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Abstract

DNA methylation is a modification of the biochemical environment of a nucleotide that
can occur at so-called CpG sites in the DNA strand. Just as a genetic mutation, it can
benefit or harm the organism, depending on where exactly it happens and to what ex-
tent. This work focuses on two questions regarding the pattern evolution of methylation
in certain DNA sequences, since the impact of methylation has been observed to depend
on these patterns: does the size of (de-)methylated CpG clusters depend on reactions with
other CpG sites? And can these reactions alter epigenetic variation, i.e. population-wide
methylation patterns? To describe the methylome evolution within one individual (on a
single cell basis), but also inter-generational developments, we formulate two mathemati-
cal models and corresponding master equations: one considering the influence of a single
neighboring CpG site and one regarding both nearest neighbors. As the master equations
can only be solved for certain parameter values, we use numerical simulations for further
analysis. The simulation is compared to the analytical solution for validation, and then it
is used for the investigation of the aforementioned questions. We find that for the chosen
parameters, the cluster size increases if neighboring interactions are involved, indepen-
dently of methylation status. Our results suggest that the epigenetic variation is larger in
the case of the models which include neighboring interactions.

V.L. Turova, A.E. Kovtanyuk and J. Zimmer (eds.), MMSC 2024 (EPiC Series in Computing, vol. 104),
pp. 51–83
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1 Introduction

Methylation of nucleotides is a molecular way to reversibly mark genomic deoxyribonucleic
acid (DNA). This phenomenon occurs on the cytosines of CpG dinucloetides in vertebrates
and plants. A CpG site is a DNA region where a cytosine nucleotide is followed by a guanine
nucleotide in the linear sequence of bases along its 5’ → 3’ direction. In the case of plants,
cytosine can also be methylated in other settings, but the methylation of cytosine at a CpG
site is the most frequent scenario [13]. A methylated cytosine molecule has one hydrogen atom
(H) replaced by a methyl group (H3C) [18].

As a form of epigenetic mutation, methylation is one of the main influencing factors of gene
expression in both, plants and vertebrates. It can benefit the individual who is the recipient
of such a mutation, e.g. by improving resistance against certain diseases [19], but – and this
is generally the more likely case – it can harm the affected subject and lead to illnesses such
as cancer [17]. Methylations of plant and animal DNA are either inherited or occur newly
during one individual’s lifetime, for example as a consequence of certain lifestyle decisions
or environmental influences, as well as during the process of ageing [4, 16, 17]. There are
observations particularly in tumors suggesting that accumulations of methylated CpG sites
attract other sites to methylate as well, whereas in regions where methylations are rather
rare they do not occur as much [27]. A similar effect is reported for plants [20]. We call
this effect neighboring interaction, as it is a matter of mutual influence by CpG sites in the
neighborhood of each other. See Fig. 1 for a schematic depiction of methylation and the
neighboring interactions. Methylations cause the largest impact when they occur cumulatively,
in so-called clusters. Clusters are agglomerations of CpG sites with the same methylation status
(either methylated or “demethylated”, meaning that the site of interest is not methylated) that
are not interrupted by sites of a different status.

Due to its pathologic consequences, but also possibilities, this clustering effect obviously
provides a motivation for biochemists to investigate methylation mechanisms more thoroughly,
but the evolution of methylation patterns is an interesting task in the field of mathematical
modeling and scientific computing as well. The probabilistic nature of the neighboring inter-
actions and the resulting reactions serve as a suitable area of application for master equations
and stochastic simulations. We formulate our first hypothesis.

Neighboring interactions create larger clusters than exclusively spontaneous processes,
i.e. methylations and demethylations without any influence from nearby sites.

As mentioned before, methylation can be – and most of the time is – inherited, at least
over multiple cell divisions [12]. In the field of genetic inheritance, there is the phenomenon of
genetic linkage, meaning that genes which lie close to each other are more likely to be inherited
together [21]. It is also possible that genetic inheritance happens without this linkage, which
means that the chance for a gene to be passed onto the next generation depends solely on its
frequency in the parents, not on the genes close to it and their chances to be inherited. Both
phenomena have been observed in epigenetic inheritance as well [8, 9, 10].

“Methylome” is the term which describes the state of methylation for all CpG sites in one
genome. When comparing individuals of a population, their methylomes can be very similar
(a sign for low epigenetic variation), or very different (high epigenetic variation). Just like
genetic variation, a high epigenetic variation is an important evolutionary property as it can
help a population to develop and then spread useful (epi-)mutations, and it makes it easier to
avoid inbreeding. We speculate that the maintenance of this high variation is the reason for
the inheritance of methylations, and formulate our second hypothesis.

