
EPiC Series in Computing

Volume 94, 2023, Pages 112–123

Proceedings of 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning

Guiding an Instantiation Prover with

Graph Neural Networks

Karel Chvalovský1, Konstantin Korovin2, Jelle Piepenbrock13, and Josef Urban1

1 Czech Technical University in Prague
{karel.chvalovsky, jelle.piepenbrock, josef.urban}@cvut.cz

2 University of Manchester, Manchester, U.K.
konstantin.korovin@manchester.ac.uk

3 Radboud University Nijmegen

Abstract

In this work we extend an instantiation-based theorem prover iProver with machine
learning (ML) guidance based on graph neural networks. For this we implement an inter-
active mode in iProver, which allows communication with an external agent via network
sockets. The external (ML-based) agent guides the proof search by scoring generated
clauses in the given clause loop. Our evaluation on a large set of Mizar problems shows
that the ML guidance outperforms iProver’s standard human-programmed priority queues,
solving more than twice as many problems in the same time. To our knowledge, this is
the first time the performance of a state-of-the-art instantiation-based system is doubled
by ML guidance.

1 Introduction

In the recent years, machine learning (ML) and related AI methods are being increasingly com-
bined with automated deduction. One of the most interesting tasks in this area is equipping
fast state-of-the-art automated theorem provers (ATPs) with efficient internal guidance of their
calculi based on learning from many previous proof-search decisions. This is challenging, be-
cause the fast ATPs typically generate and evaluate thousands to millions of inferences within
seconds. While related AI/TP tasks such as learning-based premise selection [1], tactical guid-
ance [5], and neural conjecturing [19] can use relatively slow and expensive ML methods that
are called only rarely on a single problem, internal guidance requires efficient ML methods and
their nontrivial integration with the fast ATPs.

In the last five years, several advances in internal guidance were made for connection-
based [10, 15, 20] and resolution/superposition-based ATPs [8, 17, 7]. However, there has so
far been only limited success in guiding instantiation-based systems, which are – thanks to the
integration with powerful SAT solvers – today becoming very competitive [2].

In this work we therefore develop strong internal ML guidance for one of today’s main
instantiation-based theorem provers: iProver [11] (Section 2). In more detail, the ML guidance
is based on naming-invariant graph neural networks (GNNs) (Section 3). To combine the two,

R. Piskac and A. Voronkov (eds.), LPAR 2023 (EPiC Series in Computing, vol. 94), pp. 112–123



Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

we develop an interactive mode in iProver, which allows communication with external agents
via network sockets (Section 4). The GNN guidance is then implemented as an instance of such
external agent – a GPU server (Section 5). Our evaluation on a large set of Mizar problems
(Section 6) shows that the ML guidance doubles the performance of iProver’s standard human-
programmed priority queues (Section 7). To our knowledge, this is the first time a state-of-the-
art instantiation-based system is considerably improved by neural ML guidance.

2 iProver

2.1 iProver and the Inst-Gen Calculus

iProver [11] is an automated theorem prover for quantified first-order logic. At the core of
iProver is an instantiation calculus, Inst-Gen [4, 12], which can be combined with resolution and
superposition calculi [3]. The Inst-Gen calculus is based on propositional reasoning to deal with
propositional abstractions of first-order clauses and model-guided incremental instantiations
using unification to generate new first-order instances. At a high level, the procedure works as
follows.

Given a set of first-order clauses S, its propositional abstraction S⊥ is obtained by mapping
all variables to a designated ground term ⊥. A propositional solver is applied to S⊥ and it
either proves that S⊥ is unsatisfiable and in this case the set of first-order clauses S is also
unsatisfiable or shows that S⊥ is satisfiable and in this case returns a propositional model of the
abstraction S⊥. This propositional model is analysed if it can be extended to a full first-order
model. If it can not be extended then it is possible to show that there must be complimentary
literals in the model that are unifiable. In this case the Inst-Gen calculus produces instances
of relevant clauses with the most general unifier which resolves this conflict in the model and
provide sufficient information to the propositional solver that this conflict will not occur in the
future. This loop is repeated with more instances added until the unsatisfiability is witnessed by
the propositional abstraction or a saturated set is obtained (possibly in the limit) in which case
the original first-order formula is satisfiable. The Inst-Gen calculus is refutationally complete,
which means that if the set of first-order clauses S is unsatisfiable then in a finite number of
iterations, the propositional abstraction of derived instantiations S′⊥ will be unsatisfiable [4].

