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Abstract 

Designing complex, multi-occupancy building layouts requires considering 

complicated spatial arrangements, design constraints, and strict accessibility 

requirements. Despite advancements in automatic building layout generation, existing 

methods struggle to address the complexities of these layouts and often overlook critical 

accessibility features. This paper presents a novel deep learning-based approach for 

generating complex, multi-occupancy building layouts that meet both architectural and 

accessibility standards. To improve the efficiency of training, non-corridor rooms are 

approximated by minimum rotation rectangles, while a graph neural network (GNN) 

predicts the number of corners for corridors. To address the quadratic complexity of 

transformers, we incorporate FlashAttention, to enhance computational efficiency. 

Accessibility features are integrated into the model by enforcing geometric 

requirements, including room size ratios and maximum corner distances to account for 

travel distance to egress. Additionally, a distance penalty is introduced in the loss 

function to ensure compliance with wheelchair clearance requirements. Experimental 

results show that our approach outperforms baseline models in generating realistic, 

complex layouts while ensuring compliance with design and accessibility constraints, 

making it a robust solution for generating multi-occupancy building layouts. 

1 Introduction 

Designing building layouts is a critical, resource-intensive aspect of building design, involving 

iterative collaboration between designers and clients to balance client needs and regulatory constraints 

such as accessibility requirements. Automatic building layout generation has the potential to 

revolutionize architectural design by enabling architects and designers to produce layouts that meet 

specific criteria using algorithms and machine learning models.  
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Early efforts in this domain relied heavily on rule-based systems and optimization algorithms to 

generate layouts (Dincer et al., 2014; Nisztuk and Myszkowski, 2019), which, while effective for 

simpler designs, struggled to scale up for more complex architectural demands. Recent advances in 

machine learning, especially generative models such as Generative Adversarial Networks (GANs), 

have provided more sophisticated tools for tackling these challenges. GANs and other deep learning 

models can generate layouts by learning patterns from large datasets (Nauata et al., 2020; Aalaei et 

al., 2023; Luo and Huang, 2022). These methods excel at creating diverse and realistic layouts but 

have primarily been limited to small or single-unit layouts.  

However, real-world designs, especially multi-occupancy building layouts, are significantly more 

complex than single-unit layouts. Multi-occupancy building layouts contain more rooms, more 

complex spatial arrangements, and stricter accessibility requirements. These accessibility 

requirements, such as ensuring adequate clearance for wheelchair, and adhering to egress distance 

requirements, add an additional layer of complexity to the design process. Such constraints are 

essential to meet building codes, such as the Americans with Disabilities Act (ADA), and to ensure 

inclusivity in the built environment. These complexities present unique challenges that existing 

models struggle to address and require more scalable model designs and the integration of constraints 

throughout the generative process.   

To address these challenges, this paper introduces a novel approach for generating accessible 

multioccupancy building layouts using a combination of graph neural network (GNN) and a 

constrained diffusion model. To handle the increased size and complexity of multi-occupancy 

building layouts, we optimized the input encoding and incorporated more advanced attention 

mechanisms to improve learning efficiency. We also introduced additional inputs, including the 

maximum travel distance within each room, and modified the model’s loss function to account for 

wheelchair accessibility requirements. The proposed approach consists of three key steps: encoding 

building layout and input requirements, predicting the number of corners for corridors, and generating 

building layouts through a constrained diffusion process. We trained and validated our model using 

the Modified Swiss Dwellings (MSD) dataset, an open-source collection of multi-apartment building 

layouts. Our test results demonstrate that the proposed method outperforms existing approaches in 

generating complex, accessible multioccupancy building layouts. 

