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Abstract: 3D scene understanding is revolutionising tunnel engineering. However, deep learning 

algorithms are data-hungry, which means the application of scene understanding on tunnel engineering 

requires a customized point cloud dataset in the construction field. In this paper, we introduce a new 

point cloud dataset called HTunnel-HLS, specifically designed for construction highway tunnel 

environment. HTunnel-HLS aims to establish a new database for developing semantic segmentation, 

and importantly, construction highway tunnel scene. Besides, the dataset provides both point-level 

semantic labelling along with a large range of types of semantic instance labels categorized into support 

structures, mechanical facilities, and others. Data have been acquired by the Hand Laser Scanning 

(HLS) system Hovermap and contains 28 scenes, over 1.58 billion 3D points, correspond to a 9 km long 

tunnel section. This paper also provides the performance of several representative baseline methods. 

The impact of scale on model performance is analyzed from the perspective of grid size, and outlines 

potential future works and challenges for fully exploiting this dataset.  
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1. INTRODUCTION  

Construction safety and quality are key performance indicators for mechanized tunneling, 

especially in light of the rising promise of unmanned construction (Rachmawati, 2022). In order to 

ensure safety, long term stability and quality control in modern tunneling operations, the acquisition of 

geotechnical information about encountered rock conditions (Yi, 2023), detailed installed support 

(Wang, 2023) and rate of advancement information is required. Data collection as the tunnel progresses 

must make use of fast and effective technology in order to surmount operational constraints (Fekete, 

2010). And it is important to inspect and evaluate the structures during construction (Cui, 2024; 

Zhang,2025).  

Point clouds, as the most direct representation of real-world 3D digitalization, have been 

applied to tunnel construction and management (Zhao, 2023). Point clouds acquired by laser scanning 
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are valuable digital assets for highway tunnels, which can be used for tunnel profile control (Kim, 2019), 

joint surface analysis (Xu, 2022), lining quality assessment (Lato, 2014), tunnel deformation monitoring 

(Deng, 2024), and 3D model reconstruction (Duan, 2021). However, A prerequisite for automatic 

extraction of present-day kinds of tasks is the identification of individual structures from the background 

scene. Conventional, heuristic algorithms suffer from several drawbacks in efficiency and 

generalization (Chi, 2023; Xie, 2020).  

The emergence of deep learning technology has already shown considerable promise for 

improving the efficiency and accuracy of tunnel management. However, most recent researches have 

explored the application of 3D deep learning networks to the point cloud segmentation task of shield 

tunneling (Lin, 2024; Xie, 2023; Xie, 2017) rather than drill-and-blast highway tunnel. Empirically, 

data collection at drill-and-blast tunnel construction sites is more challenging than conventional 

scanning operations. Although emerging datasets for semantic segmentation have been proposed (A, 

2013; Munoz, 2009; Ye, 2020; Zolanvari, 2019; Tong, 2020), few of them provide point-wise instance 

annotation for construction highway tunnel scene on a large scale. At the drill-and-blast tunnel 

construction site, the structural complexity of elongated spaces and the procedural continuity of 

dynamic construction pose significant challenges to the acquisition and annotation of 3D laser point 

clouds. This is why it is difficult to find annotated point cloud datasets related to tunnel engineering in 

popular open-source datasets, especially for construction tunnels. In contrast, there is a distinct lack of 

annotated datasets for highway tunnel point clouds which presents a significant obstacle for 3D deep 

learning segmentation. Thus, specialized datasets and their corresponding benchmarks are urgently 

required for the development of 3D deep learning for highway tunnel point clouds.  

To that end, this paper introduces a new and richly annotated tunnel point cloud dataset, 

‘HTunnel-HLS’, to enable automated semantic segmentation using 3D deep learning. Data experiments 

are presented to explore the influences of grid size in data preprocessing on the 3D deep learning model 

performance. This study also provides corresponding benchmarks by applying typical 3D deep learning 

networks to the SDU-Tunnel3D dataset. Data will be acquired and processed soon. 

