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Abstract

Performing hundreds of test runs and a source-code analysis, we empirically identified
improved parameter configurations for the CryptoMiniSat (CMS) 5 for solving crypto-
graphic CNF instances originating from algebraic known-plaintext attacks on 3 rounds
encryption of the Small AES-64 model cipher SR(3,4,4,4). We finally became able to
reconstruct 64-bit long keys in under an hour real time which, to our knowledge, has never
been achieved so far. Especially, not without any assumptions or previous knowledge of
key-bits (for instance in the form of side-channels, as in [11]). A statistical analysis of the
non-deterministic solver runtimes was carried out and command line parameter combina-
tions were defined to yield best runtimes which ranged from under an hour to a few hours
in median at the beginning. We proceeded using an Automatic Algorithm Configuration
(AACQC) tool to systematically extend the search for even better solver configurations with
success to deliver even shorter solving times. In this work we elaborate on the systematics
we followed to reach our results in a traceable and reproducible way. The ultimate focus
of our investigations is to find out if CMS, when appropriately tuned, is indeed capable
to attack even bigger and harder problems than the here solved ones. For the domain of
cryptographic research, the duration of the solving time plays an inferior role as compared
to the practical feasibility of finding a solution to the problem. The perspective scalability
of the here presented results is the object of further investigations.

1 Introduction

CryptoMiniSat! offers a wide range of parameter settings to choose when calling the solver and
these parameters seem to sensitively influence the search for a solution in case of cryptographic
CNF (conjunctive normal form) instances. We selected parameter combinations that especially
affect the solver runtime-behavior in the case of CNF instances, generated from algebraic equa-
tions systems that represent known-plaintext attacks (KPA) on the Small AES-64 model cipher.
The KPA is an attack model of cryptanalysis where the attacker has access to both the plain-
text and its encrypted version (ciphertext). Knowing the cryptographic algorithm, the goal of

IDeveloped by Mate Soos as an open source community project [13, 12].
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the attack is to reconstruct the secret key from the text information. AES is an iterated block
cipher which, as the encryption mechanism, repeats a set of state transformations for a number
of rounds. The input (plaintext) and the output of each and every transformation is called state
and consists of a fixed number of bits. AES makes use of both non-linear and linear transforma-
tions, one being the round-key addition. The round keys are generated from the secret key. To
perform the state transformations, the state or block is divided into words which are arranged
in a rectangular array, structured by rows and columns. In AES words are eight bits long. The
nonlinear transformation operates on each word independently. For the key recovery one first
describes the encryption algorithm in the form of a Boolean MQ (multi quadratic) polynomial
equation system of bit variables, as introduced by Courtois and Pieprzyk [3]. Inserting the
known bits of the plaintext and cyphertext pairs one gets a non-linear system of equations, the
solution of which delivers the secret key. Each additional text pair adds another set of equations
to the system but with the same key bit variables. The equations of the round key expansion
enter only once. This system can be tackled with algorithms based on Grobner bases and SAT
solvers or alternatively only with a SAT solver, which is the approach followed here. Routinely,
so named small scale variants of the AES polynomial system [2] are employed for tests in the
cryptographic community. Relevant to the usual variants are the following numbers:

— n is the number of (encryption) rounds,

— r is the number of rows in the rectangular arrangement of the state,

c is the number of columns in the rectangular arrangement of the state,

— e is the size (in bits) of a word, normally 4 or 8.

AES would be considered as broken when the model for (n,r,c,e) = (10,4, 4,8) has been
solved and the corresponding 128-bit long key has been recovered. However, already successes to
recover 8-bit and 16-bit long keys for very small AES model ciphers are reported in the literature,
mainly in association with benchmarking of SAT solvers in comparison to one another [1, 8].
Here the solution of the model system SR(3,4,4,4) is discussed using CMS.