2  Background 

Generative design of building layouts leverages algorithms, ranging from rule-based, 

optimization, and artificial intelligence (AI) and machine learning, to automatically generate and 

optimize building layouts. Early methods capitalized on rule-based methods and optimization 

methods. For example, Dincer et al. (2014) encoded the adjacency of spaces as neighboring rules and 

used cellular automata to generate layouts within 8 by 8 grids. Nisztuk and Myszkowski (2019) 

utilized evolutionary algorithms to generate designs that adhere the topology requirements. These 

methods rely on extensive hand-crafted features and predefined rules, and they lack flexibility in 

adapting changes in rules. comes to change of rules.   

Recently, machine learning methods has become more popular due to its better adaptability and 

performance in creating more realistic building layouts. These methods primarily focus on single-unit 

residential floor plan layout, and use datasets such as RPLAN (Wu et al., 2019), LIFULL (LIFULL, 

2015). For instance, Wu et al. (2019) employed an encoder-decoder model that can generate 

convincing layouts. To include room connectivity requirements, Nauata et al. (2020) and Nauata et al. 

(2021) combined graph neural networks with GANs to generate layouts from bubble diagrams, using 

LIFULL and RPLAN to develop their model. Shabani et al. (2023) proposed using a constrained 

diffusion model to generate layouts based on bubble diagrams. Relying solely on bubble diagrams to 
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condition the GAN model often results in arbitrary boundaries, which are not sufficiently practical for 

real-world applications. To control the output boundary of layouts, Zheng et al. (2020), Aalaei et al. 

(2023), Luo and Huang (2022), Hu et al. (2020) develop their models using RPLAN dataset and 

incorporated layout boundaries into the GAN model, constraining the output’s boundary shape.  

There are also a few research focusing on multi-occupancy building layouts generation. For 

instance, Wang et al. (2023) used a U-Net with a spatial attention mechanism to generate building 

layouts, given boundary constraints. They mainly focus on higher-level layout and omit the layout 

within each apartment in the building layout. Kuhn (2024) used diffusion model to generate building 

layouts given structural walls and room connectivity, however, the generated layouts remain overly 

simplified because all rooms are represented as rectangles, and their visual quality is low (Van 

Engelenburg et al., 2024).  

While these methods have succeeded in generating realistic building layouts and incorporating 

basic requirements such as room connectivity and boundary constraints, they still face two significant 

limitations. First, existing models struggles with generating complex geometries and topologies in 

building layouts. Figure 1 compares the multi-apartment building layout dataset MSD (Van 

Engelenburg et al., 2024) with the RPLAN and LIFULL datasets, which are single-unit floor plan 

layouts. It is evident that multi-apartment building layout are considerably more complex than single-

unit plans, as they involve a larger number of rooms, increased spatial complexity, and more intricate 

connectivity requirements between units. The sheer volume of rooms and connections requires more 

efficient encoding mechanisms and a more scalable model architecture capable of managing the 

additional complexity. Second, current methods largely overlook the integration of accessibility 

requirements, which are critical to ensuring both regulatory compliance and inclusivity in building 

design. For example, the International Building Code (IBC) and ADA mandate that the travel 

distance to an egress in a building with a single exit point must not exceed 22.86 meters. 

Additionally, wheelchair accessibility standards require that corridors have a minimum width of 1.5 

meters to accommodate wheelchair users. These interconnected requirements add further complexity 

to the building layout generation process, as they must be considered holistically to ensure that the 

resulting designs are functional, compliant, and accessible. Addressing these two gaps is essential for 

making automated building layout designs more applicable in real-world architectural projects.  

 

 

 

Figure 1: Comparison between floor plan layout datasets (Van Engelenburg et al. 2024) 
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3 Method 

Our proposed approach for multi-occupancy building layout generation employs a GNN and a 

constrained diffusion model, consisting of three primary steps as depicted in Figure 2.  