 

2. NEW DATASET: HTUNNEL-HLS 

2.1 Data acquisition  

This study is based on a highway tunnel under construction. The highway tunnel is a three-lane 

road tunnel with a triple-circle curved wall lining structure, where the New Austrian Tunneling Method 

(NATM) is adopted. Considering factors such as tunnel structure, face stability, and geological 

conditions, this tunnel is constructed by the drill-and-blast method, which is specifically constructed by 

the bench cut method. The bench cut method involves excavating the designed profile in two stages: 

upper and lower sections, with the upper section excavated first followed by the lower section.  

 

Table 1. The key technical specifications of the HLS. 

Indicator item Parameter Indicator item Parameter 

Scan distance 0.4m~100m LiDAR accuracy  +/- 30mm 

Mapping accuracy +/- 15mm Angular field of view 360°×360° 

Maximum data capture travelling 

speed 

2 m/s Data acquisition speed Up to 3×105 points/sec 

 

Observations at the tunnel construction site, Figure 1 (a), reveal narrow and confined working 

spaces, with tight operations of machinery and vehicles. The acquisition has been carried out by the 

handheld laser scanners (HLS) named Hovermap, and produced by Emesent, as shown in Figure 1 (b). 

Table 1 summarizes the key technical specifications of the device. The procedure used to collect our 

LiDAR point cloud dataset is similar to previously published work (Cui, 2023). In addition to the tunnel 

structural elements, each point cloud also includes cables, pipes, loose rocks, construction vehicles, and 
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other non-structural elements, Figure 1 (c). Hence, all possible elements and noise that may affect the 

point cloud segmentation are considered in the present dataset. The point clouds in HTunnel-HLS are 

acquired by HLS and have similar point density distributions, which differs from the feature that point 

clouds acquired using TLS decreases with distance to the scanner.  

 

Figure 1. (a) The tunnel construction site; (b) Tunnel 3D point cloud data is being collected using 

HLS on the site；(c) Complex point cloud data of tunnel construction site (Cui, 2023).  

 

2.2 Data annotation  

To achieve rigorous model training and evaluation, the data annotation needs to be 

comprehensive, consistent, and accurate for the specified labels. Instead of pixel-wise or voxel-wise 

annotation, every single point in HTunnel-HLS is labelled individually. This exhaustive manual 

annotation of the ground truth dataset avoids any biases introduced by particular segmentation 

algorithms.  

 
 

Figure 2. A representative example of labels and classes on a 3D point cloud.  

 

In general, we categorize instances in construction tunnels into 3 classes: support structures, 

mechanical facilities, and others, with a total of 14 semantic labels. In the class “others” include noise 

points, water and electrical pipelines, ducts, loose rocks, personnel, debris, trailing shadows, etc. As 

objects from real-world scans are often cluttered with background and/or are partial due to occlusions. 

To prevent confusion, Fig. 2 illustrates a representative example of labels and classes on a 3D point 

cloud. A color represents a category and corresponds to a semantic label. It is important to note that by 

default, if an unknown class is encountered, it will be treated as 'others'.  

Our annotation process does not entail labeling every point in the point cloud. Instead, we 

employ 3D clipping to segment all point clouds into different instances and assign a category to each 

segmented object, which are then individually saved in separate files. All point cloud annotations are 

hand-labeled by professional assessors and undergo manual cross-checking. We manually scrutinize 
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each object, rectify inconsistent labels, and discard ambiguous, low-quality reconstruction, unlabeled, 

sparsely populated, and insufficient instances to form a category for training. This ensures the 

consistency and high quality of the annotation work. The point clouds are segmented manually using 

CloudCompare software. Unlike the cluttered spatial relationships of instances, the spatial distribution 

of instances inside tunnels is traceable.  

