
EPiC Series in Computer Science

Volume 34, 2015, Pages 80–88

ARCH14-15. 1st and 2nd International Workshop on
Applied veRification for Continuous and Hybrid Systems

Industrial Examples of Formal Specifications for Test Case
Generation

Hendrik Roehm1, Rainer Gmehlich1, Thomas Heinz1,
Jens Oehlerking1, and Matthias Woehrle1

Robert Bosch GmbH Corporate Research, Renningen, Germany
firstname.lastname@de.bosch.com

Abstract

While requirements engineering has received considerable attention in academia over the past years,

formalization of requirements for physically influenced systems is still a difficult task in practice. In

this paper, we give formal representations of some typical requirement classes arising in the automotive

industry. We divide these patterns into three main classes: those mostly referring to properties of

continuous signals, those mostly referring to discrete events and those referring to similarity to a

reference signal. We discuss these patterns on concrete examples from automotive embedded systems,

where specifications are used for test case generation.

Category: industrial Difficulty: medium

1 Context and Origins

Deriving formal specifications for industrial embedded systems is a challenging task. In this
paper, we discuss some typical patterns of such specifications as well as challenges when trying
to represent the requirements in existing formalisms. One major use case for the derived formal
specification is test case generation, i. e., systematically deriving test cases from specifications.
In this paper we discuss typical specification patterns occuring in the automotive domain, for
test case generation approaches see [3] and [6], for instance.

From an industry perspective, it is important to note that formalized specifications for
physically-driven systems will usually form an incomplete picture, as there are requirements
which are simply not amenable to suitable formalization at this point. This includes require-
ments on how driving is supposed to “feel” for the customer. Also, some requirements (like
noise levels or vibrations inside the car) may be formalizable, but since there are usually no
useful physical models for these effects, the specification cannot be leveraged. However, we
believe that formal specifications even of subsets of requirements, together with adequate phys-
ical models are still very useful, since the development process can be accelerated with help of
formal methods.

For the specifications given in this paper, we generally use pre- and postconditions. Here, a
precondition A describes the assumptions made on the environment under which the required
behavior, a postcondition B, is supposed to hold. The examples raise the question what are
suitable formalisms for A and B to cover a large class of requirements. Usually, A will be
tightened for testing purposes. While a specification might require B to hold under a large

80 G.Frehse and M.Althoff (eds.), ARCH15 (EPiC Series in Computer Science, vol. 34), pp. 80–88

Industrial Examples of Formal Specifications Roehm, Gmehlich, Heinz, Oehlerking, and Woehrle

Controller Plant

Demanded position (dp)

Torque limit (tl)

Current position (cp)

Current torque (ct)

Figure 1: Abstract block diagram of position control system.

class A of environment behaviors, if the specification is used to generate tests, A might be
replaced by a much more restrictive condition. This is due to the fact that some behaviors
might be known a priori as safe, or relatively uninteresting to test. One can view this process
analogous to theorem proving techniques: a clause is split into two clauses which are then proved
separately. In fact, one may have one resulting clause which can be proven true while the other
one cannot, requiring testing based methods. As the examples will show, this tightening of
assumptions will often considerably complicate formalization. On the other hand, the challenge
we face with respect to B is to capture the radically different types of requirements in formalisms
that are both expressive enough to cover a large class of requirements and concise enough to
be usable in practice.

Generally, the specification should be kept separate from the model of the system. A common
issue is that calculations required solely for checking the specification are included in the model
itself, in particular when the specification formalism is not expressive enough. For instance,
specifications of assumptions on disturbances (which would be part of A) could theoretically be
described as part of the system model itself. In this case, the implicitly modeled assumptions
cannot be easily leveraged by model-based testing tools and different modifications of the model
might be necessary for different requirements, making this set of models difficult to maintain.