 

Step 1. Building layout and input requirement encoding. Each room in a building layout is 

represented as a polygon, with non-corridor rooms simplified as rectangles with a fixed number of 

four corners to ensure computational efficiency. The corner number of corridors will be predicted 

using GNN in Step 2. The input requirement includes a bubble diagram to defines room connectivity 

and types, building layout’s boundary, and size requirements including room sizes and the maximum 

distances between corners for accessibility compliance. Room center coordinates are also encoded to 

control the spatial positioning of the generated rooms.   
Step 2. Corridor corner number prediction. Corridors, unlike other rooms, require a more 

flexible representation because their shape depend on the arrangement of adjacent rooms. The corner 

number for corridors is variable and must be predicted. To handle this, we employ a GNN that 

predicts the number of corners for each corridor based on the spatial context of the surrounding 

rooms. The inputs to the GNN include the bubble diagram, room sizes, and room center coordinates, 

allowing the model to adaptively determine the appropriate corridor corner number, ensuring that it 

fits seamlessly within the overall building layout.  

Step 3. Building layout generation using diffusion model. We use a constrained diffusion 

model to generate the building layout by progressively refining it through denoising steps. 

Conditioned on the input encoded in the first step, the model employs a transformer architecture 

optimized for handling the complexity of multioccupancy building layouts. Several attention 

mechanisms are incorporated to allow the transformer to learn the intricate relationships between 

Figure 2: Proposed approach 
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connected rooms, boundaries, and corner coordinates within each room. Furthermore, a modified loss 

function is introduced to ensuring wheelchair clearance requirements.   

3.1 Building layout and Input Requirement Encoding 

(1) Building Layout Encoding 

Given a building layout 𝐹 , Let 𝐹 = {𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑁} , where 𝑅𝑁  is the room in 𝐹 . 𝑅𝑁  is 

represented as a polygon, which are a sequence of 2D coordinates. For each 𝑅𝑖  in 𝐹 , 𝑅𝑖 =

{𝑐𝑖,1, 𝑐𝑖,2, 𝑐𝑖,3, … , 𝑐𝑖,𝑁}. 𝑐𝑖,𝑁 is the 2D coordinates and 𝑁 is the number of corners. The challenge for 

such encoding lies in determining the number of corners 𝑁. A simple approach would be to fix 𝑁 as 

the maximum number of corners found in the dataset. While this might work for single-unit layouts, it 

becomes highly inefficient for complex layouts. For instance, a 40-room layout could require over 

1000 corner coordinates, making transformer-based models, with their quadratic complexity, 

impractical to train. Some of the previous studies (Nauata et al., 2018; Van Engelenburg et al., 2024) 

treat each room as a rectangle, but this simplification results in a significant loss of detail. To balance 

efficiency and detail retention, we simplify non-corridor rooms by approximating them using a 

minimum bounding rectangle, as most non-corridor rooms are close to rectangular. However, 

corridors, with their irregular and variable shapes, depend heavily on the configuration of surrounding 

rooms and cannot be effectively approximated as rectangles. For these, we use a GNN to predict the 

number of corners. This approach reduces the representation to fewer than 200 corner coordinates for 

a 40-room layout, making it computationally feasible while preserving essential detail. The GNN 

model is discussed in detail in Section 3.2. Figure 3 illustrates how non-corridor rooms are simplified 

into rectangles while preserving the original shapes of the corridors (beige color).  

 

 

(2) Boundary Encoding 

The building layout boundary defines the overall shape of the layout. Similar to building layout, 

the boundary is represented as a polygon formed by a sequence of 2D corner coordinates, which can 

be expressed as 𝑏𝑑 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑁} , where 𝐶𝑁represents the 2D coordinates of the boundary 

corners. 

(3) Bubble Diagram Encoding 

Figure 3: Example of simplified building layout 
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The bubble diagram represents room types and their connections, encoded as an adjacency matrix 

𝐴, where each element 𝐴𝑖𝑗 being defined by as Equation (1) 

𝐴𝑖𝑗  =  {
0     if room 𝑖 is connected to room 𝑗
1     otherwise 

                                  (1) 

The adjacency matrix also serves as an attention mask in the transformer model, directing the 

network’s focus during training. A ‘0’ in the matrix indicates a direct connection between two rooms. 

