
Kalpa Publications in Computing
Volume 21, 2025, Pages 45–60

Proceedings of the 14th and 15th International
Workshops on the Implementation of Logics

Towards StarExec in the Cloud
David Fuenmayor1, Jack McKeown2, and Geoff Sutcliffe2

1 University of Bamberg, Bamberg, Germany
david.fuenmayor@uni-bamberg.de
2 University of Miami, Miami, USA

jam771@miami.edu,geoff@cs.miami.edu

Abstract

StarExec has been central to much progress in logic solvers over the last 10 years. It was
recently announced that StarExec Iowa will be decommissioned, and while StarExec Miami
will continue to operate while funding is available, it will not be able to support all the logic
solver communities currently using the larger StarExec Iowa. In the long term StarExec
will necessarily have to migrate to new compute environments. This paper describes work
being done to reengineer StarExec as a cloud-native application using container technology
and infrastructure-as-code practices. The first step has been to containerise StarExec and
ATP systems so that they can be run on a broad range of computer platforms. The next
step in process is to write a new backend in StarExec so that Kubernetes can be used to
orchestrate distribution of StarExec job pairs over whatever compute nodes are available.
Supported by an Amazon Research Award, a new version of StarExec will be deployed in
AWS.

1 Introduction
Automated Theorem Proving (ATP) is concerned with the development and use of tools that
automate sound reasoning: the derivation of conclusions that follow inevitably from facts.
Automated Theorem Proving (ATP) is at the heart of many computational tasks, in particular
for verification [12, 10] and security [8].1 New and emerging application areas include chemistry
[44], biology [6], medicine [14], elections [21, 4], auctions [5], privacy [18], law [24], ethics [9],
religion [22, 2, 16], and business [11]. ATP systems are also used as components of more complex
Artificial Intelligence (AI) systems, and the impact of ATP is thus extended into many facets
of society.

The Thousands of Problems for Theorem Provers (TPTP) World [40] is a well established
infrastructure that supports research, development, and deployment of ATP systems. The
TPTP World includes the TPTP problem library [39], the TSTP solution library [37], standards
for writing ATP problems and reporting ATP solutions [41, 36], tools and services for processing
ATP problems and solutions [37], and it supports the annual CADE ATP System Competition
(CASC) [38]. Since its first release in 1993 the ATP community has used the TPTP World
as an appropriate and convenient infrastructure for ATP system development, evaluation, and

1In AWS - aws.amazon.com/what-is/automated-reasoning/, aws.amazon.com/security/provable-security/.

K. Korovin, S. Schulz and M. Rawson (eds.), IWIL-2024 (Kalpa Publications in Computing, vol. 21), pp. 45–60

https://aws.amazon.com/what-is/automated-reasoning/
https://aws.amazon.com/security/provable-security//

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

application. The TPTP World has a diverse, engaged, and sustained user community, with
various parts of the TPTP World being deployed in a range of applications in both academia
and industry.2 The web page www.tptp.org provides access to all components.

The TPTP problem library was motivated by the need to provide support for meaningful
ATP system evaluation. The need to provide support for meaningful system evaluation has
been recognized in many other logic solver communities, e.g., TPTP [42], SAT [15], SMT [7],
Termination [19], etc. For many years testing of logic solvers was done on individual developers’
computers. In 2010 a proposal for centralised hardware and software support was submitted
to the NSF, and in 2011 a $2.11 million grant3 was awarded. This grant led to the devel-
opment and availability of StarExec Iowa [33] in 2012, and a subsequent $1.00 million grant4
in 2017 expanded StarExec to Miami. StarExec has been central to much progress in logic
solvers over the last 10 years, supporting 16 logic solver communities, used for running many
annual competitions [1], and supporting many many users. StarExec Iowa provides community
infrastructure for many logic solver communities, e.g., ASP, QBF, SAT, SMT, Termination,
etc, while StarExec Miami is used by the TPTP community. StarExec Miami has features that
take advantage of TPTP standards, and is also used to host CASC.

It was recently announced that StarExec Iowa will be decommissioned. The maintainer
of StarExec Iowa explained that “the plan is to operate StarExec as usual for competitions
Summer 2024 and Summer 2025, and then put the system into a read-only mode for one year
(Summer 2025 to Summer 2026)”. The 2017 grant for StarExec Miami paid for the hardware and
three years of system administration. The hardware is still hosted by the University of Miami
High Performance Computing group, funded on a shoe-string budget by the TPTP World.
While StarExec Miami will continue to operate while funding is available, it will not be able to
support all the logic solver communities currently using the larger StarExec Iowa. In the long
term StarExec will necessarily have to migrate to new compute environments, and several plans
are (at the time of writing) being discussed. This paper describes work being done to reengineer
StarExec as a cloud-native application using container technology and infrastructure-as-code
practices. The first step has been to containerise5 StarExec and ATP systems so that they can
be run on a broad range of computer platforms. The next step in process is to write a new
backend in StarExec so that Kubernetes can be used to orchestrate distribution of StarExec job
pairs over whatever compute nodes are available. Supported by an Amazon Research Award
(see Section 5) a new version of StarExec will be deployed in AWS. This StarExec instance
will be fully functional and available to the community (as much as our budget allows). It
will also serve as an exemplary implementation for those willing to deploy their own, possibly
customized, StarExec on their own computers or in the cloud.

This paper is organized as follows: Section 2 provides a short background to ATP systems,
StarExec, and containerisation. Section 3 describes how StarExec has been containerised, and
Section 4 describes how ATP systems have been containerised. Section 5 explains how the
containerised StarExec and ATP systems will be deployed in a Kubernetes setting. Section 6
concludes and looks forward to future work.