The computations have been performed on both four socket AMD Opteron 6378 and two
socket EPYC 7551 systems with 256 GB RAM using 31 threads per job (64 respectively 128
would have been possible) and up to four jobs parallelly. Details concerning the derivation of the
MQ algebraic equations system of the attack and its transformation to CNF will not be further
discussed here because the focus of this work lies on the configuration of the solver. The inter-
ested reader can find some of these information in [9]. CryptoMiniSat solves all cases of 2 rounds
encryption, that is the SR(2,4,4,4) case, for the Small AES-64 model within seconds. Key re-
covery from 3 rounds encryption can get successfully accomplished with the solver running in
default parameter setting, however mostly within hours. The solution finding is subjected to
distinct statistical variations, due to the indeterministic behavior of the solver in multi-thread
operation mode. When an upper runtime-limit has been set, it is a matter of chance whether
the solver will find the solution or not. Running the solver determininistically in single-thread
modus is out of the question because it takes infeasible long. The parallely and asynchronously
running solver threads complement each other by exchanging information and are indispens-
able for finding the solution in tolerable time. A systematical statistical investigation of the
solver’s behavior for a multitude of cases helped us find solver parameter combinations which
enable key recovery for 3 rounds AES-64 encryption, or solving the SR(3,4,4,4) case, within
predictable time-intervals. We extended our efforts beyond the empirical parameter optimiza-
tion by employing an automatic algorithm configuration tool which we adapted for the problem
and applied it to find even better parameter settings.
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This paper is organized in 5 parts as follows: In the first part we give an overview of the size,
format and the density of the CNF instances which we have worked with. In the second part we
present and discuss runtime statistics of the solver in its default parameter settings. In the third
part the empirical parameter optimization investigations and their results are presented and
discussed. Due to the indeterministic behavior of the solver in multi-thread operation mode,
certain changes in the source code have been undertaken, which were seen as necessary in order
to increase the significance of the influence of changes in parameter settings to the benefit of
the generation of distinct results. These source-code changes will be substantiated and the out
of them resultant improvements of the solver runtimes will be graphically demonstrated. In
the fourth part of this paper, the innovative results of an Automatic Algorithm Configuration
for the parameters of CryptoMiniSat which produced even better parameter configurations will
be presented and discussed. We conclude with a summary and description of further planned
investigations to optimize CMS.

2 Classification of CNF-Instances

The plaintexts were made of english words and spaces. We have varied the number of the
KPA text pairs, used for the instances generation, in order to investigate also the influence of
this number on the solution runtime for instances otherwise created with the same key. The
number of text pairs measures the redundancy of information given to the solver, as all texts
are encoded with the same algorithm (the same logic) and the same key. The bigger the number
of text pairs, the bigger the number of variables and constraints in the resulting instance to
solve, so one shouldn’t expect to be able to always get an advantage by arbitrarily increasing
the number of text pairs. However, for each key case there seems to exists an optimal number
of text pairs minimizing the solution time and that has to be discovered. The number of text
pairs varied here between 16 and 32 pairs. It should be noted that these cryptographic CNF
instances only possess one truth assignment by construction. An overview of the parameters of
the tested CNF instances is listed in table 1. We varied also the quality of the encoding key.
Experiments were performed with several different keys, belonging to three different classes. As
representative of each class, three keys are listed below, with which the results presented here
have been produced.

k4 ’0101010101010101’; pathologic or insecure
k3 ’0123456789abcdef’; structured
k6 'b25286f7d3e7b3el’; secure, random

All instances contain clauses of varying length and all instances are of the type sparse and
without inclusion of explicit XOR-Clauses.

3 Runtime Statistics for CMS in Default-Setting

The CMS threads work asynchronously and the order in which they exchange information is
unpredictable depending on external influences like the operating system and administrative
tasks running on the computer. Similarly indeterministic and irreproducible is each and every
solver run and solution process. This circumstance leads to the result that repeated solver
attempts to solve one and the same instance under identical parameter configuration can de-
liver very different runtimes, which renders the nature of statements about average runtime
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Table 1: Some characteristic numbers of the utilized CNF instances. Instance tokens comprise
(no. of rounds)-(key token)-(no. of text pairs).