(4) Room Size and Room Center Encoding 

Room size and center encodings capture additional accessibility and spatial requirements. The 

room size requirement includes two components: the room size ratio, represented as the ratio of the 

room area to the total building layout area, ensuring each room meets the specified size constraints, 

and the maximum distance between corners, which represents the longest possible travel distance 

within a room. This distance is crucial for calculating the travel distance to the nearest egress and 

ensuring compliance with egress requirements. The room center is encoded as 2D coordinates, which 

control the spatial positioning of the generated rooms within the building layout. These encodings 

ensure that the model maintains spatial coherence and adheres to critical size and accessibility 

requirements during the generation process. 

3.2 Corridor Corner Number Prediction 

Since corridors heavily depend on the spatial arrangement of surrounding rooms, we employ a 

GNN to predict the number of corners for corridors dynamically. To achieve this, we use a Graph 

Attention Network (GAT) due to its ability to efficiently model the complex relationships between 

rooms. This is particularly beneficial for corridor corner prediction, as the shape and size of corridors 

are influenced by internal room connectivity. The node features in the graph are comprised of the 

room type, room size, and room center coordinates. The edges in the graph represent whether two 

rooms are connected, based on the adjacency matrix defined in the bubble diagram. As shown in 

Figure 2, we use three graph attention convolutional (GATConv) layers in our model. 

Additionally, an extra input for the building layout boundary is incorporated into the model as the 

boundary also influence the shape of corridor. The boundary input is processed using a linear layer to 

align its features with the room-based graph. After this, an attention layer combines the boundary 

features and the graph features by computing their relevance, which helps the model attend to 

important boundary information when predicting corridor corner numbers. 

3.3 Diffusion Model for Building Layout Generation 

(1) Forward and Backward Processes 

During the forward diffusion process, Gaussian noise is progressively added to these corner 

coordinates, gradually transforming the original building layout into random noise. This process 

follows Equation (2). where 𝛾𝑡  is a noise schedule that transitioning from 1 to 0, and ϵ∼N(0, I) 

represents Gaussian noise. This process transforms 𝑥0 into random noise 𝑥𝑡. 

𝑥𝑡 = √𝛾𝑡𝑥0 + √(1 − 𝛾𝑡)𝜖                                                       (2) 

The reverse process leverages a transformer model to iteratively remove the noise, gradually 

reconstructing the building layout from its noisy state. The denoising is conditioned on inputs 

discussed in Section 3.1 ensuring that the generated building layout adheres to design constraints and 

accessibility requirements. This iterative refinement allows the model to generate accurate and 

compliant building layouts. 

(2) Feature Embedding 

Figure 4 shows the transformer architecture. The model utilized four embeddings: building layout, 

condition, boundary, and time embeddings. All embeddings are projected into a 512-dimensional 

feature space for consistency. 
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Building Layout Embedding. The building layout coordinates are projected into a 512-

dimensional space using a linear layer. 

Condition Embedding. Room features, including index, type, corner index, size, maximum corner 

distance, and room center coordinates, are encoded. The index and type are represented as one-hot 

vectors, room center coordinates are encoded as 2D coordinates, and size and corner distance are 

encoded as scalars. These features are then concatenated and expanded to 512 dimensions using a 

linear layer. 

Boundary Embedding. The input boundary is encoded and projected into a 512-dimensional vector 

using a linear layer, ensuring boundary constraints are incorporated during generation. 

Time Embedding. The diffusion step is encoded as a scalar and projected into 512 dimensions, 

allowing the model to track the generation process over time. 

Finally, the building layout, condition, and time embeddings are concatenated to form the input for 

the model. 