2.2 Guiding iProver

Thus, iProver leverages the power of propositional solvers for a) solving propositional abstrac-
tions, and b) guiding instantiations based on propositional models. Although this approach
often works well in practice, one of the major bottlenecks is the number of generated first-order
instances with only a few of them usually needed in the final proof.

In this work we therefore investigate how machine learning can be used to select iProver
inferences that are most likely to be used in a proof. In particular, the propositional model
typically leads to multiple Inst-Gen inferences that can be made to provide sufficient information
to the propositional solver that will avoid particular conflicting assignment of unifiable literals
in the propositional model. Figure 1 shows an overall scheme of the approach. The ML advice
will be used to select the clauses for performing the Inst-Gen inferences (see Section 4 for
details).

113



Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

3 Name-Independent Graph Neural Network

To learn a machine learning heuristic for clause selection in the Inst-Gen calculus, we use a
graph neural network [16]. Specifically, we use a PyTorch [14] implementation of the name-
independent architecture developed originally for connection provers [13], but also used for the
recent ENIGMA systems for the E automated theorem prover [6].

In this work, we will give a brief primer on the main ideas underlying this neural network
architecture, so far as they are directly relevant to the current work. Given a first-order logic
problem expressed as a set of clauses named Clauses, we parse the problem and create a
(hyper)graph that represents the problem. In this representation, three different types of nodes
are distinguished. These are the clause nodes C, the symbol nodes S and the term nodes T .
The collection of all nodes is the set N . Each clause node corresponds to a clause in the input
file. Symbol nodes correspond to either function or predicate symbols.

The structure of the original first-order problem is reflected in the edges connecting these
different types of nodes. This allows the network to see how the symbols are used without
knowing their names, and therefore handle common ATP issues such as the typically quite
unstable naming of Skolem symbols between problems. It is also important when used in
ITP-based (hammer) scenarios, where new terminology is introduced frequently during the
formalization (see Section 7.2). There are several different types of edges between the nodes.
Clauses are connected to their literals, while the polarity of the literals is explicitly handled
(so the network has a built-in notion of negation). Symbols are connected to the terms they
are used in. For example, given a term f(t1, . . . , tk) ∈ T , with k subterms labelled as ti, the
nodes corresponding to the function symbol f ∈ S will be connected to ti via the term node
f(t1, . . . , tk), for 1 ≤ i ≤ k.

This graph representation then contains the relationships between the various mathematical
objects occurring in the problem. The basic idea of using this representation to learn a heuristic
for clause selection is to let each node exchange messages with its neighbours, to update some
state representation according to a learned transformation parameterized by weights that are
learned by gradient descent on an error function. This message passing is iterated for a fixed
amount of steps, after which the representations for clauses are used to predict whether the
clause is useful or not. Initially, each node is represented by a vector of floating point numbers
(embedding), which differs based on the type of node. We distinguish the following node types:
conjecture clauses, non-conjecture clauses, function symbol nodes, predicate symbols, terms,
literals and variables.

After some message-passing steps, the predicted probability of a clause being useful for the
proof is computed by another learned transformation that takes the final representation of each
clause node and combines this with the representation of the conjecture clauses. This predicted
score for the clauses is then used to influence iProver’s clause priority queues. The machine
learning system is trained by minimizing, through gradient descent, the binary cross-entropy
error function that measures how well the network can predict which clauses are useful for the
proofs and which ones are not.

4 Interactive Mode

We have newly developed an Interactive Mode for iProver, which is in detail described in our
repository.1 In this mode, iProver communicates with an external agent (EA) (e.g., ML-based,

1https://gitlab.com/korovin/iprover/-/blob/master/README-interactive.md

114

https://gitlab.com/korovin/iprover/-/blob/master/README-interactive.md


Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

Passive Queues Given Clause
simp II

External AgentSatisfiable

passive
empty

Active

Instantiation Inferences

UnprocessedExternal Agent
simp I

clause
scores

Input

SAT Solver

grounding

Unsatisfiable
unsat

Figure 1: Interactive Given Clause Loop in iProver

that can be written in any language, e.g., Python) via TCP/IP sockets. The external agent
can be used to provide proof search guidance by either assigning scores to clauses which are
used for prioritising them for next inferences or explicitly selecting the given clause for the next
inferences. The communication is bi-directional:

• iProver submits different messages to the agent, such as the given clauses, generated
clauses, simplified clauses etc.