All the software described in the paper is available from . . .
github.com/StarExecMiami/StarExec-ARC.

2TPTP has contributed to recognized research in 627 publications that cite [39], according to Google Scholar.
3NSF Awards 1058748 and 1058925, led by Aaron Stump and Cesare Tinelli at the University of Iowa
4NSF Award 1730419
5Strictly, “images” are built, and the images are deployed in containers. But keeping with common use of

the terminology, we say “container images” and “containerise”.

46

https://www.tptp.org
https://github.com/StarExecMiami/StarExec-ARC

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

2 Background

2.1 StarExec
Figure 1 shows the architecture of the currently deployed StarExec Miami. The hardware
consists of a single head node and multiple compute nodes. The head node provides the browser
interface for users, in particular it accepts job requests that generate job pairs consisting of an
ATP system and a problem file, does internal scheduling, and uses the SUN Grid Engine (SGE)
to distribute the job pairs to the compute nodes. (For development and testing, the head node
can also run job pairs itself using a local backend.) The head node maintains a relational
MariaDB database, and all the nodes access an NFS mounted shared file system. The database
records everything, including locations of the ATP systems’ files and the problem files in the file
system. Job pairs executing on a compute node have their time and memory usage limited and
reported by the runsolver [26] utility (the BenchExec [3] utility in StarExec Iowa). The results
and resource usage data from completed job pairs are stored in the file system, and recorded
in the database. The browser interface provides the necessary facilities for user management,
uploading ATP systems, uploading problem files, browsing the ATP systems and problems,
creating jobs, imposing resource limits in jobs, tracking job progress, browsing and downloading
job results, and deleting ATP systems, problems, jobs, etc.

SGE server
runsolver
ATP system
Problem

MariaDB File system

As many
as you
have

Results

Job
pair

Head Node
StarExec

head node
StarExec
Local backend
SGE client
backend

Compute Node
StarExec

compute node
SGE server
runsolver
ATP system
Problem

Compute Node
StarExec

compute node

Figure 1: StarExec Architecture

2.2 ATP Systems
ATP Systems are complex pieces of software, typically using advanced data structures [28],
sophisticated algorithms [43], and tricky code optimizations [27]. They are written in a variety of
programming languages: Prolog [23, 13], Scala [32], C [29], C++ [25], OCaml [17], Python [30],
etc. Their build processes include techniques such as parser generators [31], Makefiles, code
repositories, specific versions of libraries, etc. For a user who is focussed on an application
of ATP, installing an ATP system can be a deal breaker. Many early users selected a weaker
system, e.g., Otter [20], for their experiments because it was readily available and easy enough
to install. There have been some proposals for standardising the ATP system build process,
e.g., tptp.org/Proposals/SystemBuild.html, but the diversity of ATP system software makes
conformity nigh impossible. An alternative is to push the task back on the system developers,
and one approach to this is containerising ATP systems, as discussed in Section 4.

47

https://tptp.org/Proposals/SystemBuild.html

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

2.3 Containerisation
Containers are a technology stemming from the concept of operating-system-level virtualiza-
tion.6 A container is a lightweight, isolated environment that packages and runs applications
with all their dependencies as a self-contained unit in user space, while safely sharing the (Linux)
kernel with other containers. This encapsulation facilitates seamless software deployment across
diverse computing landscapes. Containers are instantiated from read-only images that contain
all the necessary components and instructions for creating a container, including application
code, runtime platform, libraries, environment variables, and configuration files. An image is
defined in a file named Dockerfile (or Containerfile) using a standard syntax. The task of
generating a container image definition for an existing application so it can be run as a container
is often referred to as “containerisation”.

Containerising an application offers numerous benefits, including scalability, resource effi-
ciency, enhanced security, and improved observability. Since containers share the host operating
system’s kernel, they incur less overhead compared to traditional virtualisation techniques. This
characteristic enables containers to be started and stopped quickly, facilitating rapid scaling of
applications to meet fluctuating demands. Containerisation also supports observability akin to
bare-metal environments through kernel-level mechanisms such as eBPF7 and cgroups8, which
enable sophisticated monitoring and resource management. The isolation provided by contain-
ers helps prevent conflicts between applications and enhances security by limiting the impact
of potential vulnerabilities.

Popular containerisation platforms, e.g., Docker, Podman, LXD, and rkt, have significantly
contributed to the widespread adoption of container technology within the modern IT land-
scape. Notably, Kubernetes (often abbreviated as K8s) has emerged as the de-facto industry
standard for container orchestration: automating the deployment, scaling, and management of
containerised applications. Kubernetes’ YAML-based configuration manifests (JSON-variants
are also supported) have become widely adopted as a language for declarative infrastructure-
as-code (IaC), enabling developers and operations teams to manage infrastructure through
declarative, version-controlled code, rather than through the traditional error-prone mixture of
imperative scripts and manual processes. IaC thus facilitates consistent, repeatable, and auto-
mated provisioning and deployment of servers, networks, and other infrastructure components.

As an “operating system for the cloud”, Kubernetes offers several distributions with varying
levels of functionality (and complexity). Nowadays, there exist several lightweight production-
ready distributions, e.g., k3s (k3s.io), k0s (k0sproject.io), and microK8s (microk8s.io),
that greatly simplify the deployment and management of Kubernetes environments, especially
in development, testing, and small-scale production scenarios. These distributions provide an
accessible entry point for organizations and individuals looking to adopt Kubernetes without
the overhead of its full-scale versions, thus democratizing access to this pivotal technology.