Instance® | Rounds | Text Pairs | Variables L | Clauses N | Density N/L
3-k4-12 3 12 4096 1228120 299.8
3-k4-16 3 16 5376 1626619 302.6
3-k4-30 3 30 9856 3021481 306.6
3-k3-12 3 12 4096 1227940 299.8
3-k3-14 3 14 4736 1427202 301.4
3-k3-18 3 18 6016 1825395 303.4
3-k3-20 3 20 6656 2024600 304.2
3-k3-22 3 22 7296 2224391 304.9
3-k3-30 3 30 9856 3021481 306.6
3-k6s-20 3 20 6656 2025228 304.3
3-k6s-22 3 22 7296 2224391 304.9
3-k6s-24 3 24 7936 2424008 305.4
3-k6s-30 3 30 9856 3021481 306.6
4-k6s-30 4 30 13760 4447760 323.2

“k3: 0123456789abcdef; k4: 0101010101010101; k6: b25286f7d3e7b3el

measurements to a statistical one. Boxplots® have been chosen as proper statistical analysis
method for the runtime measurements.

In Figure 1 the runtime analysis of the solver for the as insecure classified key for 12, 16,
and 30 text pairs respectively is depicted. The median of the runtime varies with the number
of text pairs and the faster key recovery is achieved with the instance created out of 16 text
pairs. Also the mean values of the measured data reflect the same result though each assuming
a higher value than its respective median. In Figure 2 there is depicted the runtime analysis of
the solver for the structured key case and for 12, 14, 18, 20, 22, and 30 text pairs, respectively.
Also in this case does the median of the solution time distinctly vary dependent on the number
of text pairs, the optimal number appearing to be this time in the case of 22 pairs. Again
mean values and medians stay consistent to this result with the mean values climbing a bit
higher than the medians. Obviously the use of the structured key makes the solution of the
problem considerably more expensive shifting the solution time one order of magnitude towards
higher values. In plot 3 the solver runtime analysis regarding the solution of instances created
with the random or secure key is demonstrated. The solution runtime is of the same order
of magnitude as in the case of the structured, or simple key, the optimal number of text pairs
appearing to be 24 this time. The CMS runtime measurements produce a spectrum of random
data representing solver runtimes containing some few extremely long runtimes. However, in
each case the majority of the resulting values lie within a well defined limited region.

Comparing the solution times in the plots, one observes that the number of text pairs is
important, because a convenient choice of this number can occasionally strongly diminish the
solver runtime for instances otherwise created with the same key. Comparing solution runtimes
for three different keys using instances created with the same number of text pairs, one can
attest that a simple key costs a shorter solution runtime as compared to the runtime needed to
solve the instance generated with a secure key, see Figure 4. In table 2 the runtime statistics
for the calculations with the CMS in default setting are portrayed.

2See for example WIKIPEDIA Box plot https://en.wikipedia.org/wiki/Box_plot.
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Figure 1: 3 rounds, key k4: varying number of text pairs.
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Figure 2: 3 rounds, key k3: varying number of text pairs.

4 Empirical Parameter Optimization

A dynamic code-analysis of the solver preceded the practical parameter optimization phase, so
as to investigate how the solver-runtime consumption is distributed between the various solver
and functions dependent on the external parameter settings and the instance
to solve. Again the dynamic analysis results are of statistical character, as the various solver
modules and functions are regularly called many times during the solver runtime. A previous
static code analysis had provided associations between external parameters and according parts
of the code. The question was, if dependent on the problem at hand, one could possibly discover

sub-processes
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KPA 3 rounds, key k6s, default: variable no. of text pairs
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Figure 4: 3 rounds, constant number of text pairs, varying keys.

some optimal strategy of how to vary on parameters influencing favorably the execution of the
most time-consuming code parts, so as to effectively shorten the solution runtime. For profiling
the CMS program we used the GNU /Linux perf tool®. Flame Graphs generated with the open
source tool of the same name developed by Brendan Gregg [5] are utilized for the visualization
of the profiling results. The code performance profiling has been carried out in both default
solver setting and with certain parameter settings other than default. This delivered converging
and unique results, as regards those parts of the code causing the greatest CPU-load in case

3See for example WIKIPEDIA perf (Linux) https://en.wikipedia.org/wiki/Perf_(Linux).
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Table 2: Runtime statistics with CMS in default setting. The instance token comprises (number
of rounds)-(key token)-(number of text pairs).