• The agent can guide the iProver search by different actions such as selection of the given
clause, assigning scores for clauses in passive queues etc.

Figure 1 details the given clause loop extended with the external guidance. The Input clauses
are first submitted to the Unprocessed set and simplified (simp I). Then, the EA evaluates the
clauses and assigns scores that are used as priorities in passive priority queues. These are used
to store Passive clauses, i.e., the clauses that are waiting to be involved in inferences. Each
priority queue is based on a lexicographic combination of different clause features, such as: the
number of literals, the number of variables, clause age, proof distance from the conjecture, etc.
Priority queues are combined in a round-robin fashion with specified multipliers. The EA scores
are treated as one of the clause features and can be used in a standalone priority queue based
on just EA scores or combined in queues with other clause priority features.

The Given Clause is the clause selected from the priority queues for the next inferences with
clauses stored in the Active set. The Given Clause is also submitted to the EA to be used as a
part of the context for the next rounds of evaluations. After all inferences between the Given
Clause and clauses in Active are performed, the Given Clause is moved to Active and all newly
derived clauses are moved to the Unprocessed set. Groundings of clauses from the Unprocessed
are also submitted to the SAT solver which is executed with some specified intervals. If the

115



Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

SAT solver returns that the accumulated groundings are unsatisfiable, then the Input set of
first-order clauses is also unsatisfiable and the problem is solved. If the Passive Queues are
empty then due to the completeness of the procedure [4, 12], the Input set is satisfiable.

The problem of selecting the most suitable given clause is the “Holy Grail” of automated
theorem proving: with perfect clause selection the proof can be directly reconstructed. In most
cases, though the clause selection is far from perfect which results in explosion in the search
space. One of our main contributions is to show that an External Agent based on GNN models
can be trained to select clauses considerably better than human-based fine tuning of priorities.

5 GPU Server

We have developed2 an external agent that uses a trained GNN to score clauses generated in
the given clause loop. The main function is similar to E/ENIGMA, where a Python GPU
server [7] is used to reduce the overhead of repeated model loading. However, in ENIGMA, the
score requests are created as full graphs already in E, where the context consisting of the given
clauses and conjectures is added to the generated clauses that are to be scored, and hence the
server is stateless. The sole purpose of the server there is to receive the queries, evaluate them
using a GPU, and send the results back. Here, we instead build a richer stateful server that
keeps track of the given clauses and conjectures, and is itself capable of generating in various
ways the context that is used to score the requests.

The agent is a Python server that contains three types of processes. The main process
checks a network socket and distributes the incoming connections to the state processes. Each
state process handles one client (iProver) connection. Whenever the state process receives a
score request, it adds the context of the given clauses and conjectures and sends a request to a
GPU process. To create contexts, the state process must keep all the generated clauses, given
clauses, and conjectures in its memory. The GPU process then evaluates the clauses using a
GNN preloaded on a GPU and sends the scores back to the state process that communicates
them to the client iProver. While this architecture is more involved than the simple ENIGMA
server, it is more flexible, allowing different parameterizations and experiments with the GNN
guidance. We show in Section 7 that the overhead incurred by this more involved guiding
architecture is reasonably low, and that its use results in very high real time improvements of
iProver’s performance.

6 Experimental Setting

6.1 Evaluation Problems

The evaluation is performed on a large benchmark of 57 880 problems3 originating from the
Mizar Mathematical Library (MML) [9] exported to first-order logic by MPTP [18]. The Mizar
problems are split4 (in a 90-5-5% ratio) into 3 subsets: (1) 52k problems for training, (2) 2896
problems for development, and (3) 2896 problems for final evaluation (holdout). We use this
split for the evaluation done here. Since we are interested in internal ATP guidance and not
premise selection, we use problems with premises limited to those used in the human written
Mizar proofs (bushy problems). As an additional measure of the generalization, we also evaluate

2https://gitlab.ciirc.cvut.cz/chvalkar/iprover-gnn-server
3http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
4http://grid01.ciirc.cvut.cz/~mptp/Mizar_eval_final_split

116

https://gitlab.ciirc.cvut.cz/chvalkar/iprover-gnn-server
http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/Mizar_eval_final_split


Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

(Section 7.2) the trained system on 13 370 theorems in 242 articles that were added in a newer
version of MML (1382) and thus never seen during the training. More than half of those
problems contain new terminology.