3 Containerising StarExec
StarExec (see Section 2.1) is based around a head node that coordinates activities, in particular
the creation of jobs as sets of job pairs, with each pair consisting of an ATP system and a problem
file. MariaDB is used to store job information and results, and NFS is used to share disk space
between the head node and compute nodes. StarExec currently offers two backends for running

6See en.wikipedia.org/wiki/OS-level_virtualization
7Extended Berkeley Packet Filter, see en.wikipedia.org/wiki/EBPF
8Linux’s control groups, see en.wikipedia.org/wiki/Cgroups

48

https://k3s.io/
https://k0sproject.io/
https://microk8s.io/
https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/EBPF
https://en.wikipedia.org/wiki/Cgroups

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

job pairs: the local backend that runs pairs on the same computer as the head node, and the
Sun Grid Engine (SGE) backend that sends pairs out to compute nodes.

So far, the head node with a local backend has been successfully containerised - see the
starexec-containerised directory of the GitHub repository. It includes . . .

• A Dockerfile for building a StarExec image with a local backend.
• A StarExec configuration file (database credentials, special StarExec directory paths,

default StarExec users, NFS mount path, etc.).
• Various scripts used in the Dockerfile to configure and build StarExec. These scripts

are responsible for:
– Installing and configuring StarExec dependencies including Java, Apache Tomcat,

ant, MariaDB, SPSS, and more.
– Creating new user accounts (at the operating system level) used for running jobs.
– Changing permissions of certain files and directories that StarExec depends on.
– Building StarExec using ant, which also initializes the database.

• A README.md file explaining how to build and run the image.

The deployment of StarExec Miami was a real challenge, requiring installation and config-
uration of many pieces of software. The containerisation approach aims to make this process
simple and repeatable, eliminating the need to understand the complex environment require-
ments of StarExec. While the containerisation of StarExec with a local backend is somewhat
valuable on its own, it is most importantly a first step towards the deployment of a full StarExec
cluster in the cloud. Section 5 explains how this will be done.

4 Containerising ATP Systems
While the grand plan is to deploy ATP systems in a containerised StarExec, and in a Kubernetes
hosted version of StarExec, containerising ATP systems is independently useful because it
allows ATP systems to be easily deployed in users’ applications. It would be great if ATP
systems developers become super enthusiastic about containerising their systems after reading
this section ,.

The ATP systems’ are containerised in a hierarchy, shown in Figure 2. The underlying
operating system is ubuntu:latest from dockerhub . . .

hub.docker.com/_/ubuntu
The ubuntu-arc9 container image adds to ubuntu:latest using apt-get to install common
software such as cmake, git, tcsh, python3, and wget. ubuntu-arc also creates an artifacts
directory where the components required for an ATP system’s execution are placed.

The tptp-world container image provides utilities from the TPTP World that are used
by ATP systems, e.g., SPCForProblem detects the Specialist Problem Class (SPC) [42] of a
problem that is used by some ATP systems to decide on what search parameters to use. To
support these utilities some libraries that are not part of the ubuntu-arc have to be added.
Additionally, the runsolver utility for limiting and reporting the resources used by an ATP
system is added. (See Section 4.3 for information about the forthcoming ResourceLimitRun
utility that will replace runsolver.) The details of building the ATP-system:version and ATP-
system:version-RLR container images are provided in Section 4.1.

9“arc” for “Automated Reasoning Containerisation, or Automated Reasoning in the Cloud”.

49

https://hub.docker.com/_/ubuntu

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

ATP-system:version-RLR

ATP-system:version

ubuntu:latest

ubuntu-arc

tptp-world

Figure 2: ATP System Container Image Hierarchy

4.1 Building ATP System Containers
Each ATP-system:version container image is built on top of the ubuntu-arc container image,
and with the tptp-world container image forms the base for the final ATP-system:version-RLR
container image. The ATP-system is the container name, and the version/version-RLR are the
container tags. Podman10 requires the container name to be lowercase, so, e.g., E’s container
is named eprover. The “RLR” refers to the “Resource Limited Run” program used to monitor
and limit the resources used by the ATP system, either runsolver or ResourceLimitRun. The
files for containerising some ATP systems are in the provers-containerised directory of the
GitHub repository. A Makefile to containerise E, Leo-III, and Vampire is included.

Each ATP-system:version container image adds the ATP system’s executables to ubuntu-arc.
The ATP system is retrieved online, e.g., from a GitHub repository, and the necessary com-
mands to build the executables are run. The executables are copied into the /artifacts
directory. The choice of which version of the ATP system to containerise is made inside the
Dockerfile. This localization is necessary because the processes for retrieving and building
particular ATP system versions vary from system to system and from version to version. An
ATP-system:version container image must include a run_system script to run the ATP system,
using whatever incantations are necessary. The parameters for running the ATP system are pro-
vided to the run_system script in “RLR” environment variables (see Section 4.2). Appendix A
shows E’s run_system script. It invokes the eprover or eprover-ho binary, depending on
whether the problem is first-order or higher-order. Depending on the intent, the appropriate
command line arguments are given to the selected binary along with the problem file and time
limit. Figure 3 shows the Dockerfile used to create E’s eprover:3.0.03 container image,
using the command “podman build -t eprover:3.0.03 .”.

Each ATP-system:version-RLR container image is based on its ATP-system:version con-
tainer image and the tptp-world container image. ATP-system:version-RLR primarily ex-
tends tptp-world, and copies over only what is necessary from ATP-system:version. This
simple arrangement allows a generic Dockerfile to be used, parameterised by the under-

10Our containerisation efforts are carried out using Podman, which is designed to work as a drop-in replace-
ment for Docker (simply aliasing podman to docker is endorsed in the documentation).