2 Specification classes

Specifications based on properties of continuous signals
Automatically generating test cases from continuous-time specifications of controllers increases
efficiency of the development process and facilitates compliance to automotive quality and
safety industry standards such as Automotive SPICE and ISO26262. Work related to this
topic suggests that such requirements are either captured using ad hoc formalisms as in [7] –
where 4 particular control requirements are formulated and subject to be falsified by searching
for an appropriate step input – or using temporal logic such MTL (metric temporal logic) or
STL (signal temporal logic) as in [5], [8]. Recently, quantitative semantics for temporal logics
have been introduced to express a metric on the satisfaction of a temporal logic formula. This
development led to falsification tools such as S-TaLiRo [3] and Breach [6] which can be used
to generate test cases from temporal logic specifications by maximizing a distance metric that
ideally selects only interesting/relevant test cases.

Figure 1 shows an abstract block diagram of the system for which the requirement is estab-
lished. The purpose of the controller is to drive the current position towards the demanded
position while respecting the maximum torque limit. The system shall meet the following
requirement.
During the position (cp) regulation after a step input on demand (dp), when the absolute

value of the maximum torque limit (tl) decreases with a step (precondition), the absolute value

81

Industrial Examples of Formal Specifications Roehm, Gmehlich, Heinz, Oehlerking, and Woehrle

dp
cp
tl
ct

t1 t2 t3 t4

p1 p2 p3 p5

Figure 2: Exemplary simulation run where the requirement is met. Note that t3 = t2 + 10ms.

of the actuator response in torque (ct) must be less than the torque limit plus 10 % in less than
10 ms (postcondition).

Note that the precondition depends not only on the input (dp, tl) but also on the state (cp)
due to the phrase “during position regulation”. Figure 2 shows an exemplary simulation run
which meets the requirement. After a step of the demanded position at t1, the current position
reaches the demanded position with the required accuracy at t4. Note that t4 depends both
on the value of the initial torque and the value of the new torque limit at t2. The requirement
states that at t3 := t2 + 10ms, ct must always be less than tl plus 10 %.

The requirement can be thought of as a special case of a more general requirement that omits
the restriction “during position regulation”. If the current position has reached the demanded
position, the postcondition is trivially satisfied as ct ≈ 0. In the general requirement, the
precondition depends solely on the inputs and not on any state. For the purpose of verification,
the general specification without restriction would be selected. However, for the purpose of
test case generation, the special requirement which amounts to a tightening of the precondition
ensures that only interesting simulation runs are selected.

A very abstract formalization of the specific requirement in LTL is as follows. At any discrete
point, each of the 4 signals assume a value from a finite set of values, i.e. a signal is an infinite
word of 4 tuples. The set of values per signal is as follows.

• dp: dpL (low demand position), dpH (high demand position)

• tl: tpL (low torque limit), tpH (high torque limit)

• cp: cpL (below a threshold), cpH (above a threshold), cpF (close to demand position)

• ct: ctL (well below torque limit), ctA (around torque limit), ctH (well above torque limit)

Let the signal alphabet be Σ = {dpL,dpH}× {cpL, cpH, cpF}× {tlL, tlH}× {ctL, ctA, ctH}. A
signal that meets the requirement – henceforth called valid signal – can be divided in 5 phases
p1, . . . , p5 where

p1 ≡ (dpL, cpL, tlH, ctL)

p2 ≡ (dpH, true, tlH, true)

p3 ≡ (dpH, cpH, tlL, true)

p4 ≡ (dpH, cpH ∨ cpF, tlL, true)

p5 ≡ (dpH, cpH ∨ cpF, tlL, ctA ∨ ctL)

Note that p4, which is missing in Figure 2, admits additional behavior in the transition between
p3 to p5 in accordance with the requirement. The LTL formula describing all valid signals
with arbitrary phase length is as follows. The corresponding Büchi automaton is depicted in

82

Industrial Examples of Formal Specifications Roehm, Gmehlich, Heinz, Oehlerking, and Woehrle

(a) (b)

Figure 3: Büchi automata corresponding to LTL formulae: (a) corresponds to (1) and (b)
corresponds to (2)

Figure 3a.

p1 ∧ X (p1 U (p2 ∧ X (p2 U (p3 ∧ X (p3 U (p4 ∧ X (p4 U G p5))))))) (1)

Expressing the sequence of p1, . . . , p4 as a precondition for p5 leads to the following LTL formula
and its corresponding Büchi automaton in Figure 3b.

p1 → (p1 ∧ X (p1 U ((p1 ∨ p2)→ (p2 ∧ X (p2 U ((p2 ∨ p3)→ (2)