6.2 Data: Classsic vs Dynamic

The training data are collected from previous successful runs. The standard approach (classic
data), which was introduced by the ENIGMA systems, is to take all given clauses and consider
those that ended up in the proof as useful (positive clauses) and those not used as useless
(negative clauses). Hence, for each proof, we have one training example (a graph of clauses)
containing the useful/useless clauses and the conjecture we want to prove. However, the size of
such a training example corresponds to the final size of the set of all given clauses proposed in
the proof search, not to the intermediate sizes of the actual score requests generated multiple
times during the proof search. This means that in the classic setting, the distribution of the
training graph sizes may be shifted quite far from the actual distribution encountered during
the proof search. Such subtle shifts between the training and evaluation distributions have quite
often a negative effect on the performance of more complex machine learning architectures.

To remedy that, we newly experiment here also with using the actual score requests (dynamic
data) from the proof searches as the training data. However, such score requests contain not
only the given clauses but also the passive clauses. It is not always clear how the passive clauses
should be labeled, since they may or may not lead to an alternative proof. For simplicity, we
use a common pragmatic approach and consider them as negatives. We also want to prevent
the learning from focusing on too many minor alternative proofs of the same problem and
neglecting problems that have fewer proofs. When we learn from multiple collections of proofs
(produced in multiple iterations of the proving and learning over the training data), we sample
these proofs so that each problem contributes the same number of training examples.

6.3 iProver Settings

We run iProver using its instantiation mode.5 The score requests are performed in batches
of size approximately 1000 to improve the performance. For details, see Appendix B. For our
evaluations of the baseline non-guided iProver, we run it with its standard human-programmed
priority queues for clause selection in the Inst-Gen calculus in three different modes. These
modes are the non-interactive mode, the interactive mode without ML evaluation, and the
interactive mode with ML evaluation that is ignored.

In the non-interactive mode, iProver does not communicate with the server. In the interac-
tive mode without ML evaluation (no eval), the ML server returns zeros without any evaluation.
The purpose of this mode is to measure the overhead caused by the communication protocol
and processing requests. In the interactive mode with ignored ML evaluation (ignore eval), the
server evaluates clauses but the scores are ignored by iProver. By running in this mode, we can
investigate the overhead incurred by the ML calculations.

In the setting where the scores provided by the server are used for clause selection, we use
two modes: solo and coop. In the solo mode, there is just one priority queue ordered by the
scores provided by the server. In the coop mode, we combine server-provided scores with the
human-programmed priority queues in an equal ratio, see Appendix B.

5Recent iProver can also use superposition and resolution and combine them with instantiation. However,
in this work our focus is to establish if instantiation-based methods can be effectively guided by learning.

117



Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

7 Results

As a starting reference point, we run iProver with the human-programmed priority queues for
clause selection to collect the initial training examples. In this mode, without being slowed down
by the server (non-interactive mode), iProver solves 502 theorems out of the 2896 theorems in
the development set (Section 6.1) in 15 seconds. However, to extract the training data, we
need to run iProver in the interactive mode. It solves 451 and 482 theorems in the development
set in ignore eval and no eval modes, respectively. Therefore, there is some overhead from the
communication and GNN calculations, but its impact is manageable.

Using the no eval mode, we get 9087 training proofs and also 482 proofs in the development
set that are used as a validation set for finding the best performing model. We train three
models, one with classic data and two with dynamic data (taking randomly 4 or 10 queries
from the successful runs, respectively). Each model is run in either solo, or coop mode. Two
best performing models on the development set were trained on dynamic data using 4 and 10
samples and run in the coop mode, see Table 1. We use these two models to obtain further
training data for the next iteration. It is worth mentioning that models trained on dynamic
data perform significantly better than models trained on classic data.

