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Abstract: Classifying nighttime clouds is crucial for understanding their impact on earth's radiative 

balance. This study presents a semantic segmentation model using U-Net with a MobileNetV3 

backbone for classification of the following cloud types: Cirrus, Nimbus, Stratus, and Cumulus from 

nighttime images. Despite challenges from reduced visibility at night, cloud types and coverage were 

effectively detected, classified and measured. The model results potentially facilitate future research on 

nighttime radiation analysis. 
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1. INTRODUCTION 

Clouds are visible masses of sparse liquid water droplets, ice crystals, or the mixture of both, 

suspended in the earth's atmosphere. Clouds form when water vapor in the air condenses or sublimates 

around microscopic particles, known as cloud condensation nuclei, in the atmosphere. This process 

occurs when air is cooled to its dew point or becomes saturated with moisture. 

Clouds are classified based on their appearance, altitude, and the processes that lead to their 

formation. Cloud types play crucial role in the earth’s weather and climate systems; clouds influence 

temperature, precipitation, and radiative balance by reflecting or trapping heat. Unlike daytime clouds, 

which are easily observed, nighttime clouds are more difficult to observe due to the absence of sunlight, 

making their classification challenging. Understanding nighttime clouds is essential to reasoning and 

quantifying, especially after sunset, how they influence surface temperatures by trapping or releasing 

heat, thereby affecting weather patterns. The ability to classify clouds enables for more accurate 

predictions of nighttime temperature variations and weather events, which can be useful in enhancing 

public safety and preparedness for sudden atmospheric changes. Adverse weather conditions, including 

cloud behavior, can significantly impact construction projects, affecting workforce productivity, 

supplier efficiency, and material damage, which in turn influence project timelines (Marzoughi et al., 

2018). Ignoring the influence of weather can lead to project durations extending by 5–20% compared 

to planned schedules (Ballesteros-Pérez et al., 2017). Additionally, weather and radiative effects also 
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impact surface temperatures of roads, subsequently affecting pavement conditions (Qin et al., 2022), 

urban structures, and the deterioration of bridges (Liu et al., 2022) and other infrastructure. 
The significance of classifying nighttime clouds extends beyond immediate weather 

forecasting and into the realm of long-term climate studies. Nighttime clouds play a pivotal role in the 

earth’s radiative balance, as they can either insulate the surface by trapping longwave radiation or allow 

cooling by permitting heat to escape into space. Accurately identifying these clouds can lead to refining 

climate models, helping researchers and modelers predict shifts in temperature, extreme weather, and 

the broader effects and changes of climate. Since clouds are a major source of uncertainty in climate 

modeling, a better understanding of their nighttime behavior can improve projections of atmospheric 

warming and other climate phenomena. This knowledge is critical for making informed decisions 

regarding climate adaptation and mitigation efforts, as well as for enhancing the accuracy of both 

weather and climate predictions. 

 

2. LITERATURE REVIEW 

 Current research on cloud observation relies primarily on both satellite and ground-based 

observations. Satellite imagery offers convenient access to large-scale global atmospheric motion data 

at cloud tops. However, the limited resolution of these images often lacks required detailed local 

information. In contrast, ground-based cloud images provide more detailed regional information, which 

are particularly crucial for applications such as air traffic control. Additionally, ground-based 

observations tend to have lower data collection costs (Singh & Glennen, 2005). The types and amounts 

of clouds also significantly influence radiation and weather changes (Chen et al., 2000). Consequently, 

this study aims to achieve two main objectives: estimating cloud cover and recognizing cloud types. 

 To estimate cloud cover, the primary methods are divided into traditional thresholding 

techniques and deep learning approaches. Thresholding involves analyzing the differences in RGB or 

grayscale values between clouds and the background in an image, followed by applying a threshold to 

distinguish the two. Notable examples of this approach include adaptive thresholding that utilizes R-B 

or R/B ratios (Li et al., 2011) and conversion to grayscale cloud images that consider both visible and 

infrared light (Lagrosas et al., 2021). In contrast, deep learning approaches leverage architectures such 

as convolutional neural networks (CNNs) and U-Net (Ronneberger et al., 2015). These models take raw 

images as input to generate segmented images that effectively separate clouds from the background, as 

demonstrated in works such as CloudSegNet (Dev et al., 2019), SegCloud (Xie et al., 2020), and 

CloudU-Net (Shi et al., 2020). 