(p3 ∧ X (p3 U ((p3 ∨ p4)→ (p4 ∧ X (p4 U G p5)))))))))))

To express the property over continuous time while keeping the signal values abstract, the LTL
formula can be transformed into MTL. For brevity, we use MTL with continuous semantics and
remove the next operator X .

p1 U (p2 U (p3 U (p4 U G p5)))

The formula can be augmented with time bounds, e.g. to express the 10ms constraint as follows.
Note that at this level of abstraction it is not possible to pick concrete values for ai, bi as these
depend on step sizes and thresholds.

p1 U(a1,b1) (p2 U(a2,b2) (p3 U(a3,b3) (p4 U(a4,b4) G p5)))

where b3 + b4 ≤ 0.1

Similar to LTL, expressing the sequence of p1, . . . , p4 as a precondition for p5 leads to the
following MTL formula.

p1 → (p1 U(a1,b1) ((p1 ∨ p2)→ (p2 U(a2,b2) ((p2 ∨ p3)→
(p3 U(a3,b3) ((p3 ∨ p4)→ (p4 U(a4,b4) G p5))))))))

where b3 + b4 ≤ 0.1

To express the specification over continuous time signals, the above MTL formula can be inter-
preted as STL formula over continuous time signals dp[t] (demanded position at time t), cp[t]

83

Industrial Examples of Formal Specifications Roehm, Gmehlich, Heinz, Oehlerking, and Woehrle

Figure 4: Testing of a diagnosis function by using a sensor model as a precondition.

(current position at time t), tl[t] (torque limit at time t) and ct[t] (current torque at time t)
where the abstract values are defined as propositions over continuous time signals.

dpL ≡ dp[t] = l1

dpH ≡ dp[t] = h1

cpL ≡ cp[t] < l1 + p(h1 − l1), ε1 ≤ p ≤ 1− ε1
cpH ≡ l1 + p(h1 − l1) ≤ cp[t] ≤ l1 + (1− ε2)(h1 − l1), ε1 ≤ p ≤ 1− ε1 ≤ 1− ε2
cpA ≡ l1 + (1− ε2)(h1 − l1) < cp[t]

tlL ≡ tl[t] = l2

tlH ≡ tl[t] = h2

ctL ≡ ct[t] < tl[t]− ε3
ctA ≡ tl[t]− ε3 ≤ ct[t] ≤ tl[t] + ε3

ctH ≡ tl[t] + ε3 < ct[t]

where 0 ≤ li < hi, 0 < εi < 1

The time bounds ai, bi can be expressed as a function of the parameters li, hi, εi, p. Thus,
the specification has the form ∀li, hi, εi, p P (li, hi, εi, p)→ ϕ(li, hi, εi, p) where P (li, hi, εi, p) is a
predicate identifying valid parameter configurations and ϕ(li, hi, εi, p) is the STL formula where
time bounds and propositions depend on parameters.

This formulation is a challenge for currently available falsification tools, since a time bound
must be either numerical or may consist of a single parameter but does not admit complex
functions of parameters or internal state. Moreover, there is no possibility to quantify over
a predicate describing admissible parameter configurations. Finally, selecting the input signal
in such a way that the precondition, which involves both inputs and states, is met cannot be
expressed in the tools.

Specifications based on properties of discrete events

The following example concerns test case generation for sensor diagnosis. The intention of
sensor diagnosis functions is the following: “A diagnosis function shall provide a valid diagnosis
return value iff the signal coming from the sensor allows the software to compute the diagnosis.”
Expressing in terms of pre- and postconditions yields: “Given that the sensor signal is of a
certain form (A), then the diagnosis function provides a valid return value and signals to other
functions that a return value is available (B). In all other cases, the diagnosis function does
not signal a valid return value.1” Figure 4 exemplifies this approach. Note that defining B in
this case is rather simple, yet defining relevant sensor signals in A is a challenge for engineers.

The starting point is often a previous measurement that serves as a reference (see below). As
shown in Figure 5, such a reference signal often follows certain sequences of different phases.
Here, a signal is by default at a low value for a potentially long time. As a result of a physical

1In these cases, there is no requirement on the return value.