In the next iteration, we use all proofs found so far by iProver in the no eval mode together
with the proofs found using the two best performing models. This yields 14 994 and 834 proved
theorems on the training and development set, respectively. We again trained three models,
from which the best performing was the model trained on the dynamic data using 4 samples run
in the solo mode. The model using 10 dynamic samples run in the coop mode was reasonably
complementary, and we also used it for the next iteration.6

In the last iteration, we trained on 18 452 theorems solved (using possibly multiple proofs
available for each theorem) on the training set and used 1026 problems solved on the develop-
ment set for evaluating the best performing models. In this iteration, we also trained dynamic
models with an increased size of embeddings (from 16 to 32) and the number of layers (from
10 to 11). Increasing the size of embeddings leads to a better performance, see Table 1, but
increasing solely the number of layers does not. However, the best performing models come
from increasing both the size of embeddings and the number of layers.

7.1 Holdout Set Performance

iProver using guidance from our best performing model solves 1094 problems on the development
set and 1093 on the holdout set. Moreover, it solves a very similar fraction of problems on the
training set. Similar results hold also for other models, see Table 1.

The training procedure seems to be quite robust to overfitting on the training data and to
generalize well. This could be due to several aspects: (i) different runs lead to different sets of
given clauses, (ii) only a limited number of the dynamic samples is seen during the training per
problem (4 or 10), and (iii) the contexts are randomly sampled from the available given clauses.

Interestingly, when we evaluate just the accuracy of the trained GNN model, its performance
on the train, development and holdout sets slightly differs. The GNN has a balanced accuracy
of 0.9503 on the training examples, 0.9397 on the examples from the development set that were
used for selecting the best performing model, and 0.9406 on the examples from the holdout
set. This difference is probably not large enough to cause significant differences in the ultimate
ATP performance.

6It is likely that the model with 10 dynamic samples performed worse than the model trained on 4 dynamic
samples per problem, because models in this iteration were trained for a shorter period of time.

118



Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

Iter. Solver (15 s) Data Model Devel Holdout Train

Ignore eval 451 455
No eval 482 475 9087
Non-interactive 502 500

0 Solo classic d = 16, l = 10 663 656
0 Coop classic d = 16, l = 10 699 704
0 Solo dynamic (4) d = 16, l = 10 714 723
0 Coop dynamic (4) d = 16, l = 10 744 729 13 403
0 Solo dynamic (10) d = 16, l = 10 739 739
0 Coop dynamic (10) d = 16, l = 10 760 759 13 534

1 Solo dynamic (4) d = 16, l = 10 951 945 16 964
1 Coop dynamic (10) d = 16, l = 10 834 835 14 953

2 Solo classic d = 16, l = 10 674 689
2 Coop classic d = 16, l = 10 739 741
2 Solo dynamic (4) d = 16, l = 10 1004 1017
2 Solo dynamic (4) d = 16, l = 11 1003 987
2 Solo dynamic (4) d = 32, l = 10 1028 1032
2 Solo dynamic (4) d = 32, l = 11 1033 1032
2 Coop dynamic (4) d = 16, l = 10 955 945
2 Coop dynamic (4) d = 16, l = 11 945 942
2 Coop dynamic (4) d = 32, l = 10 984 990
2 Coop dynamic (4) d = 32, l = 11 988 983
2 Solo dynamic (10) d = 16, l = 10 1018 1022
2 Solo dynamic (10) d = 16, l = 11 922 901
2 Solo dynamic (10) d = 32, l = 11 1068 1063
2 Solo dynamic (10) d = 32, l = 11 1094 1093
2 Coop dynamic (10) d = 16, l = 10 955 956
2 Coop dynamic (10) d = 16, l = 11 897 883
2 Coop dynamic (10) d = 32, l = 10 1018 1024
2 Coop dynamic (10) d = 32, l = 11 1037 1034

Table 1: Proving-learning iterations and their performance on the devel and holdout sets. Model
parameters are the size of embeddings (d) and the number of layers (l).

7.2 Transfer to Newly Added Mizar Articles

We have also tested our trained system on the problems from a newer version of Mizar (1382)
that has 242 new articles and 13 370 theorems in them; more than half of which contain new
terminology. Whereas iProver in the non-interactive mode solves 1662 theorems, iProver guided
by our best model (dynamic trained on 10 samples with d = 32 and l = 11) solves 3657 theorems.
Hence the improvement is similar to the results on the dataset that we used for our training,
see Section 6.1.