 For cloud type recognition, recent methodologies predominantly utilize deep neural networks. 

CNNs excel at capturing the shape and texture features of various cloud types (Ye et al., 2017), with 

some studies further classifying clouds into more distinct categories (Zhang et al., 2018). Techniques 

such as Bagging and AdaBoost have been shown to enhance classification accuracy (Zhang et al., 2020). 

However, this line of research often encounters challenges in accurately marking the coverage area of 

clouds and struggles when multiple cloud types are present in the same image (Ye et al., 2019). 

 Despite the advancements in i) cloud detection through image segmentation and ii) cloud 

recognition through image classification, there has been considerably less research that effectively 

combines these two approaches. One such method involves segmenting the image into superpixels 

before classifying them (Ye et al., 2019). More recent efforts have included end-to-end methods using 

encoder and decoder architectures (Ye et al., 2022) and a U-Net approach integrated with an attention 

mechanism (Shi et al., 2024). Notably, all these methods have primarily focused on daytime cloud 

datasets. 

 Overall, the advancement of deep learning models has significantly propelled research in 

cloud segmentation and classification. Nevertheless, there remains a notable gap in studies that address 

both tasks concurrently, particularly in relation to nighttime cloud datasets. Nighttime clouds are 

essential for understanding the earth's radiation balance, influencing both short-term weather and long-

term climate. Therefore, this study aims to develop a deep learning-based semantic segmentation model 
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for nighttime clouds to address this research gap. To this end, MobileNetV3 (Howard et al., 2019) will 

be utilized due to its small parameter size, rapid computation speed, and ability to maintain good 

accuracy, making it a suitable choice for constructing the model in this study. 

 

3. METHOD 

3.1  Overall Architecture 

The architecture is based on U-Net, which is widely used for image segmentation. By taking 

a 416x320 ground cloud image as input, the U-Net performs feature extraction and up-sampling, 

ultimately producing an output of the same size that predicts which type of cloud each pixel belongs to, 

as shown in Figure 1. This allows for the estimation of area proportions of different cloud types, which 

serves as a basis for comparison with the observed radiation levels. The predicted cloud types include 

four categories: Cirrus, Nimbus, Stratus, and Cumulus, represented by red, green, blue, and yellow, 

respectively, in the final prediction image (along with black for the sky).  

 

 
 

Figure 1. Framework of the cloud segmentation model 

 

3.2  Model Configuration and Training Setup 

 The model employs a U-Net architecture with MobileNetV3 as the backbone. To enhance 

generalization, data augmentation was applied using a variety of transformations, including horizontal 

flip, vertical flip, grid distortion, random brightness-contrast adjustment, and Gaussian noise. The batch 

size is set to 4, and pretrained weights from ImageNet (Krizhevsky et al., 2012) were utilized to speed 

up model convergence, and fine tuning/transferring learning was conducted for 150 epochs of training. 

The optimization process uses the AdamW optimizer (Ilya Loshchilov & Frank Hutter, 2017) with a 

weight decay of 1e-4 to mitigate overfitting. The initial learning rate is set to 1e-3, and a cosine 

annealing scheduler (Ilya Loshchilov & Frank Hutter, 2016) is applied to dynamically adjust the 

learning rate during training, improving model performance. 

Table 1. Training setup details 

Parameter Details 

Model Architecture U-Net with MobileNetV3 as the backbone 

Data Augmentation 
Horizontal Flip, Vertical Flip, Grid Distortion, 

Random Brightness-Contrast, Gaussian Noise 

Batch Size 4 

Pretrained Weights ImageNet 

Training Epochs 150 

Optimizer AdamW 

Weight Decay 1e-4 

Cloud Type Classification Through Semantic Segmentation Wu et al.