50

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

#--
FROM ubuntu-arc

Clones repository
ARG E_VERSION=E-3.0.03
RUN git clone --depth 1 --branch $E_VERSION https://github.com/eprover/eprover.git

Set working directory to cloned sources directory
WORKDIR /eprover

Builds first-order executable
RUN ./configure --bindir=/artifacts && \

make && \
make install

Builds higher-order executable
RUN ./configure --enable-ho && \

make rebuild
RUN cp PROVER/eprover-ho /artifacts/eprover-ho

run_system script
ADD run_system /artifacts/
#--

Figure 3: The Dockerfile for E’s -build

lying ATP-system:version. The ENTRYPOINT in ATP-system:version-RLR is the runsolver
utility from tptp-world, which is used to run the ATP system (see Section 4.2). Figure 4
shows the Dockerfile to create E’s eprover:3.0.03-RLR container image, using the command
“podman build -t eprover:3.0.03 RLR --build-arg PROVER_IMAGE=eprover:3.0.03 .”.
The ATP-system:version-RLR container images are pushed to dockerhub in . . .

hub.docker.com/repositories/tptpstarexec
which has a directory for each ATP system. The pushed container images are tagged as
ATP-system-name:ATP-system-version-RLR-architecture, where architecture is, e.g., arm64 or
amd64.

4.2 Running ATP-system:version-RLR Containers
An ATP-system:version-RLR container image is started using podman run. The parameters for
running the ATP system are passed into the container in environment variables, using the -e
option: RLR_INPUT_FILE provides the problem file name, RLR_CPU_LIMIT provides the CPU
time limit in seconds (0 by default, to indicate no limit), RLR_WC_LIMIT provides the wall
clock time limit in seconds (0 by default, to indicate no limit), RLR_MEM_LIMIT provides the
memory limit in MiB (0 by default, to indicate no limit), and RLR_INTENT indicates the user’s
intent11 (THM by default). The problem file is passed into the running container using the -v
option to mount the directory containing the problem file to a directory inside the container,

11An intent is a tag such as THM or SAT, indicating that the ATP system should try to prove (or, equivalently
for most systems, show that the problem is unsatisfiable) or disprove (or, equivalently for most systems, show
that the problem is satisfiable) the conjecture, respectively.

51

https://hub.docker.com/repositories/tptpstarexec

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

#--
ARG PROVER_IMAGE

FROM ${PROVER_IMAGE} AS builder
FROM tptp-world

ENV PATH=".:${PATH}"
WORKDIR /artifacts

System specific stuff
COPY --from=builder /artifacts/* /artifacts/

ENTRYPOINT ["runsolver"]
#--

Figure 4: The generic Dockerfile for building -RLR container images

and setting the RLR_INPUT_FILE environment variable to the name of the problem file in the
directory inside the container. The command line parameters for runsolver (the ENTRYPOINT
in the ATP-system:version-RLR container image) and run_system are provided as the remaining
parameters to podman run. For example, to run the eprover:3.0.03-RLR container image on
the problem MGT019+2.p, the podman run could be . . .

podman run eprover:3.0.03-RLR -v .:/artifacts/CWD
-e RLR_INPUT_FILE='/artifacts/CWD/MGT019+2.p' -e RLR_CPU_LIMIT='60'
-e RLR_WC_LIMIT='60' -e RLR_MEM_LIMIT='0' -e RLR_INTENT='SAT'
--timestamp -C 60 -W 60 run_system
The “--timestamp -C 60 -W 60” are command line parameters to runsolver.

A Python script run_image.py is provided to simplify and standardize running ATP-
system:version-RLR container images. The script is shown in Appendix B. The script must
have an ATP-system:version-RLR container image name as a command line argument. By de-
fault run_image.py runs the ATP-system:version-RLR with the problem taken from stdin,
imposing no CPU, wall clock, or memory limits, with the THM intent. All the parameters can
be changed with further command line options.

4.3 The ResourceLimitedRun Utility
When the TPTP World’s SystemOnTPTP service [34] was first made available [35] it used a
Perl program called TreeLimitedRun to monitor and limit ATP systems’ use of CPU time,
wall clock time, and memory. As the name suggests, the principle was to monitor the forest of
process hierarchies started by an ATP system, understanding that some of the processes might
be orphaned and adopted by the init process (now systemd and others). TreeLimitedRun
was superseded by runsolver [26] that is written in C++, and adopted the same principle for
monitoring processes. More recently, BenchExec [3], which is used in StarExec Iowa, has taken
advantage of Linux’s cgroup v2 subsystem, which provides operating system level support for
monitoring processes. BenchExec is written in Python, with rather heavy installation require-
ments. The new ResourceLimitedRun utility is written in C, and also uses Linux’s cgroup v2
subsystem. ResourceLimitedRun has the same command line parameters as runsolver, and
thus can be substituted for runsolver (and BenchExec). ResourceLimitedRun is being tested
at the time of writing, and hopefully will be deployed at the time of presentation!

52

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

5 Towards a Cloud-native StarExec
The term “cloud-native” has increasingly become synonymous with an approach to designing and
operating applications that fully leverage the benefits of the cloud computing model.12 Cloud-
native applications are distinguished by their ability to scale effectively, utilising the cloud’s
capability to dynamically allocate resources. This development paradigm is closely aligned with
DevOps practices that emphasize collaboration between development and operations teams to
automate the process of software delivery and infrastructure changes. It inherently supports
infrastructure-as-code (IaC), a key DevOps practice, enabling the management and provisioning
of infrastructure through declarative, version-controlled definition files that are both human-
and machine-readable.