Instance® | count | median quartile mean | o [%]
3-k4-12 25 2409.6 1243.8 3859.6 3821.9 126
3-k4-16 25 1569.8 993.6 3592.8 2700.8 98
3-k4-30 26 5281.6 4008.6 6221.2 5736.2 47
3-k3-12 17 | 167460.0 | 157160.3 | 175973.7 | 167778.0 21
3-k3-14 15 66963.4 47415.0 84625.9 74358.1 58
3-k3-18 11 26645.1 14093.4 40702.4 28979.0 71
3-k3-20 31 14073.1 6818.8 23159.6 | 27382.6 163
3-k3-20° 8 56141.5 16057.7 | 105700.4 70640.1 98
3-k3-22 36 11788.1 7328.1 20468.9 17610.4 95
3-k3-30 4| 34551.3 14286.1 54366.9 | 34101.8 70
3-k6s-20 50 23925.9 14190.5 34829.1 33958.6 112
3-k6s-22 33 26602.2 17846.1 45668.5 54138.4 157
3-k6s-24 51 9462.4 6100.0 17050.3 17113.6 111
3-k6s-30 22 64556.1 34625.1 96221.0 71600.6 76

%k3: 0123456789abcdef; k4: 0101010101010101; k6: b25286f7d3e7b3el
bSolution calculated with 21 threads.

of all instances implementing the attack on the 3 rounds encryption of the AES-64 model
cipher. These results have been verified against different encryption keys and different numbers
of text pairs employed for the generation of the problem instances and they appear to be
stable. 82% to 97% of the runtime the solver invests into its search routine (especially, the
method propagate_any_order_fast() of the propagation procedure) and this is independent
of whether an instance terminates during the observed runtime or not.

Since the solution of the considered CNF instances typically takes a few thousand seconds,
the profiling was performed only during a part of the program run. To insure a stable result,
we chose the measuring interval big enough, as well as the sampling frequency f for perf high
enough. One has to keep in mind that the performance profiling for CMS delivers a statistical
statement. The reasons are: 1) the program runs of CMS are indeterministic; 2) in multi-
thread modus of CMS, the profiling averages over all threads where the threads are computing
independently of each other at different parts of the code; 3) the interval of the profiling
measurement starts at different times of the running program.

Exemplarily, a first profiling visualization is depicted in Figure 5, where the relative runtime-
shares which the most used code paths of CMS consume, are depicted for the case of the medium
hard to solve CNF instance 3-k3-22. Apart from the verbosity level and the multi-thread mode,
CMS was here applied in default configuration.

Of interest is the variation of parameters influencing the whole of the search process or such
that influence the function propagate_any_order_fast() in a direct way. In table 3 there are
listed parameters influencing the solver’s restart process, the choice of variables and the setting
of the so called glue values. The parameter —-updateglueonprop is the only one directly af-
fecting the function propagate_any_order_fast (). The last two parameter combinations, sw3
and sw4, indicate calculations with a modified version of CMS. In the multi-thread mode, CMS
configures most threads slightly different than the command-line settings in order to deliver
good performance with the variety of CNF instances to be solved in SAT solver competitions.

85



CryptoMiniSat Switches-Optimization Leventi-Peetz, Zendel, Lennartz, and Weber

pl0: cms5-df0allbl --verb=4 --threads=31 s-aes-kpa-3-k3-22-vs.cnf

CMSat::Searcher::search<false> |CMSat::Solv..