948



Initial Learning Rate 1e-3 

Learning Rate Scheduler Cosine Annealing 

 

3.3  Evaluation Metrics 

The performance of the model is evaluated using several common metrics for segmentation 

tasks. First, cross entropy loss is employed as the loss function to measure the pixel-wise classification 

error between the predicted segmentation and the ground truth. 

Additionally, pixel accuracy is utilized to assess the overall proportion of correctly classified 

pixels in the entire image, providing a general indication of the model's classification accuracy. 

However, since pixel accuracy can be biased towards dominant classes in imbalanced 

datasets, the weighted Intersection over Union (wIoU) is also included as a complementary metric. The 

wIoU considers the intersection and union of the predicted and true segments for each class, using the 

proportion of each class in the ground truth as a weight, providing a more robust evaluation. The formula 

for wIoU is shown in Equation (1), where N is the total number of classes, and both 𝑖 and 𝑗 = {1, 2, 3, 

4, 5}, corresponding to the five classes: Sky, Cirrus, Nimbus, Stratus, and Cumulus. GT refers to the 

number of ground truth pixels. TP, TN, FP, and FN refer to True Positive, True Negative, False Positive, 

and False Negative, respectively. 

 

𝑤𝐼𝑜𝑈 =∑
𝐺𝑇𝑖

∑ 𝐺𝑇𝑗
𝑁
𝑗=1

·
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝑁𝑃𝑖

𝑁

𝑖=1

 

                           (1) 

 

4. RESULTS 

Data was collected with a Canon A2300 camera, programmed to continuously take nighttime 

sky images every 5 min at National Central University, Taiwan (24.97°N, 121.19°E). The infrared cut 

filter of the camera was manually removed so that the camera can function as an infrared camera. By 

doing this, a brighter image of the nighttime sky was observed. A total of 223 ground-based cloud 

images between 15 December 2021 to 19 February 2022 were then categorized into five types: Cirrus, 

Nimbus, Stratus, Cumulus, and Mix. Figure 2 depicts sample cloud images from the dataset. 

 

 
 

Figure 2. Sample cloud images from the dataset 

 

To evaluate the model's performance, the dataset was split into training and validation sets with 
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a 4:1 ratio. Additionally, to ensure the model's robustness, the proportion of different cloud types in 

both the training and validation sets was kept consistent. Table 2 shows the detailed information. 

 

Table 2. Composition of training and validation datasets 

Types Training Size Validation Size Total 

Cirrus 40 9 49 

Nimbus 58 14 72 

Stratus 24 5 29 

Cumulus 43 10 53 

Mix 16 4 20 

 

Figure 3 illustrates the learning curves of the model throughout training, showing the 

progression of three key metrics: loss, average pixel accuracy, and average wIoU. All metrics exhibit a 

consistent improvement during the training process and gradually stabilize as they approach 

convergence. Notably, the validation curves for all metrics maintain a close alignment with the training 

curves, with the validation performance often surpassing the training results slightly. This indicates that 

the model not only avoids overfitting but also generalizes well, demonstrating strong robustness and 

the ability to perform effectively on unseen data. 
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Figure 3. Learning curves of the model 

 

The model with the lowest validation loss was selected as the final model, and some 

prediction results on the validation dataset are shown in Figure 4. These results indicate that the model 

not only performs well under ideal conditions but also exhibits robustness when confronted with 

challenging scenarios, such as thinner cloud layers and darker images. Table 3 provides a 

comprehensive overview of the final model's performance across different categories. 
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Figure 4. Some results on the validation dataset 

 

 

Table 3. Final model performance on validation dataset 

Types Average Pixel Accuracy Average wIoU 

Cirrus 0.82 0.73 

Nimbus 0.99 0.99 

Stratus 0.97 0.96 

Cumulus 0.87 0.84 

Mix 0.64 0.47 

 

The Cirrus cloud type presents a greater degree of variability, both in terms of its shape and 

the way it interacts with lighting conditions. This cloud formation often appears delicate and wispy, 

with significant differences in density and texture across different regions. Our prediction results, 

illustrated in Figure 5, demonstrate that the model has successfully identified and captured these 

nuances. The model was able to detect not only the denser, more prominent portions of the cloud but 

also the finer, more translucent areas. This highlights the model's ability to discern both subtle and 

obvious features within the cloud structure, showcasing its effectiveness in handling the complexity and 

variability inherent in Cirrus formation. 
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Figure 5. Cirrus cloud prediction results 

 

 The Nimbus cloud type, when present, typically cover the entire sky with their dense masses. 