Containers (see Section 2.3) play a pivotal role in cloud-native development. Dockerfiles
are used to specify the steps to create a container image, embodying the IaC philosophy by
detailing the desired (partial) state of a containerised application. Similarly, Kubernetes YAML
manifests define, in a declarative fashion, how application components are deployed and run on
Kubernetes clusters, aligned with the IaC paradigm.

The synthesis of these practices allows for the entire stack, from infrastructure to appli-
cation, to be declaratively specified, versioned, and automatically deployed as required. The
reliance on mainstream open source technologies such as the CNCF Kubernetes and Podman
projects (www.cncf.io/projects) offers unparalleled flexibility, scalability, and portability, free
from the constraints of single vendors or platforms. An open distribution model ensures that
StarExec’s infrastructure “as code” is readily accessible for modification and distribution, e.g.,
by cloning or forking from our GitHub repository. Adopting these technologies will allow ATP
systems and StarExec, including the requisite infrastructure, to be deployed by ATP system
developers and users in their preferred cloud environment or even in on-premises servers. This
approach significantly simplifies the process of utilizing state-of-the-art ATP technology, making
it much more easily usable by anyone, anywhere.

5.1 Re-engineering StarExec for the Cloud
Recalling the current architecture of StarExec described in Section 3, several areas for improve-
ment have been identified to better serve the needs for re-engineering. Our ongoing efforts
include:

1. Utilization of containerised ATP systems (see Section 4), which will be hosted in
a publicly accessible container image registry, instead of the current approach of requir-
ing StarExec users to build and upload a StarExec .tgz package according to StarExec
specifications.

2. Adding an abstraction layer for database communication with the relational
database (currently MariaDB) used to persist job information. This layer will allow the
database component to operate in its own container, significantly reducing coupling. Fur-
thermore, by eliminating MariaDB-specific bindings, compatibility with other database
systems will be enabled. This flexibility allows for seamless integration with existing SQL
databases within the user’s infrastructure, enhancing portability and adaptability.

12For more information refer to the initiatives led by the Cloud Native Computing Foundation (CNCF) at
www.cncf.io, which advocates for the adoption of this paradigm by fostering and sustaining an ecosystem of
open source, vendor-neutral projects.

53

https://www.cncf.io/projects/
https://www.cncf.io/

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

3. Using Kubernetes job scheduling facilities, thereby completely replacing the current
SGE cluster management. This change offers numerous benefits:

• Scalability: Kubernetes excels at managing and scaling containerised applications,
adapting to fluctuating workloads with ease. It also seamlessly integrates with most
infrastructure provisioning tools, supporting both cloud and on-premise platforms.

• Monitoring: A vast array of observability tools (encompassing logging, metrics,
tracing, etc.) support seamless integration with Kubernetes. Additionally, with its
self-healing features, Kubernetes can automatically restart failed containers, replace
and reschedule containers when nodes die, and kill non-responsive containers.

• Efficiency: Similar to SGE and other cluster management software such as Slurm
and Torque, Kubernetes optimizes the use of underlying hardware by efficiently
scheduling jobs and managing resources.13

• Flexibility: Kubernetes’ extensible architecture allows for custom schedulers and
automated scaling decisions, enabling it to support a wide range of workloads, in-
cluding stateless, stateful, and batch processing.

Figure 5 shows a generic architecture of the future re-engineered StarExec using Kubernetes.

Database File system

Compute Node
StarExec

compute node
container

RLR
ATP system
Problem

As many
as you
want

Job
pair
info

Results

Job
pair
data

Kubernetes
control plane

Kubernetes
service

Head Node
StarExec

head node
container

StarExec
Local backend
Kubernetes
backend

Kubernetes jobs

Compute Node
StarExec

compute node
container

RLR
ATP system
Problem

Figure 5: Projected StarExec generic architecture

5.2 StarExec in AWS
An Amazon Research Award14 has been granted to deploy StarExec in AWS. This will not
only help fund the development efforts discussed in Section 5.1, but will also fund a first fully-

13Certainly, Kubernetes does not outperform traditional High-Performance Computing (HPC) software within
their specialized application domains. Kubernetes’ extensible architecture facilitates interfacing with HPC
systems through custom schedulers if the need arises (see kubernetes.io/docs/concepts/extend-kubernetes).
In this setup, Kubernetes oversees container orchestration, while delegating the scheduling of intensive computing
tasks to specialized HPC software.

14Amazon Research Award, Fall 2023. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors, and do not reflect the views of Amazon.

54

https://kubernetes.io/docs/concepts/extend-kubernetes/
https://www.amazon.science/research-awards/recipients/geoffrey-sutcliffe

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

functional reference deployment of StarExec in the AWS cloud. The generic architecture in
Figure 5 will be instantiated using concrete AWS-managed services, as shown in Figure 6.

AWS RDS AWS EFS

AWS EC2
StarExec

compute node
container

RLR
ATP system
Problem

As many
as you
want

Job
pair
info

Results

Job
pair
data

EKS
service

AWS EC2
StarExec

head node
container

StarExec
Local backend
Kubernetes
backend

EKS jobs

AWS EC2
StarExec

compute node
container

RLR
ATP system
Problem

AWS EKS

Figure 6: Architecture in AWS

• The Kubernetes control plane will be managed by AWS Elastic Kubernetes Service (EKS).
• The StarExec head and compute nodes will run on suitable Amazon EC2 instances, cur-

rently planned to be x2iedn.xlarge instances that have four Intel Xeon Scalable vCPUs
running up to 3.5GHz, and 128 GiB memory.

• The database will be Amazon Relational Database (RDS).
• The file system will be Amazon Elastic File System (EFS).
• The ATP systems’ containerisation can be made compatible with (possibly be exactly) the

Amazon Trusted Solver format, as was recently used in the SMT and SAT competitions15.