 

2.3 Description of the dataset  

The resulting HTunnel-HLS dataset is analysed to provide quantitative insights into its key 

characteristics. The dataset consists of 28 tunnel segments categorized into 14 classes, as a result, 586 

objects are annotated. This extensive scale provides novel avenues for training data-intensive 

algorithms. The point cloud proportion of each class is presented in Fig. 3, showing that the HTunnel-

HLS dataset is ‘class-imbalanced’ where label ‘ShotcreteLining’ accounts for the greatest proportion 

of the point clouds. While mechanical facilities e.g., escape pipe, invert trestle, and vehicle have fewer 

points, which is consistent with the situation of the construction sites. In addition, point clouds captured 

by the Hovermap scanner include not only x, y, z Cartesian coordinates but also real-world dimensions 

such as intensity, GPS time, return number, range, and ring etc. In order to better examine the 

performance and generalization of deep learning algorithms, only the original x, y, z Cartesian 

coordinates of each point is retained in the dataset to ensure data consistency and fair comparison. From 

Fig. 2, it can be observed that there is critically shape similarity between the shotcrete lining and 

permanent lining, as well similarity in the scale. Comparing the results for upper excavation floor and 

floor, shape similarity is also observed. This similarity highlights the difficulty in identifying individual 

segments using 3D deep learning. The training set and test set are split artificially 23:5 (respectively).  

 

 
 

Figure 3. The point cloud proportion of each class.  

 

3. EXPERIMENTS AND DISCUSSION 

3.1 Baseline approaches for semantic segmentation  

We only selected algorithms that have published results and available codes, and three popular 

point-based deep learning models for semantic segmentation were tested on the proposed dataset as 
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baseline approaches:  

DGCNN (Wang, 2018) suggests that local geometric features are important to 3D recognition 

tasks, and the model constructs graphs to extract local geometric features from local neighborhoods, 

and applies EdgeConv as a convolution-like operation. EdgeConv is isotropic about input features with 

convolutional operations on graph nodes and their edges.  

RandLA-Net (Hu, 2020) utilizes random point sampling and introduces a local feature 

aggregation module to achieve rapid processing of large-scale point clouds while effectively preserving 

geometric details.  

Point Transformer V3 (Wu, 2024), a stride towards overcoming the traditional trade-offs 

between accuracy and efficiency in point cloud processing, redefines the framework of Point 

Transformer. PTv3 reverts to utilizing dot-product attention. By prioritizing efficiency over the 

accuracy of less impactful mechanisms, PT v3 harness the power of scale, leading to enhanced 

performance. Simply put, the model becomes stronger by being made simpler and faster.  

 

3.2 Evaluation metrics and configurations  

For semantic segmentation, OA (overall accuracy; Equation (1)), IoU (interaction over union; 

Equation (2)) and mIoU (mean interaction over union; Equation (3)) are employed to evaluate model 

performance. In particular, mIoU presents the most reasonable evaluation for class-imbalanced datasets 

and is thus adopted as the priority metric. 
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where N is the total number of labels; n is the nth label in N; TP, FP and FN represent numbers 

of points of true positives, false positives, and false negatives of the predictions, respectively. OA and 

mIoU evaluate the overall quality of semantic segmentation; and IoU of each class measures the 

performance of each class.  

In this study, the results were for baseline illustration purpose only, and better results could be 

potentially achieved with further tuning. Batch sizes were adjusted accordingly, and the remaining 

hyperparameters within the original model were not modified. The network structures and parameter 

settings of these algorithms may not be directly comparable, and parameter tuning does not guarantee 

the fairness of comparison. In this study, the results are for baseline illustration purpose only, and better 

results could be potentially achieved with further tuning. All models were trained and tested on a 

NVIDIA RTX 2080Ti with 11G of RAM. And batch sizes were adjusted accordingly. 

 

3.3 Performance of baseline approaches 

The results for semantic segmentation baseline approaches using HTunnel-HLS are shown in 

Table 2. PT V3 is on the top spot of HTunnel-HLS benchmark at the moment, and it achieved the 

highest OA, mACC, and mIoU among the tested baseline algorithms. DGCNN performed the worst in 

terms of OA, mACC, and mIoU in our dataset. And PT V3 has a significant performance improvement 

in the segmentation of these 14 types of objects. Since DGCNN uses KNN for construction of graphs 

to capture local features, it may not perform well in this dataset with varying point density and Class 

Imbalance Problem. The IoU of all three models is relatively low in steel arch class. It is worth 
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mentioning that RandLA-Net is the first to complete the entire training process of 100 epochs, PT V3 

is the second, and DGCNN takes the longest time.  