This extensive coverage distinguishes Nimbus from other cloud types, which may appear more 

localized or scattered across the sky. Additionally, the color distribution in images containing Nimbus 

clouds is unique, as shown in Figure 6. This distinct color profile further sets them apart from other 

cloud formations, facilitating a more accurate classification of cloud types. 

 

 
 

Figure 6. Nimbus cloud prediction results 

 

 Stratus clouds, when present, also typically cover the sky extensively (as shown in Figure 7), 

contributing to improved model accuracy. However, the model does not mistakenly classify entire 

images as Stratus clouds solely due to their presence. This refined behavior is particularly evident in 
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the predictions for mixed cloud formations, as illustrated in Figure 9. 

 

 
Figure 7. Stratus cloud prediction results 

 

 

Cumulus clouds typically exhibit distinct shapes and bright white colors, making them ideal 

for model recognition. The results were promising, as expected, with the model performing consistently 

well across datasets with varying brightness levels. 

 

 

 
 

Figure 8. Cumulus cloud prediction results 

 

In terms of predicting mixed cloud cover, we also achieved good results. This work 

demonstrates that it is possible to simultaneously perform cloud segmentation and classification for 

nighttime clouds, even when multiple types of clouds are present in the same image. However, there is 

still room for improvement in predicting images with very low brightness or extremely thin clouds, 
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which makes our average pixel accuracy under the 'Mix' category look quite good, but the performance 

of the average wIoU is relatively poorer (as shown in Table 3). This will be one of the directions for 

future efforts. 

 

 

 
 

Figure 9. Mix cloud prediction results 

 

To evaluate the effectiveness of the model, Table 4 presents a comparison of average pixel 

accuracy and average IoU with other studies. Although fewer categories were predicted, which will be 

one of the future improvement directions, the model still demonstrates good performance. 

 

Table 4. Comparison with previous studies 

Research Predicted Categories Acc IoU 

Ye et al., 2019 Sky, Cu, Sc, St, As, Ac, Cc, Cs, Ci 0.71 0.34 

Ye et al., 2022 Sky, Cu, Sc, St, As, Ac, Cc, Cs, Ci 0.85 0.37 

Shi et al., 2024 Sky, Cirrus, Stratus, Cumulus, Cumulonimbus & 

Laminatus 

0.91 0.62 

Ours Sky, Cirrus, Nimbus, Stratus, Cumulus 0.86 0.80 

 

5. CONCLUSION AND FUTURE WORKS 

This study developed a deep learning-based semantic segmentation model to classify 

nighttime cloud types. The model demonstrated satisfactory accuracy and robustness across various 

cloud types, including Cirrus, Nimbus, Stratus, and Cumulus, showing promise for application in 

nighttime cloud monitoring. Notably, the model effectively managed challenges associated with low 

visibility at night, capturing essential cloud features and enabling further analysis of cloud type 

contributions to the earth's radiative balance. 

Future work will address current model limitations, including detecting extremely low-
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brightness images in mixed clouds. Cloud types may also be further classified, such as dividing Stratus 

into Stratocumulus and Stratocirrus. Furthermore, the amount of net longwave radiation that can be 

attributed to each cloud type will be explored to understand the radiative effects of each cloud type. 

This study is currently in the stage of understanding the science behind cloud classification 

before comparing the classified clouds with the longwave radiation measurements we have. While this 

requires processing a substantial amount of data, the ultimate goal has an engineering focus: to quantify 

how clouds influence nighttime environmental heating and rainfall and to explore the interrelationship 

between clouds and climate indices (e.g., La Nina, El Nino, AOI). The findings can significantly impact 

how engineers plan and mitigate disasters. 
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