8 Conclusion

We have developed an efficient learning-based guidance for the Inst-Gen calculus and shown
that the performance of the instantiation prover iProver is very substantially improved by
doing the inferences recommended by a name-independent graph neural network. The amount
of theorems proved on our holdout set by the ML-guided iProver is more than doubled compared
to the amount of proofs the unguided solver can find. Additionally, we found that the model

119



Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

also generalizes very well to a large number of problems added to the Mizar Mathematical
Library much later than our initial data set. This indicates that we can reasonably expect the
trained predictors to generalize to new problems coming in over time.

The interactive interface of iProver that we have developed here can be used for other
purposes. The interface exposes some of the internal data of iProver, which may be further
relevant to the clause prediction task. We have already seen that the dynamic setting improves
over the classic ENIGMA setting. In the future, we could use the interface e.g. for giving the
GNNs access to the SAT model which may serve as a semantic characterization of the search.

9 Acknowledgements

This work was partially supported by the European Regional Development Fund under the
Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15 003/0000466 (KC, JP, JU), Amazon
Research Awards (JP, JU), by the Czech MEYS under the ERC CZ project POSTMAN
no. LL1902 (KC, JP), EPSRC grant EP/V000497/1 UK (KK), and the EU ICT-48 2020 project
TAILOR no. 952215 (JU).

References

[1] Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise
selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning, 52(2):191–
213, 2014.

[2] Martin Desharnais, Petar Vukmirovic, Jasmin Blanchette, and Makarius Wenzel. Seventeen
provers under the hammer. In ITP, volume 237 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

[3] André Duarte and Konstantin Korovin. Implementing superposition in iProver (system descrip-
tion). In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th
International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II,
volume 12167 of Lecture Notes in Computer Science, pages 388–397. Springer, 2020.

[4] Harald Ganzinger and Konstantin Korovin. New directions in instantiation-based theorem proving.
In 18th IEEE Symposium on Logic in Computer Science (LICS 2003), 22-25 June 2003, Ottawa,
Canada, Proceedings, pages 55–64. IEEE Computer Society, 2003.

[5] Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Tactic-
toe: Learning to prove with tactics. J. Autom. Reason., 65(2):257–286, 2021.

[6] Zarathustra A Goertzel, Jan Jakub̊uv, Cezary Kaliszyk, Miroslav Oľsák, Jelle Piepenbrock, and
Josef Urban. The isabelle enigma. In 13th International Conference on Interactive Theorem
Proving, 2022.

[7] Zarathustra Amadeus Goertzel, Karel Chvalovský, Jan Jakubuv, Miroslav Olsák, and Josef Urban.
Fast and slow Enigmas and parental guidance. In FroCoS, volume 12941 of Lecture Notes in
Computer Science, pages 173–191. Springer, 2021.

[8] Jan Jakubuv and Josef Urban. Hammering Mizar by learning clause guidance. In John Harrison,
John O’Leary, and Andrew Tolmach, editors, 10th International Conference on Interactive Theo-
rem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA, volume 141 of LIPIcs, pages
34:1–34:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[9] Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. J. Autom. Reasoning, 55(3):245–256,
2015.

[10] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Oľsák. Reinforcement learning
of theorem proving. In Advances in Neural Information Processing Systems 31: Annual Conference

120



Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pages 8836–8847, 2018.

[11] Konstantin Korovin. iProver - an instantiation-based theorem prover for first-order logic (system
description). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated
Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15,
2008, Proceedings, volume 5195 of Lecture Notes in Computer Science, pages 292–298. Springer,
2008.

[12] Konstantin Korovin. Inst-Gen - A modular approach to instantiation-based automated reasoning.
In Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics - Essays in Memory
of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science, pages 239–270. Springer,
2013.

[13] Miroslav Oľsák, Cezary Kaliszyk, and Josef Urban. Property invariant embedding for automated
reasoning. In ECAI 2020, pages 1395–1402. IOS Press, 2020.

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing systems,
32, 2019.

[15] Michael Rawson and Giles Reger. lazycop: Lazy paramodulation meets neurally guided search. In
TABLEAUX, volume 12842 of Lecture Notes in Computer Science, pages 187–199. Springer, 2021.

[16] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[17] Martin Suda. Improving enigma-style clause selection while learning from history. In CADE,
volume 12699 of Lecture Notes in Computer Science, pages 543–561. Springer, 2021.

[18] Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning,
37(1-2):21–43, 2006.