 

Table 2. Semantic segmentation results of different methods (%). 

Methods OA mIoU mACC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

DGCNN 0.8221 0.5867 0.7066 0.3637 0.3207 0.7193 0.7965 0.5725 0.8788 0.7652 0.5724 0.5169 0.7601 0.6183 0.6699 0.3692 0.2897 

RandLA-Net 0.8397 0.7154 0.8520 0.5709 0.3603 0.7160 0.5785 0.6664 0.8311 0.9201 0.7157 0.7985 0.9324 0.7857 0.8635 0.8771 0.3990 

PT V3 0.9700 0.9099 0.9481 0.9403 0.7615 0.9651 0.9184 0.9089 0.9586 0.9558 0.9852 0.9501 0.9582 0.8697 0.9789 0.9534 0.6345 

 

4. DISCUSSION  

As mentioned in Point Transformer V3, model performance is more profoundly influenced by 

scale than by complex design intricacies. The scale of the tunnel point cloud dataset constructed in this 

paper is significantly larger than that of indoor scenes and also exceeds that of common road scenes in 

terms of both the number and density of points. It is both common and necessary to the input point 

clouds preprocessing before deep learning training and evaluation to improve computational efficiency, 

whilst also minimizing the effect on accuracy. In general, the density of the input point cloud is reduced 

through sampling, and memory consumption is reduced. Appropriate sampling resolution is very 

important for the test results. For public data set S3DIS (indoor scene) (Armeni, 2016), the sampling 

resolution is 0.04 by default, and for semantic3d (Hackel, 2017) and SemanticKITTI (outdoor street 

scene) (Behley, 2019), the sampling resolution is 0.06 by default. When the input size is kept constant, 

the lower input sampling resolution represents a larger receptive field, higher performance and faster 

training efficiency. Of course, the corresponding price to be paid is the possible loss of local information. 

Therefore, it is necessary to determine the appropriate grid size for the newly established tunnel scene 

dataset.  

 

 
 

Figure 4. The performance curve obtained after data preprocessing with different grid sizes.  

 

Table 3. Semantic segmentation results of different grid size.  

Models 
Grid 

size 
mIOU 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
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G1 0.01 0.3961 0.1612 0.2823 0.5273 0.3370 0.3567 0.5921 0.8634 0.5117 0.3281 0.7192 0.0243 0.6221 0.0000 0.2202 