Leveraging AWS-managed services will expedite the delivery of StarExec’s initial cloud-
native version to the community. This approach will particularly benefit teams planning to
deploy StarExec on their own AWS accounts or through AWS grants. The initial release will be
rigorously tested through the migration of the TPTP community from StarExec Miami to the
new StarExec AWS platform. We are particularly enthusiastic about collaborating with teams
interested in deploying StarExec on their on-premise infrastructure or within university HPC
clusters.

6 Conclusion
This paper has described work being done to containerise StarExec and ATP systems so that
they can be run on a broad range of computer platforms. Additionally, this work explains plans
to build backend in StarExec so that Kubernetes can be used to orchestration distribute of
StarExec job pairs over whatever compute nodes are available.

This is ongoing work – some of the work is still in progress, particularly embedding StarExec
in Kubernetes on AWS. Hopefully the future will include StarExec being flexibly available in
online compute clusters.

15github.com/aws-samples/aws-batch-comp-infrastructure-sample

55

https://github.com/aws-samples/aws-batch-comp-infrastructure-sample

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

References

[1] E. Bartocci, D. Beyer, P.E. Black, G. Fedyukovich, H. Garavel, A. Hartmanns, M. Huisman,
F. Kordon, J. Nagele, M. Sighireanu, B. Steffen, M. Suda, G. Sutcliffe, T. Weber, and A. Tamada.
TOOLympics 2019: An Overview of Competitions in Formal Methods. In T. Vojnar and L. Zhang,
editors, Proceedings of the 2019 International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, number 11429 in Lecture Notes in Computer Science, pages
3–24. Springer-Verlag, 2019.

[2] C. Benzmüller and B. Woltzenlogel Paleo. Automating Gödel’s Ontological Proof of God’s Ex-
istence with Higher-order Automated Theorem Provers. In T. Schaub, editor, Proceedings of the
21st European Conference on Artificial Intelligence, pages 93–98, 2014.

[3] D. Beyer, S. Löwe, and P. Wendler. Reliable Benchmarking: Requirements and Solutions. Inter-
national Journal on Software Tools for Technology Transfer, 21:1–29, 2019.

[4] A. Bruni, E. Drewsen, and C. Schürmann. Towards a Mechanized Proof of Selene Receipt-Freeness
and Vote-Privacy. In R. Krimmer, M. Volkamer, N. Braun Binder, N. Kersting, O. Pereira, and
C. Schürmann, editors, Proceedings of the International Joint Conference on Electronic Voting,
E-Vote-ID 2017, number 10615 in Lecture Notes in Computer Science, pages 110–126. Springer-
Verlag, 2017.

[5] M. Caminati, M. Kerber, C. Lange, and C. Rowat. Sound Auction Specification and Implemen-
tation. In M. Feldman, M. Schwarz, and T. Roughgarden, editors, Proceedings of the 16th ACM
Conference on Economics and Computation, pages 547–564. ACM Press, 2015.

[6] V. Chaudri, B. Cheng, A. Overholtzer, J. Roschelle, A. Spaulding, P. Clark, M. Greaves, and
D. Gunning. Inquire Biology: A Textbook that Answers Questions. AI Magazine, 34(3), 2013.

[7] D. Cok, A. Stump, and T. Weber. The 2013 Evaluation of SMT-COMP and SMT-LIB. Journal
of Automated Reasoning, 55(1):61–90, 2015.

[8] B. Cook. Formal Reasoning About the Security of Amazon Web Services. In H. Chockler and
G. Weissenbacher, editors, Proceedings of the 30th International Conference on Computer Aided
Verification, number 10981 in Lecture Notes in Computer Science, pages 38–47. Springer-Verlag,
2018.

[9] L. Dennis, M. Fisher, M. Slavkovik, and M. Webster. Formal Verification of Ethical Choices in
Autonomous Systems. Robotics and Autonomous Systems, 77:1–14, 2016.

[10] R. Hähnle and M. Huisman. Deductive Software Verification: From Pen-and-Paper Proofs to
Industrial Tools. In B. Steffen and G. Woeginger, editors, Computing and Software Science: State
of the Art and Perspectives, number 10000 in Lecture Notes in Computer Science, pages 345–373.
Springer-Verlag, 2019.

[11] M.T. Hannan. Rethinking Age Dependence in Organizational Mortality: Logical Formalizations.
American Journal of Sociology, 104:126–164, 1998.

[12] J. Harrison. Floating-Point Verification using Theorem Proving. In M. Bernardo and A. Cimatti,
editors, Proceedings of the 6th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, number 3965 in Lecture Notes in Computer Science, pages
211–242. Springer-Verlag, 2006.

[13] S. Holden. Connect++: A New Automated Theorem Prover Based on the Connection Calculus.
In J. Otten and W. Bibel, editors, Proceedings of the 1st International Workshop on Automated
Reasoning with Connection Calculi, number 3613 in CEUR Workshop Proceedings, pages 95–106,
2023.

[14] A. Hommersom, P. Lucas, and P. van Bommel. Automated Theorem Proving for Quality-checking
Medical Guidelines. In G. Sutcliffe, B. Fischer, and S. Schulz, editors, Proceedings of the Workshop
on Empirically Successful Classical Automated Reasoning, 2005.

[15] H. Hoos and T. Stützle. SATLIB: An Online Resource for Research on SAT. In I. Gent, H. van
Maaren, and T. Walsh, editors, Proceedings of the 3rd Workshop on the Satisfiability Problem,

56

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

pages 283–292. IOS Press, 2000.
[16] J. Horner. A Computationally Assisted Reconstruction of an Ontological Argument in Spinoza’s

The Ethics. Open Philosophy, 2:219–229, 2019.
[17] K. Korovin. Implementing an Instantiation-based Theorem Prover for First-order Logic. In

C. Benzmüller, B. Fischer, and G. Sutcliffe, editors, Proceedings of the 6th International Workshop
on the Implementation of Logics, number 212 in CEUR Workshop Proceedings, pages 63–63, 2006.