84

Industrial Examples of Formal Specifications Roehm, Gmehlich, Heinz, Oehlerking, and Woehrle

time
si

g
n

al
va

lu
e

report value

no diagnosis

low rise unstable

stable fall

low

Figure 5: Example of a reference trajectory from sensor measurements.

RISE
εR,1 ≤ ẋ ≤ εR,2

0 ≤ x ≤ xmax

LOW
|ẋ| ≤ εL
0 ≤ x ≤ δL

FALL
εF,1 ≤ ẋ ≤ εF,2

STABLE
|ẋ| ≤ εS
0 ≤ x ≤ xmax

|x− x0| ≤ δS
τ̇ = 1
τ ≤ τmax

UNSTABLE
εS ≤ |ẋ| ≤ εU
0 ≤ x ≤ xmax

DIAGNOSIS
POSSIBLE

true

true
true

|x− x0| ≤ δS /
τ := 0

true /
τ := 0

true

0 ≤ x ≤ δL /
finished!

IDLE

τ ≥ τmax /
τ := 0
stable!

stable?

finished?

report?

true

ERROR

finished?
report?

Figure 6: Example of a sensor model using a hybrid automaton.

event in the environment the signal exhibits a rise. We are interested in a stable value after
the rise. However, the signal may have unstable intervals due to a noisy underlying physical
process. We only want to provide diagnosis return values for stable signals. Hence, if the signal
is stable for a long enough time interval, we provide a return value when the signal finally falls
to its default value. We annotate the point where a valid return value is signaled in Figure 5;
additionally, we show a second trajectory that falls before a diagnosis can be performed.

For testing and verification, we want to generalize from these individual traces to a relevant
test input set. Sampling around a tube of reference signals is neither sufficient nor is it easily
interpretable, since this does not necessarily result in a signal that can be diagnosed. One pos-
sibility is to model a generalized signal using hybrid automata. Figure 6 shows such an input
generation automaton on the left, where each mode of the automaton represent a characteristic
phase of the reference signals and we use state variables to describe timing and signal charac-
teristics. Additionally, Figure 6 displays the corresponding observer automaton on the right.
The observer synchronizes to the input generation automaton by a label stable that indicates
that a stable measurement should have been possible and a label falling to indicate when a
report shall be provided by the implementation (checked by label report).

When using hybrid automata for test case generation, automata sampling is a major chal-
lenge, i. e., how to select relevant traces. A quantitative semantics similar to the one defined
for STL might be helpful. Moreover, ease of specification for practitioners is crucial to enable
adoption of specification formalisms. High-level specification languages that allow engineers to
express properties at a suitable level of abstraction are needed. In the given example, it would

85

Industrial Examples of Formal Specifications Roehm, Gmehlich, Heinz, Oehlerking, and Woehrle

time

si
g
n

al
va

lu
e

ε

∆t

reference signal output signal barrier lines

time

si
g
n

al
va

lu
e

ε

with gaps without gaps

∆t

Figure 7: Example of a requirement defined by the similarity to a reference signal. Left: original
requirement. Right: (τ, ε)-closeness

be helpful to specify the stable/unstable property as a property of the frequency spectrum.
While it is possible to define a filter in form of a differential equation and cast the frequency
property as a property over the filtered signal, it is not very convenient.

Note that a formulation in a temporal logic (over phases) would have resulted in a blowup that
is impractical for industrial applications. This is in contrast to other work that has proposed
to use STL to describe test inputs [8].

Specifications based on comparison to a reference
In an initial development stage, a specification of the system may not be available. Instead
engineers may rely on a reference trace, measured or simulated from a previous or similar
system. Hence, we want to check that our new implementation behaves similarly to the given
reference. While similarity is hard to define generally, engineers typically have some notion of
what is needed. However, similarity may depend on the context of the system, such as concrete
inputs. In our general framework with precondition A and postcondition B, a single reference
signal can be seen as one element b in B and the context in this case would be one element
a in A for a single input and context. The corresponding postcondition B′ ⊆ B is formed
by the signals similar to b. This partial specification is very useful in practice for falsification.
However, in industry this process is often ad hoc, performed by visual inspection, as formalizing
similarity is tedious and sometimes not even possible. As an example, Figure 7 shows a reference
signal with the following required similarity: “(1) When the reference signal is constant, the
difference to the output signal should be less then ε. (2) When the reference signal changes,
the output signal should reach the same value within a time delta of at most ∆t.” Note that
this requirement does not talk about the window between the parts (1) and (2); this results
in gaps in the specification as shown in the left hand side of Figure 7. The value of the signal
is unconstrained from above or below for some time instants. Practitioners typically fill these
gaps using their intuition and domain knowledge. The right hand side figure shows how these
gaps might be filled satisfying the designer’s intentions.