Figure 5: FlameGraph 3 rounds: 3-k3-22 with 31 threads, default parameter configuration,
performance measuring with f = 250 Hz for 300 s.

Table 3: Explored parameter combinations and their abbreviations. Also set for all CMS runs:
--verb=4 --threads=31 --comps=0. sw3 und sw4 imply the usage of the here modified CMS.

Abbreviation | Parameter Combinations

swl --restart=geom --maple=1 --bva=0 --sync=30000

sw2 --gluehist=30 --maple=1 --maxnummatrixes=8 --bva=0

swb --restart=glue --gluecut0=4 --updateglueonprop=1

sw7 --gluecut0=5 --gluecutl=7 --updateglueonprop=1

sw3 --restart=geom --maple=1 --cachesize=4096 --cachecutoff=3000
sw4 --restart=glue --gluecut0=4 --updateglueonprop=1

To enhance the influence of the here considered parameter combinations on the solution of the
examined cryptographic CNF instances, we changed the source code so that the solver uses
the same command-line settings for all threads. Only the pseudo random number generator
(PRNG) of each thread is seeded differently. This change is effective, because it limits the
solver’s strategy to one exclusively examined configuration whereat the threads get diversified
due to the usage of the PRNG and the asynchronous information exchange.

In the FlameGraph-visualization of Figure 6 there are depicted the relative runtime-shares
which the most used code paths of CMS consume during the calculations for the harder to solve
CNF instance 3-k6s-30. In this case the parameter combination sw4 was employed. Here the
solver spends a bit less time in the search as compared to the the case shown in figure 5.

Because instances created with the insecure key k4 could be solved relatively fast with the
CMS in default setting, only instances created with the other two keys have been employed for
the parameter optimization tests. In Figure 7 the solver runtime analysis for solving instances
created with the structured key k3 is demonstrated for different parameter combinations. In
the next Figure 8 the same instance as in Figure 7 is tested with the parameter combinations:
default, sw3 and sw4. Evidently the choice of parameter combinations has a considerable
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p1l8: cms5-df0allbl-sct --verb=4 --threads=31 --restart=glue --gluecut0=4 --updateglueonprop=1 --comps=0 s-aes-kpa-3-k6s-30-vs.cnf

Figure 6: FlameGraph 3 rounds: 3-k6s-30 with 31 threads, parameter configuration sw4, per-
formance measuring with f = 250 Hz for 300 s.

KPA-3-k3-20: default, swl, sw2, sw6, sw7
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Figure 7: 3 rounds, key k3: 20 pair texts, parameter combinations: default, swl, sw2, sw6, sw7.

influence on the solution runtime of the solver. An improvement in the solution time is registered
with the sw4 parameter combination as compared to the default setting. Changing the number
of text pairs we test the stability of the sw4 runtime advantage, as a function of the number
of text pairs. We observe that this advantage can get attenuated or amplified, dependent on
the chosen number of text pairs, see Figure 9. This suggests that the number of text pairs
should also be observed as a problem optimization parameter. There follows a series of runtime
tests with sw4, solving instances created with the secure key k6. The results are exhibited in
Figure 10. In Figure 10 we see that the instance created with 30 text pairs allows the faster
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KPA-3-k3-20: default, sw3, sw4
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Figure 8: 3 rounds, key k3: 20 pair texts, parameter combinations: default, sw3 and sw4.

KPA 3 r., key k3: best default and sw4 with variable no. of text pairs
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Figure 9: 3 rounds, key k3: best default, and sw4 with variable number of text pairs.

reconstruction of the key k6 when the parameter combination sw4 is applied. Notably, even
the upper quartile of the optimized best solver runtime, for the instance with the 30 text pairs,
lies underneath the lower quartiles of the runtimes of all other instances, thus establishing the
unambiguity of this result. The following Boxplot in Figure 11 depicts the comparison between
the best results for all three different keys. It seems that for every key and independent of its
security quality, there exists a combination of a number of text pairs and a CMS configuration
to find the solution with a statistical median lying well below the 10000 seconds runtime limit
for the solver. This is a significant result because it indicates that a secure key might not
necessarily offer better protection against solving the here discussed instances. In table 4 the
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KPA 3 r., key k6s: best default and sw4 with variable no. of text pairs
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Figure 10: 3 rounds, key k6: best default, and sw4 with variable number of text pairs.