[18] T. Libal. Towards Automated GDPR Compliance Checking. In F. Heintz, M. Milano, and
B. O’Sullivan, editors, Proceedings of the International Workshop on the Foundations of Trust-
worthy AI Integrating Learning, Optimization and Reasoning, number 12641 in Lecture Notes in
Computer Science, pages 3–19, 2020.

[19] C. Marché and H. Zantema. The Termination Competition. In F. Baader, editor, Proceedings of
the 18th International Conference on Term Rewriting and Applications, number 4533 in Lecture
Notes in Computer Science, pages 303–313, 2007.

[20] W.W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263, Argonne
National Laboratory, Argonne, USA, 2003.

[21] T. Nipkow. Social Choice Theory in HOL: Arrow and Gibbard-Satterthwaite. Journal of Auto-
mated Reasoning, 43(3):289–304, 2009.

[22] P. Oppenheimer and E. Zalta. A Computationally-Discovered Simplification of the Ontological
Argument. Australasian Journal of Philosophy, 89(2):333–349, 2011.

[23] J. Otten. 20 Years of leanCoP - An Overview of the Provers. In J. Otten and W. Bibel, editors,
Proceedings of the 1st International Workshop on Automated Reasoning with Connection Calculi,
number 3613 in CEUR Workshop Proceedings, pages 4–22, 2023.

[24] H. Prakken and G. Sartor. Law and Logic: A Review from an Argumentation Perspective. Artificial
Intelligence, 227:214–245, 2015.

[25] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI Communications,
15(2-3):91–110, 2002.

[26] O. Roussel. Controlling a Solver Execution with the runsolver Tool. Journal of Satisfiability,
Boolean Modeling and Computation, 7(4):139–144, 2011.

[27] S. Schulz. Algorithms and Data Structures for First-Order Equational Deduction. In
C. Benzmüller, B. Fischer, and G. Sutcliffe, editors, Proceedings of the 6th International Workshop
on the Implementation of Logics, number 212 in CEUR Workshop Proceedings, pages 1–6, 2006.

[28] S. Schulz. Simple and Efficient Clause Subsumption with Feature Vector Indexing. In M.P.
Bonacina and M. Stickel, editors, Automated Reasoning and Mathematics: Essays in Memory
of William W. McCune, number 7788 in Lecture Notes in Artificial Intelligence, pages 45–67.
Springer-Verlag, 2013.

[29] S. Schulz, S. Cruanes, and P. Vukmirović. Faster, Higher, Stronger: E 2.3. In P. Fontaine,
editor, Proceedings of the 27th International Conference on Automated Deduction, number 11716
in Lecture Notes in Computer Science, pages 495–507. Springer-Verlag, 2019.

[30] S. Schulz and A. Pease. Teaching Automated Theorem Proving by Example: PyRes 1.2 (system
description). In N. Peltier and V. Sofronie-Stokkermans, editors, Proceedings of the 10th Interna-
tional Joint Conference on Automated Reasoning, number 12167 in Lecture Notes in Computer
Science, pages 158–166, 2020.

[31] A. Steen. Scala TPTP Parser v1.5, 2021. DOI: 10.5281/zenodo.5578872.
[32] A. Steen and C. Benzmüller. The Higher-Order Prover Leo-III. In D. Galmiche, S. Schulz,

and R. Sebastiani, editors, Proceedings of the 8th International Joint Conference on Automated
Reasoning, number 10900 in Lecture Notes in Artificial Intelligence, pages 108–116, 2018.

[33] A. Stump, G. Sutcliffe, and C. Tinelli. StarExec: a Cross-Community Infrastructure for Logic
Solving. In S. Demri, D. Kapur, and C. Weidenbach, editors, Proceedings of the 7th International
Joint Conference on Automated Reasoning, number 8562 in Lecture Notes in Artificial Intelligence,

57

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

pages 367–373, 2014.
[34] G. Sutcliffe. SystemOnTPTP. In D. McAllester, editor, Proceedings of the 17th International

Conference on Automated Deduction, number 1831 in Lecture Notes in Artificial Intelligence,
pages 406–410. Springer-Verlag, 2000.

[35] G. Sutcliffe. TPTP, TSTP, CASC, etc. In V. Diekert, M. Volkov, and A. Voronkov, editors,
Proceedings of the 2nd International Symposium on Computer Science in Russia, number 4649 in
Lecture Notes in Computer Science, pages 6–22. Springer-Verlag, 2007.

[36] G. Sutcliffe. The SZS Ontologies for Automated Reasoning Software. In G. Sutcliffe, P. Rudnicki,
R. Schmidt, B. Konev, and S. Schulz, editors, Proceedings of the LPAR Workshops: Knowledge
Exchange: Automated Provers and Proof Assistants, and the 7th International Workshop on the
Implementation of Logics, number 418 in CEUR Workshop Proceedings, pages 38–49, 2008.

[37] G. Sutcliffe. The TPTP World - Infrastructure for Automated Reasoning. In E. Clarke and
A. Voronkov, editors, Proceedings of the 16th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, number 6355 in Lecture Notes in Artificial Intelligence,
pages 1–12. Springer-Verlag, 2010.