While individual references are very valuable in early development stages, we would like
to generalize to a “complete” specification over all relevant contexts A. For instance, in this
case, this could involve different slopes s for the interval where the reference signal is rising.
This necessitates the generalization of our similarity notion from individual references to a set

86

Industrial Examples of Formal Specifications Roehm, Gmehlich, Heinz, Oehlerking, and Woehrle

of contexts. One challenge is to find a metric which handles the possible time shift in the
comparison of two signals. Classical formalisms like MTL are not appropriate, since we cannot
directly formulate shifts in signals2.

With the notion of (τ, ε)-closeness from [1], the right hand side specification in Figure 7
can be described through (∆t − ε

s , ε)-closeness. However, the slope s is explicitly used in this
formalization. Therefore, the closeness notion is parameterized in a property of the reference
signal, even though the original requirement did not depend on the parameter s. This illustrates
a drawback of using (τ, ε)-closeness for requirements divided into time segments: due to time
shifts on signals defined on time domains bounded from above or below, (τ, ε)-closeness is often
counterintuitive.

As discussed in [4], it is not yet sufficiently clear which classes of specifications can be ef-
fectively mapped on one single metric, e. g. neither (τ, ε)-closeness nor other notions like the
Skorokhod metric handle all possible specifications with time shifts. Another important ques-
tion from the practical point of view is how such metrics can be leveraged for test generation.

3 Outlook

In this paper, we have presented specification patterns that are typically encountered in auto-
motive embedded systems. We have discussed challenges in formalization, esp. when writing
specifications for test case generation. This benchmark underlines the need for (i) specification
formalizations that can be easily used by practitioners and (ii) support for these specification
patterns in test-case generation tools, especially w. r. t. input restriction guidance.

Acknowledgements: The authors gratefully acknowledge financial support by the Euro-
pean Commission project UnCoVerCPS under grant number 643921.

References

[1] H. Abbas, H. Mittelmann, and G. Fainekos. Formal property verification in a conformance testing
framework. In Formal Methods and Models for Codesign (MEMOCODE), 2014 Twelfth ACM/IEEE
International Conference on, pages 155–164. IEEE, 2014.

[2] M. Conrad, S. Sadeghipour, and H.-W. Wiesbrock. Automatic evaluation of ECU software tests.
Technical report, SAE Technical Paper, 2005.

[3] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verification of automotive control
applications using S-TaLiRo. In American Control Conference (ACC), 2012, pages 3567–3572.
IEEE, 2012.

[4] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts. Benchmarks for model transformations
and conformance checking. In 1st International Workshop on Applied Verification for Continuous
and Hybrid Systems (ARCH), 2014.

[5] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts. Powertrain control verification
benchmark. In Proceedings of the 17th international conference on Hybrid systems: computation
and control, pages 253–262. ACM, 2014.

[6] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia. Mining requirements from closed-loop control
models. In C. Belta and F. Ivancic, editors, HSCC, pages 43–52. ACM, 2013.

[7] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull. Automated model-in-the-loop
testing of continuous controllers using search. In Search Based Software Engineering, volume 8084
of LNCS, pages 141–157. Springer Berlin Heidelberg, 2013.

2For an industrial approach see [2].

87

Industrial Examples of Formal Specifications Roehm, Gmehlich, Heinz, Oehlerking, and Woehrle

[8] B. Wilmes and A. Windisch. Considering signal constraints in search-based testing of continu-
ous systems. In Software Testing, Verification, and Validation Workshops (ICSTW), 2010 Third
International Conference on, pages 202–211. IEEE, 2010.

88

	Context and Origins
	Specification classes
	Outlook

