Michael
Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 325–331. AAAI Press, 2015.

[29] Christopher Jefferson, Neil C. A. Moore, Peter Nightingale, and Karen E. Petrie. Implementing logical con-
nectives in constraint programming. Artif. Intell., 174(16-17):1407–1429, 2010.

[30] Antonina Kolokolova, Yongmei Liu, David G. Mitchell, and Eugenia Ternovska. On the complexity of model
expansion. In Christian G. Fermüller and Andrei Voronkov, editors, Logic for Programming, Artificial In-
telligence, and Reasoning - 17th International Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15,
2010. Proceedings, volume 6397 of Lecture Notes in Computer Science, pages 447–458. Springer, 2010.

[31] Olivier Lhomme. An efficient filtering algorithm for disjunction of constraints. In Francesca Rossi, editor,
Principles and Practice of Constraint Programming - CP 2003, 9th International Conference, CP 2003, Kin-
sale, Ireland, September 29 - October 3, 2003, Proceedings, volume 2833 of LNCS, pages 904–908. Springer,
2003.

[32] Olivier Lhomme. Arc-consistency filtering algorithms for logical combinations of constraints. In Jean-Charles
Régin and Michel Rueher, editors, Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, First International Conference, CPAIOR 2004, Nice, France, April 20-22,
2004, Proceedings, volume 3011 of Lecture Notes in Computer Science, pages 209–224. Springer, 2004.

[33] Yuliya Lierler and Miroslaw Truszczynski. On abstract modular inference systems and solvers. Artif. Intell.,
236:65–89, 2016.

[34] Maarten Mariën. Model Generation for ID-Logic. PhD thesis, Department of Computer Science, KU Leuven,
Belgium, February 2009.

[35] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers. In Armin

246

Propagators and Solvers for the AMS Bart Bogaerts et al.

Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pages 131–153. IOS Press, 2009.

[36] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[37] David G. Mitchell. Hard problems for CSP algorithms. In Jack Mostow and Chuck Rich, editors, Proceedings
of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial
Intelligence Conference, AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA., pages 398–405.
AAAI Press / The MIT Press, 1998.

[38] David G. Mitchell and Eugenia Ternovska. Clause-learning for modular systems. In Francesco Calimeri,
Giovambattista Ianni, and Mirosław Truszczyński, editors, Logic Programming and Nonmonotonic Reasoning
- 13th International Conference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings,
volume 9345 of Lecture Notes in Computer Science, pages 446–452. Springer, 2015.

[39] Tobias Müller and Jörg Würtz. Constructive disjunction in oz. In WLP, pages 113–122, 1995.
[40] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM Trans. Program.

Lang. Syst., 1(2):245–257, 1979.
[41] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo theories: From an

abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM, 53(6):937–977, 2006.
[42] Max Ostrowski and Torsten Schaub. ASP modulo CSP: The clingcon system. TPLP, 12(4–5):485–503, 2012.
[43] Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In Roope Kaivola and Thomas Wahl,

editors, Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30,
2015., pages 136–143. IEEE, 2015.

[44] Darsh P. Ranjan, Daijue Tang, and Sharad Malik. A comparative study of 2QBF algorithms. In SAT 2004 - The
Seventh International Conference on Theory and Applications of Satisfiability Testing, Online Proceedings,
2004.

[45] D. Saccà and C. Zaniolo. Stable models and non-determinism in logic programs with negation. In Proceedings
of the Ninth ACM Symposium on Principles of Database Systems, pages 205–217. ACM Press, 1990.

[46] Roberto Sebastiani. Lazy satisability modulo theories. JSAT, 3(3-4):141–224, 2007.
[47] Peter J. Stuckey. Lazy clause generation: Combining the power of SAT and CP (and mip?) solving. In Andrea

Lodi, Michela Milano, and Paolo Toth, editors, Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, 7th International Conference, CPAIOR 2010, Bologna, Italy,
June 14-18, 2010. Proceedings, volume 6140 of Lecture Notes in Computer Science, pages 5–9. Springer,
2010.

[48] Shahab Tasharrofi and Eugenia Ternovska. A semantic account for modularity in multi-language modelling
of search problems. In Cesare Tinelli and Viorica Sofronie-Stokkermans, editors, Frontiers of Combining Sys-
tems, 8th International Symposium, FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011. Proceedings,
volume 6989 of Lecture Notes in Computer Science, pages 259–274. Springer, 2011.

[49] Shahab Tasharrofi and Eugenia Ternovska. Three semantics for modular systems. In Sébastien Konieczny
and Hans Tompits, editors, Proceedings of the Fifteenth International Workshop on Non-monotonic Reasoning
(NMR-14), number RR-1843-14-01 in INFSYS, pages 59–68. Institut fur Informationssysteme, 2014.

[50] Shahab Tasharrofi and Eugenia Ternovska. Modular systems: Semantics, complexity. In Proceedings of HR
workshop, 2015.

[51] Eugenia Ternovska. Static and dynamic views on the algebra of modular systems. In Proceedings of NMR,
2016.

[52] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson-Oppen combination procedure.
In FroCoS, pages 103–119, 1996.

[53] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for general logic
programs. J. ACM, 38(3):620–650, 1991.

[54] Markus Wagner. Stealing items more efficiently with ants: A swarm intelligence approach to the travelling
thief problem. In Marco Dorigo, Mauro Birattari, Xiaodong Li, Manuel López-Ibáñez, Kazuhiro Ohkura,

247

Propagators and Solvers for the AMS Bart Bogaerts et al.

Carlo Pinciroli, and Thomas Stützle, editors, Swarm Intelligence - 10th International Conference, ANTS 2016,
Brussels, Belgium, September 7-9, 2016, Proceedings, volume 9882 of Lecture Notes in Computer Science,
pages 273–281. Springer, 2016.

[55] Jörg Würtz and Tobias Müller. Constructive disjunction revisited. In Günther Görz and Steffen Hölldobler,
editors, KI-96: Advances in Artificial Intelligence, 20th Annual German Conference on Artificial Intelligence,
Dresden, Germany, September 17-19, 1996, Proceedings, volume 1137 of Lecture Notes in Computer Science,
pages 377–386. Springer, 1996.

[56] Lintao Zhang and Sharad Malik. Towards a symmetric treatment of satisfaction and conflicts in quantified
Boolean formula evaluation. In Pascal Van Hentenryck, editor, Principles and Practice of Constraint Pro-
gramming - CP 2002, 8th International Conference, CP 2002, Proceedings, volume 2470 of LNCS, pages
200–215. Springer, 2002.

248

	Introduction
	Modular Systems
	Propagators and Solvers
	Explanations and Learning
	Modular patterns
	Conclusion and Future Work