G2 0.02 0.3951 0.2791 0.1736 0.5288 0.1891 0.2232 0.5826 0.9005 0.4294 0.5607 0.7213 0.0227 0.7017 0.0000 0.2190 

G3 0.04 0.7154 0.5709 0.3603 0.7160 0.5785 0.6664 0.8311 0.9201 0.7157 0.7985 0.9324 0.7857 0.8635 0.8771 0.3990 

G4 0.06 0.8058 0.6808 0.4534 0.8758 0.8061 0.7400 0.8973 0.9380 0.8967 0.8796 0.9536 0.9284 0.8854 0.8883 0.4580 

G5 0.08 0.8339 0.7234 0.5557 0.9175 0.8215 0.8010 0.8995 0.9355 0.9252 0.8853 0.9630 0.9143 0.9280 0.9056 0.4988 

G6 0.10 0.8540 0.7490 0.5819 0.9395 0.8955 0.8836 0.9177 0.9340 0.9606 0.8887 0.9655 0.8861 0.9171 0.9297 0.5076 

G7 0.12 0.8621 0.7699 0.6179 0.9449 0.9002 0.8811 0.9225 0.9274 0.9658 0.9109 0.9651 0.8698 0.9431 0.9330 0.5173 

G8 0.16 0.8693 0.8443 0.5440 0.9333 0.9194 0.9033 0.9256 0.9386 0.9735 0.9262 0.9796 0.9167 0.9390 0.8920 0.5350 

G9 0.20 0.8674 0.8051 0.6090 0.9410 0.9128 0.8899 0.9366 0.9395 0.9708 0.9011 0.9755 0.9099 0.9439 0.8704 0.5377 

G10 0.30 0.8724 0.8519 0.6079 0.9511 0.9201 0.8996 0.9355 0.9375 0.9726 0.8954 0.9259 0.8842 0.9599 0.9378 0.5347 

G11 0.50 0.8510 0.8001 0.6076 0.9454 0.9074 0.8385 0.9147 0.9368 0.9646 0.8651 0.9637 0.8815 0.9373 0.8538 0.4972 

 

Preprocess the raw point cloud and eleven models are trained using different input sizes, as 

listed in Table 3. RandLA-Net (Hu, 2020) containing a random sampling module is adopted here 

considering the remarkably computation and memory efficiency. Although RandLA-Net is no longer 

limited to 1m×1m blocks compared with pointnet++ (Qi, 2017), it can effectively learn the overall 

geometric structure of objects. However, for a brand-new semantic segmentation scenario, it is crucial 

to know how to set up the hyperparameters. The results show that when the grid size exceeds 0.12, there 

is a plateau in model performance (Figure 4). The mIoU of Model G6 reaches 86.21%. In the process 

of random sampling, number of input points, i.e., the number of nearest neighbors of the query point, is 

set to 40960, so a larger grid size means a larger receptive field, as shown in Figure 5. As a result, this 

means that the model is able to learn the overall geometry of the object more efficiently during training. 

As a larger range of point clouds are added to the training dataset, there is a notable increase in both 

OA and, in particular, mIoU. However, it is reasonable to expect a degradation of the model's 

performance when the grid size is too large, such as over 0.3, as this will discard the key features. The 

point cloud is downsampled with a four-fold decimation ratio.  

During the training process, a loss function is typically used to intuitively show the trend of the 

difference between the model's predictions and the ground truth as the number of iterations increases. 

Under the same learning rate and batch size settings, the loss curves of models with different grid sizes 

during the training process are plotted as shown in Figure 6. Ideally, the loss curve should show a 

gradual decline and tend to stabilize. This indicates that as training progresses, the model's performance 

on the training set continues to improve. It can be observed that from G7 onward, this trend is evident. 

However, when the grid size is less than 0.12, the loss curve remains oscillatory and noisy throughout 

the training process, indicating that the loss function fails to converge. Conversely, when the grid size 

exceeds 0.12, the loss curve decreases rapidly in the early training stages and stabilizes, suggesting that 

the model converges quickly. This provides a parameter reference for achieving good performance in 

scenarios involving data such as tunnels. A visual comparison of semantic segmentation results of G7 

(Grid size = 0.12 m) and ground truth is shown in Figure 7.  
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Figure 5. The area of points entered for each layer after setting different grid sizes.  

 

 

Figure 6. The loss curves of models with different grid sizes during the training process.  

 

 
 

Figure 7. Visual comparison of results of semantic segmentation with different grid sizes.  

 

 

 

 

3D Scene Understanding for Highway Tunnel Construction Cui et al.

396



4. CONCLUSIONS 

We have presented a new 3D point cloud database manually annotated, specifically designed 

for construction highway tunnel environment. The dataset covers approximately 9 km of tunnel section 

with over 1.58 billion 3D points. Each 3D point has been classified into 14 categories, resulting in a list 

of (x, y, z) points. Three popular end-to-end point cloud semantic segmentation algorithms were tested 

as baselines for this dataset. We analyzed the impact of grid size on model performance and determined 

that a grid size of 0.12 is suitable for tunnel scenarios.  

The intention of presenting this new tunnel point cloud dataset is to encourage developing 

creative deep learning models. This will promote the adoption and application of 3D point clouds in the 

tunnel engineering industry, thereby accelerating the digital transformation of traditional sectors. The 

labels of this new dataset will be improved and updated with feedback from the research community.  
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