KPA 3 rounds, best: keys k4, k3, k6s
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Figure 11: 3 rounds best for keys: k4, k3, k6s.

solver runtime statistics for the practically optimized parameter settings are presented.

5 Automatic Algorithm Configuration (AAC)

The adaption of SAT solver configurations to a specific type of instances or instance classes is
a common practice employed by many developers of such programs participating in the inter-
national SAT solver competition.* Meanwhile, also computer tools for the automatic algorithm

4International SAT Solver Competitions http://www.satcompetition.org.
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Table 4: Runtime statistics with various parameter combinations for CMS. Instance tokens
comprise (no. of rounds)-(key token)-(no. of text pairs).

Instance® | count | median quartile mean | o [%]
3-k3-20-sw1l 4 | 153149.7 | 132870.1 | 172872.3 | 152592.8 24
3-k3-20-sw2 9 | 40596.2 9753.6 | T71882.5 | 60456.5 121
3-k3-20-sw3 12| 23689.6 8963.1 | 46646.4 | 32149.3 87
3-k3-20-sw4 35 9227.2 9919.9 13522.9 11828.3 79
3-k3-20-sw6 11 25895.9 6922.7 | 44363.8 | 43264.8 148
3-k3-20-sw7 8 | 36036.9 | 26012.9 | 53067.9 | 37975.0 42
3-k3-22-sw4 35 9761.5 7819.0 | 16320.9 | 13895.4 79
3-k6s-20-sw4 60 7575.2 4225.7 | 12310.2 | 10686.0 95
3-k6s-22-sw4 74 8142.4 4410.4 11720.8 9535.7 80
3-k6s-24-sw4 59 14547.9 7312.2 23404.8 19408.2 88
3-k6s-30-sw4 197 2581.0 1687.8 4857.5 4110.9 116

2k3: 0123456789abcdef; k6: b25286f7d3e7b3el

configuration are available. Such programs even participate in the Configurable SAT Solver
Challenge (CSSC), organized by F. Hutter et al. [7]. Led by the results of the CSSC 2016 we
chose the tool SMACv3, developed by M. Lindauer, F. Hutter et al. [10, 6] at the Universi-
ties of Freiburg and British Columbia, to further optimize the parameter settings of CMS for
cryptographic CNF instances.

In order to apply SMACv3 with CMS, we set up the required Python environment and
implemented a Target Algorithm FEvaluator (TAE), a Python wrapper around CMS version
5.0.1, for the SMACv3 optimization API. We defined the legal ranges of the parameters to be
optimized by SMACv3 by setting up a Parameter Configuration Space (PCS). From the PCS,
SMACv3 chooses parameter combinations and calls the TAE with it. The resulting runtime
of a CMS computation returned via the TAE is evaluated by SMACv3 for the parameter
optimization and for further calls of the TAE. SMACv3 is able to deal with indeterministic
runtimes by repeatedly calling CMS with the same parameter configuration and evaluating an
estimator for the runtime. We performed the optimization by using SMACv3 in parallel mode.