(3) Transformer Architecture 

The transformer model in our approach utilizes multiple new attention mechanisms (Dao et al., 

2022), replacing standard attention mechanisms to address the quadratic complexity issue in typical 

transformer architectures. FlashAttention significantly reduces both computational cost and memory 

requirements, enabling efficient processing of longer sequences and allowing us to handle complex, 

multi-occupancy building layouts with greater scalability. This optimization ensure that our model 

can generate intricate layouts without the prohibitive computational overhead. In our experiments, 

training time was reduced by half when using FlashAttention compared to traditional attention 

mechanisms. 

 

We first integrate three attention mechanisms adapted from Shabani et al. (2023): component-

wise self-attention within rooms, global self-attention across all corners, and relational cross-attention 

between connected rooms. 

To incorporate the building layout boundary, we use a boundary-to-corner cross-attention module 

(Equation (3)) to capture interactions between boundary corners and room corners, ensuring proper 

alignment between the room layout and the external boundary.  

Figure 4: Transformer architecture 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛boundary-to-corner  (𝑄, 𝐾𝑏 , 𝑉𝑏) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑏

𝑇

√𝑑𝑏
) 𝑉𝑏                     (3) 

In this equation, 𝑄 is derived from a concatenation of the condition embedding, time embedding, 

and room corner embedding features. 𝐾𝑏 and 𝑉𝑏 are the key and value matrices from the boundary 

embeddings, and 𝑑𝑏 is the dimensionality of the boundary key vectors. 

Additionally, we modified the loss function by incorporating a distance penalty (Equation (4)), 

which enforces a minimum distance between room corners. This penalty ensures compliance with 

accessibility requirements by maintaining wheelchair clearance. 

 penalty 
distance 

= ∑  𝑛
𝑖=1 𝑚𝑎𝑥(0, 𝑑𝑚𝑖𝑛 − 𝑑(𝑝𝑖 , 𝑝𝑖+1))                             (4) 

Where 𝑛 is the corner number of room, 𝑝𝑖  and 𝑝𝑖+1 represent consecutive corner points of a room. 

𝑑(𝑝𝑖 , 𝑝𝑖+1) is the Euclidean distance between two consecutive corner points. 𝑑𝑚𝑖𝑛  is the minimum 

required distance, in our experiment, we set 𝑑𝑚𝑖𝑛  as the smallest minimum distance between room 

corners in ground truth. The penalty works by penalizing cases where the distance between 

consecutive corners falls below the specified minimum 𝑑𝑚𝑖𝑛. This encourages the model to generate 

rooms that maintain sufficient space for wheelchair clearance between their corners. 

The final loss function combines the corner coordinate mean squared error (MSE) loss with the 

distance penalty to balance the precision of corner positioning and adherence to accessibility 

constraints. As shown in Equation (5).  

Loss = (1-𝜆) MSE 
corners 

+ 𝜆 ⋅  penalty 
distance 

                                 (5) 

Where 𝜆 is a hyperparameter controlling the influence of the distance penalty relative to the corner 

MSE loss. In our experiment, we set 𝜆 = 0.5. 

4 Experiments and Results 

4.1 Dataset Preparation 

For our experiments, we employed the MSD dataset, which contains over 5,300 building layouts 

of medium- to large-scale building complexes, encompassing more than 18,900 distinct apartments. 

Each building layout includes annotations for rooms, structural components, and bubble diagrams, 

offering a diverse range of room shapes. The dataset provides 13 room type categories, essential for 

capturing the diverse spatial arrangements and functional requirements of real-world designs.  

For the cleaning process, we removed building layouts with an excessive number of rooms to 

ensure consistency and manageability in training. This filtering step helped eliminate overly complex 

layouts that could introduce noise, ensuring the dataset remained representative of typical multi-

apartment designs while maintaining computational efficiency. Additionally, we observed that the 

original dataset was not axis-aligned. To address this, we rotated the building layouts to align them 

with the axes, which also served as a data augmentation technique to improve model generalization. 

Both the original, non-axis-aligned and the newly axis-aligned building layouts were used during 

training. In total, we used 11,166 building layouts for training, 300 for validation, and 712 for testing. 