[38] G. Sutcliffe. The CADE ATP System Competition - CASC. AI Magazine, 37(2):99–101, 2016.
[39] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,

TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.
[40] G. Sutcliffe. Stepping Stones in the TPTP World. In C. Benzmüller, M. Heule, and R. Schmidt,

editors, Proceedings of the 12th International Joint Conference on Automated Reasoning, number
14739 in Lecture Notes in Artificial Intelligence, pages 30–50, 2024.

[41] G. Sutcliffe, S. Schulz, K. Claessen, and A. Van Gelder. Using the TPTP Language for Writing
Derivations and Finite Interpretations. In U. Furbach and N. Shankar, editors, Proceedings of the
3rd International Joint Conference on Automated Reasoning, number 4130 in Lecture Notes in
Artificial Intelligence, pages 67–81. Springer, 2006.

[42] G. Sutcliffe and C.B. Suttner. Evaluating General Purpose Automated Theorem Proving Systems.
Artificial Intelligence, 131(1-2):39–54, 2001.

[43] A’ Voronkov. Algorithms, Datastructures, and Other Issues in Efficient Automated Deduction.
In R. Gore, A. Leitsch, and T. Nipkow, editors, Proceedings of the International Joint Conference
on Automated Reasoning, number 2083 in Lecture Notes in Artificial Intelligence, pages 13–28.
Springer-Verlag, 2001.

[44] M. Yadav. On the Synthesis of Machine Learning and Automated Reasoning for an Artificial
Synthetic Organic Chemist. New Journal of Chemistry, 41(4):1411–1416, 2017.

58

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

A E’s run_system script
#--
#!/bin/tcsh

setenv HERE `dirname $0`
setenv TEMPDIR `mktemp -d`
setenv PROBLEMFILE $TEMPDIR/E---3.1_$$.p
onintr cleanup

#----Add extra ()s for THF and TXF
$HERE/tptp4X -t uniquenames4 -x $RLR_INPUT_FILE > $PROBLEMFILE

set SPCLine=`grep -E "^% SPC " $PROBLEMFILE`
if ("$SPCLine" != "") then

set ProblemSPC = `expr "$SPCLine" : "^% SPC *: *\([^]*\)"`
else

set ProblemSPC = `$HERE/SPCForProblem $RLR_INPUT_FILE`
endif
set Mode = $RLR_INTENT

set CommonParameters="--delete-bad-limit=2000000000 --definitional-cnf=24 \
-s --print-statistics -R --print-version --proof-object --cpu-limit=$RLR_WC_LIMIT"
if ("$Mode" == "THM") then

if (`expr "$ProblemSPC" : "TH0_.*"`) then
echo "Running higher-order theorem proving"
$HERE/eprover-ho $CommonParameters --auto-schedule=8 $PROBLEMFILE

else
echo "Running first-order theorem proving"
$HERE/eprover $CommonParameters --auto-schedule=8 $PROBLEMFILE

endif
else

echo "Running first-order model finding"
$HERE/eprover $CommonParameters --satauto-schedule=8 $PROBLEMFILE

endif

cleanup:
echo "% E exiting"
rm -rf $TEMPDIR

#--

59

Stars in the Clouds Fuenmayor, McKeown, Sutcliffe

B run_image.py

#--
#!/usr/bin/env python3

import argparse
import subprocess
import os, sys
import shutil

def getRLRArgs(args):
mem_part = f" -M {args.memory_limit}" if args.memory_limit > 0 else ""
return "--timestamp --watcher-data /dev/null -C " + \

f"{args.cpu_limit} -W {args.wall_clock_limit}{mem_part}"

def getEnvVars(args):
return " ".join([f"-e {k}='{v}'" for k, v in [

("RLR_INPUT_FILE", "/artifacts/CWD/problemfile"),
("RLR_CPU_LIMIT", args.cpu_limit), ("RLR_WC_LIMIT", args.wall_clock_limit),
("RLR_MEM_LIMIT", args.memory_limit), ("RLR_INTENT", args.intent),

]])

def makeBenchmark(problem):
if problem:

shutil.copy(problem, "./problemfile")
else:

with open('./problemfile', 'w') as problemfile:
problemfile.write(sys.stdin.read())

if __name__ == "__main__":
parser = argparse.ArgumentParser("Wrapper for a podman call to a prover image")
parser.add_argument("image_name",

help="Image name, e.g., eprover:3.0.03-RLR-arm64")
parser.add_argument("-P", "--problem",help="Problem file if not stdin")
parser.add_argument("-C", "--cpu-limit", default=0, type=int,

help="CPU time limit in seconds, default=none")
parser.add_argument("-W", "--wall-clock-limit", default=0, type=int,

help="Wall clock time limit in seconds, default=none")
parser.add_argument("-M", "--memory-limit", default=0, type=int,

help="Memory limit in MiB, default=none")
parser.add_argument("-I", "--intent", default="THM", choices=["THM", "SAT"],

help="Intention (THM, SAT, etc), default=THM")
args = parser.parse_args()
if args.wall_clock_limit == 0 and args.cpu_limit != 0:

args.wall_clock_limit = args.cpu_limit

command = f"podman run {getEnvVars(args)} -v .:/artifacts/CWD -t " + \
f"{args.image_name} {getRLRArgs(args)} run_system"

makeBenchmark(args.problem)
subprocess.run(command, shell=True)
os.remove("./problemfile")

#--

60

	Introduction
	Background
	StarExec
	ATP Systems
	Containerisation

	Containerising StarExec
	Containerising ATP Systems
	Building ATP System Containers
	Running ATP-system:version-RLR Containers
	The ResourceLimitedRun Utility

	Towards a Cloud-native StarExec
	Re-engineering StarExec for the Cloud
	StarExec in AWS

	Conclusion
	E's run_system script
	run_image.py