All parameter optimization runs were performed with the modified version of the CMS code
with alike configuration for all threads. Starting from our empirical configuration results, we
confined the parameter optimization to few CMS parameters, a typical PCS file of ours looks
like follows:

# Restart options

gluehist [40, 250] [50]i

# Red clause removal

gluecutO [1, 6] [3]i

gluecutl [5, 9] [5]i

adjustglue [0.3, 0.9] [0.7]

# Variable branching options

freq {0.0, 0.1, 0.2, 0.3, 0.4} [0.0]

We performed optimizations for the CNF instances 3k3-22 and 3-k6s-30, independently. In
Figures 12 and 13 we compare some intermediate states of the optimization (called incum-
bents by SMACv3) with the empirical best configuration sw4. From the results of several
optimization runs (each computing nearly a week) we excerpted a configuration which reduces
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KPA 3-k3-22: empiric and optimized parameters
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Figure 13: 3 rounds, key k6s, 30 text pairs: sw4, an optimizer incumbent, and sw10.

the median runtime for both instances. Compared to the empirical parameter setting sw4, the
new best parameter combination swl0 sets additionally --gluecut1=7 --gluehist 45. The
Boxplots of the runtime analysis for this parameter setting are also shown in Figures 12 and 13.
The numerical values of the Boxplot estimators are recapitulated in table 5. The runtime of
the CNF instance 3-k6s-30 could be improved by almost 30% and that of the instance 3-k3-22
even by nearly 80% in median.
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Table 5: Runtime statistics of better parameter combinations for CMS. Instance tokens comprise
(no. of rounds)-(key token)-(no. of text pairs). Times are in seconds for the solving-thread.

Instance® count | median quartile mean | o [%]
3-k3-22-sw4 35 | 9761.5 | 7819.0 | 16320.9 | 13895.4 79
3-k3-22-aac-7-1 5 | 3134.1 | 1256.4 3212.2 2913.7 68

3-k3-22-aac-7-2 10 | 3291.5 | 2360.9 | 5333.9 | 3767.1 %)
3-k3-22-aac-7-3 25 | 4925.2 | 4201.4 | 5574.6 | 4792.0 35

3-k3-22-sw10 15 | 2127.3 | 1503.9 | 4993.0 | 3262.4 72
3-k6s-30-sw4 197 | 2581.0 | 1687.8 | 4857.5 | 4110.9 116
3-k6s-30-aac-2 8 | 2966.6 | 2085.9 | 3807.3 | 2956.1 41
3-k6s-30-sw10 15 | 1830.1 | 1321.5 | 2526.4 | 20574 46

%k3: 0123456789abcdef; k6: b25286f7d3e7b3el

6 Conclusions and Work in Progress

In this paper we describe the steps taken in studying the influence of various CMS configura-
tions on the SAT solver’s performance in trying to find solutions for cryptographic instances
representing algebraic known-plaintext attacks on the 3 rounds small AES-64 model cipher. The
static and dynamic analysis of CMS has pointed to the most computationally intensive parts,
which in turn motivated variations of certain configuration parameters expected to influence
the execution time of mainly these parts of the code. We also modified the source code in a
way that enhances configuration changes and produces clearer results. We performed statistical
runtime analysis of a plethora of results created in both default and other solver configurations
which enabled us to identify solver configurations that solve the here discussed instances and
thus fully recover the 64-bit key in time intervals underneath an hour (real time).® This result
is independent of the security quality of the key. By means of an Automatic Algorithm Con-
figuration (AAC) we could even improve the previous best runtimes achieved with empirically
decided configurations. Since CMS has many more parameters than varied here, it potentially
offers possibilities for further configuration optimization. Therefore we intend to expand our
efforts in this direction with AAC. The universality of validity of the here elaborated configu-
rations has still to get verified. This demands the creation of many more instances and running
of many more tests. Also experiments with other types (e.g. dense) of CNF-instances have to
be considered. Perhaps, when appropriately tuned, CMS can solve even bigger cryptographic
problems. Increasing the number of rounds means having to handle CNF-instances with many
more variables and many more millions of constraints in comparison to the here handled prob-
lems. A worst case complexity would be soon formally reached. However, in the SAT solver
context, worst case complexity has no explanatory or predictive power [4].

5The solution is found by one thread in this time, but not without exchange with the other threads also
searching a solution in this time. In a sense one could say: CPU solution time of the winning thread.
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