4.2 Model Training 

The model was trained using PyTorch with the Adam optimizer and a batch size of 128. Training 

lasted for 84,000 steps, starting with a learning rate of 1e-3, which was reduced by a factor of 10 after 

every 50,000 steps. The diffusion process was structured over 1,000 steps with uniformly sampled 

time steps. 
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4.3 Evaluation Metrics 

Graph compatibility. This metric evaluates how well the generated building layout matches the 

input bubble diagram in terms of room connectivity. The graph compatibility is defined in Equation 

(6). 

Compatibility(𝑄, 𝐾) =
1

𝑆
∑  𝑆

𝑖=1
1

|𝐸𝑖
𝐾|

∑  𝑒∈𝐸𝑖
𝐾 1[𝑒 ∈ 𝐸𝑖

𝑄]                            (6) 

 

where 𝑆 represents the total number of test samples, 𝐸𝑖
𝐾  represents the set of edges in the graph 

extracted from the generated building layout 𝐾, and 𝐸𝑖
𝑄

represents the edges from the input bubble 

diagram 𝑄. 1[𝑒 ∈ 𝐸𝑖
𝑄] is an indicator function that equals 1 if the edge 𝑒 exists in both 𝐸𝑖

𝐾and 𝐸𝑖
𝑄

, and 

0 otherwise. 

Boundary mean intersection over union (MIoU). This metric evaluates the overlap between the 

input and generated building layout boundaries. The MIoU is defined in Equation (7).  

MIoUboundary (𝐵in , 𝐵out ) =
1

𝑆
∑  𝑆

𝑖=1
|𝐵in ∩𝐵out |

|𝐵in ∪𝐵out |
                                     (7) 

where 𝐵in  represents the input boundary, 𝐵out represents the output boundary, and the IoU 

measures the overlap between the input and generated boundaries. 𝑆 is the number of samples.  

Size requirement MSE. The MSE is used to measure the combined difference between the 

predicted room sizes and the maximum distances between room corners, compared to the ground 

truth, as shown in Equation (8).  

MSEsize =
1

𝑆
∑  𝑆

𝑖=1 [(𝑠̂𝑖 − 𝑠𝑖)
2 + (𝑑̂max ,𝑖 − 𝑑max ,𝑖)

2
]                             (8) 

where 𝑠𝑖 is the actual room size, 𝑠̂𝑖 is the room size calculated from generated building layouts, 

𝑑max ,𝑖 is the actual maximum corner distance, and 𝑑̂max ,𝑖 is the maximum corner distance calculated 

from generated building layouts. 𝑆 is the number of samples. 

Wheelchair clearance compliance percentage. We measure the percentage of rooms that 

comply with the required wheelchair clearance. This metric is defined in Equation (9).  

Compliance =
 Number of compliant rooms 

 Total number of rooms 
× 100%                               (9) 

This metric calculates the proportion of rooms that meet the accessibility requirements for 

wheelchair clearance. 

 

4.4 Experimental Results and Discussion 

Figure 5 showcases sample output building layouts alongside the ground truth, demonstrating the 

performance of our proposed approach. The generated plans closely adhere to the input requirements, 

with room locations and sizes highly similar to the ground truth. Although boundary alignment is not 

always perfect, the model consistently produces layouts that are remarkably close to the ground truth 

boundaries. 
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Table 1 presents the graph compatibility and boundary MIoU for our proposed approach compared 

to the baseline model across different room count intervals. The baseline model is a simplified version 

that does not incorporate data augmentation or boundary inputs. In terms of graph compatibility, our 

approach consistently outperforms the baseline in graph compatibility across all room count intervals, 

with an average improvement of 3%. These results demonstrate the effectiveness of data 

augmentation in capturing the room connectivity relationships. Regarding boundary MIoU, our 

approach surpasses the baseline by an average of 16%. These improvements suggest that the proposed 

approach better maintains alignment between the generated and input boundaries, benefiting from the 

inclusion of boundary input in the training process. 