[19] Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments. In Christoph
Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics - 13th International
Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of Lecture
Notes in Computer Science, pages 315–323. Springer, 2020.

[20] Zsolt Zombori, Josef Urban, and Miroslav Olsák. The role of entropy in guiding a connection
prover. In TABLEAUX, volume 12842 of Lecture Notes in Computer Science, pages 218–235.
Springer, 2021.

A Server Settings

We run the server with 48 state workers, 32 GPU workers, and the query max size is 2048. The
context is created from a random sample of at most 512 given clauses and all negated conjectures
(may be among given clauses). In no eval mode we run server with the --zero_scores option.

The evaluations were run on NVIDIA DGX-1 with dual 20-core Inter E5-2698 v4, 512 GB
RAM, and 8 NVIDIA Tesla V100 GPU cards.

B iProver Settings

We compile iProver (branch 2022_sockets) with STATIC=true z3=false in the debug mode
(let dbg_global_flag = true), which is useful for extracting proofs for further iterations.
For every problem, we run tptp4X -t noint -u machine -N to rename integers to constants.

We always run 16 iProvers in parallel on the same machine as we run the server and they
communicate via the loopback network interface. The server overhead is relatively small (overall

121



Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

load is usually 22–23) with a GPU utilization between 10–20% even with our biggest models
(d = 32 and l = 11). Time limits (in real time) are always 15 seconds.

The detailed settings are as follows.

Non-interactive mode

iproveropt \

--interactive_mode false \

--inst_learning_loop_flag false \

--schedule none \

--preprocessing_flag false \

--instantiation_flag true \

--superposition_flag false \

--resolution_flag false \

--time_out_real 15 \

--inst_unprocessed_bound 1000

Ignore eval and no eval mode

iproveropt \

--interactive_mode true \

--external_ip_address "127.0.0.1" \

--external_port "12300" \

--inst_learning_loop_flag false \

--schedule none \

--preprocessing_flag false \

--instantiation_flag true \

--superposition_flag false \

--resolution_flag false \

--time_out_real 15 \

--inst_unprocessed_bound 1000

Solo mode

iproveropt \

--interactive_mode true \

--external_ip_address "127.0.0.1" \

--external_port "12300" \

--inst_learning_loop_flag false \

--schedule none \

--preprocessing_flag false \

--instantiation_flag true \

--superposition_flag false \

--resolution_flag false \

--inst_passive_queue_type priority_queues \

--inst_passive_queues_freq "[1]" \

--inst_passive_queues "[[+external_score]]" \

--time_out_real 15 \

--inst_unprocessed_bound 1000

122



Guiding an instantiation prover with graph neural networks Chvalovský, Korovin, Piepenbrock and Urban

Coop mode

iproveropt \

--interactive_mode true \

--external_ip_address "127.0.0.1" \

--external_port "12300" \

--inst_learning_loop_flag false \

--schedule none \

--preprocessing_flag false \

--instantiation_flag true \

--superposition_flag false \

--resolution_flag false \

--inst_passive_queue_type priority_queues \

--inst_passive_queues_freq "[27;25;2]" \

--inst_passive_queues "[[+external_score];[-conj_dist;+conj_symb;-num_var];

[+age;-num_symb]]" \

--time_out_real 15 \

--inst_unprocessed_bound 1000

C GNN Settings

We trained models with node, symbol, and clause embeddings of size 16 with 10 layers. In the
last iteration, we also tried models with embeddings of size 32 and with 11 layers. We have
not performed other hyperparameter searches. Layer normalization is used after every message
passing step to ensure training stability.

The models were trained on various servers with NVIDIA GTX 1080 Ti, Tesla V100, and
A40 GPUs. We trained each model for roughly two days (with a limit of 100 epochs). The only
exception was iteration 1 where we trained models just for one day to get more proofs quickly.
The Adam optimization algorithm with a learning rate 0.0005 was used for training.

123


	Introduction
	iProver
	iProver and the Inst-Gen Calculus
	Guiding iProver

	Name-Independent Graph Neural Network
	Interactive Mode
	GPU Server
	Experimental Setting
	Evaluation Problems
	Data: Classsic vs Dynamic
	iProver Settings

	Results
	Holdout Set Performance
	Transfer to Newly Added Mizar Articles

	Conclusion
	Acknowledgements
	Server Settings
	iProver Settings
	GNN Settings