 

Room count 

interval 

Proposed approach Baseline  

Graph 

compatibility↑ 

Boundary 

MIoU↑ 

Graph 

compatibility↑ 

Boundary 

MIoU↑ 

10-20 0.78 0.73 0.74 0.58 

20-30 0.79 0.74 0.76 0.59 

30-40 0.82 0.73 0.8 0.58 

40-50 0.82 0.74 0.79 0.56 

Note: bold=best performance; ↑indicates that higher values are better.↓indicates that lower values are better. 

Table 1: Graph compatibility and boundary MIoU test results 

Table 2 compares the Size requirement MSE and wheelchair clearance compliance percentage for 

our proposed approach and the baseline model across different room count intervals. The baseline 

model does not include the maximum length input or the distance penalty in the loss function, which 

impacts its ability to enforce accessibility constraints. For the room size and corner distance MSE, the 

baseline has comparable results in the lower room count intervals. However, as the room count 

increases, our proposed approach shows improvement, achieving 0.01 of improvements. For 

wheelchair clearance compliance percentage, our proposed approach outperforms the baseline in the 

latter three room count intervals and with an average improvement of 1.7%. This demonstrates that 

Figure 5: Generated samples 
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the inclusion of the maximum length input and distance penalty leads to better accessibility 

compliance, especially in larger and more complex layouts. 

 

Room 

count 

interval 

Proposed approach Baseline 

Size 

requirement 

MSE↓ 

Wheelchair clearance 

compliance percentage

↑ 

Size 

requirement 

MSE↓ 

Wheelchair clearance 

compliance percentage

↑ 

10-20 0.07 0.94 0.07 0.94 

20-30 0.06 0.96 0.06 0.95 

30-40 0.05 0.97 0.06 0.95 

40-50 0.04 0.97 0.05 0.95 

Note: bold=best performance; ↑indicates that higher values are better.↓indicates that lower values are better. 

Table 2: Size requirement MSE and wheelchair clearance compliance percentage 

5 Conclusions 

In this paper, we introduced a novel approach for generating complex multi-occupancy building 

layouts by combining a graph neural network (GNN) with a constrained diffusion model. To improve 

the efficiency of training on complex building layouts, we optimized the building layout encoding by 

approximating non-corridor rooms with minimum bounding rectangles and using a GNN to predict 

the number of corners for corridors. Additionally, to address the quadratic complexity of transformers, 

we employed FlashAttention, which significantly reduces computational cost and memory usage, 

making the model more efficient. To incorporate accessibility features, we introduced room size 

requirements, including room size ratios and maximum corner distances, alongside fundamental 

constraints such as layout boundaries and bubble diagrams. We also designed a distance penalty to 

ensure compliance with wheelchair clearance regulations. 

Our model significantly outperforms the baseline across several key metrics, including graph 

compatibility, boundary alignment, and wheelchair clearance compliance. Specifically, the proposed 

approach improves graph compatibility by an average of 3%, boundary alignment by 16%, room size 

and corner distance MSE by 0.01, and wheelchair clearance compliance by 1.7%. These results 

demonstrate the model's capability to generate building layouts that not only adhere closely to design 

constraints but also meet important accessibility requirements. 

Looking forward, we identified three key areas for improvement. (1) Refining corridor shapes. 

The current approach approximates corridors but does not fully capture their complex and irregular 

geometries. Further refining the model to better represent corridor shapes will enhance the practicality 

of the generated building layouts. (2) Addressing overlapping and gaps. Although our model 

performs well overall, issues with room overlaps and gaps between rooms still arise in more complex 

layouts. Developing more robust mechanisms to prevent overlaps and close gaps will improve the 

usability of the building layouts. (3) Introducing more accessibility features. we will expand the scope 

to include additional accessibility features such as door widths, accessible bathroom layouts and will 

increase the model's applicability for universal design and compliance with more comprehensive 

accessibility standards. 
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