Neighboring interactions combined with unlinked inheritance lead to more epigenetic vari-
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Figure 1: On the left, the difference between a genetic mutation (such as the point mutation)
and the epigenetic mutation “methylation” that we consider here is shown. On the right, it is
depicted how one obtains the methylation pattern from a DNA strand and what is meant by
neighboring influence.

ation than exclusively spontaneous processes.
We approach this investigation by starting with the definition of a mathematical model

for the neighboring interactions in Section 2, beginning with a single CpG site as the nearest
neighbor and also giving an impression into what a model including the second nearest neighbor
could look like. Furthermore, the scenario of inheritance is considered. To practically assess
the validity of our hypotheses, a corresponding numerical simulation is introduced in Section
3. Lastly, in Section 4, a comparison between the theoretical results and the simulation is
performed, along with a statistical analysis of the cluster size under various model conditions
and the examination of the epigenetic variation.

2 Analytical model

In the following section, we consider a model approach on a single cell level to better understand
the effect of neighboring interaction between CpG sites. For simplification, we assume a single
DNA strand and that a CpG site is only influenced by the CpG sites to its right and left that are
closest to it. We neglect the distance between two CpG sites and assume the nearest-neighbor
interactions to be the same for all neighboring CpG sites. We now consider a sequence of L
CpG sites which represents a segment of the DNA strand. It is denoted by a random vector
X = (X1, ..., XL) where each of the Xl, l ∈ {1, ..., L}, is a random variable assuming values
in {0, 1}. We say that a site Xl is methylated if Xl = 1 and demethylated if Xl = 0. To
incorporate the neighboring influence, we begin with a simple model which only accounts for
the left nearest neighbor and later extend it to a model accounting for both left and right
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nearest neighbors. Note that without loss of generality the choice of accounting only for the
left nearest neighbor is arbitrary.

Model formulation. Consider a single CpG site Xl, l ∈ {1, ..., L}. Spontaneous, non-
collaborative changes of methylation state can occur naturally at any site Xl. However, Xl

can additionally change its methylation state due to the influence of its left neighbor, denoted
by Xl−1. We assume that the methylation state of any CpG site Xl is solely influenced by its
left neighbor. Moreover, we assume these two processes to be independent. In addition, we
introduce a periodic boundary condition such that the first and the last sites of the sequence
can interact with one another, i.e. for X1, its left neighbor is X1−1 = XL. The reaction system
looks as follows

1
k1−→ 0,

0
k2−→ 1,

0, 1
k3−→ 0, 0,

1, 0
k4−→ 1, 1,

where the two processes at the top describe the spontaneous switches of single CpG sites,
and the two bottom processes describe how a CpG site is influenced by its left neighbor and
hence changes its status. The reaction rates are given by k1 := s, k2 := sy, k3 := as, and
k4 := asy. Motivated by [11], that defined a similar, more complex DNA methylation model,
s > 0 denotes the spontaneous, non-collaborative demethylation rate per site while y > 0
denotes the strength of methylation versus demethylation. Particularly, if y < 1, we assume
that demethylation is the stronger reaction, and y = 1 means that both reactions are equally
likely. Further, a ≥ 0 measures the strength of neighboring influence. As we can see, if a = 0,
the strength of neighboring influence would be zero leading to a model where only spontaneous
changes of methylation are possible.

Master equation. One can derive a master equation for these reactions (for details consult
Appendix A.1):

dP (Xl(t) = 1)

dt
= aysP (Xl−1(t) = 1, Xl(t) = 0)

+ ys

− asP (Xl−1(t) = 0, Xl(t) = 1)

− (s+ ys)P (Xl(t) = 1).

(1)

This analytical result agrees with our understanding of how the probability measure P (Xl(t) = 1)
should change with time. We can illustrate this by considering the following two extreme cases:

1. Let us assume that at time t = 0 it is X(t) = (0, ..., 0), i.e. P (Xl(0) = 1) = 0 ∀ l ∈
{1, ..., L}. Then, as a result of the non-collaborative spontaneous changes, the CpG site
Xl, as well as other sites in the sequence, can change their methylation status with a
strictly positive probability, at least for a short period. Thus, P (Xl(t) = 1) strictly
increases for t ∈ (0, δ) for δ > 0 small enough. This agrees with the master equation,
which yields d

dtP (Xl(0) = 1) = ys > 0.
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2. On the other hand, let us assume that at time t = 0 it is X(t) = (1, ..., 1), i.e.
P (Xl(0) = 1) = 1. Then as a result of the spontaneous demethylation process, the CpG
site Xl, as well as other sites in the sequence, can change their methylation status with
a strictly positive probability, but in this case from methylated to demethylated. Thus,
P (Xl(t) = 1) decreases for t ∈ (0, δ) for δ > 0 small enough, agreeing with the master
equation d

dtP (Xl(0) = 1) = ys− (s+ ys) = −s < 0.

The joint probabilities which occur in (1) can be approximated assuming pairwise independence
of Xl−1 and Xl. Then, (1) simplifies to

dP (Xl(t) = 1)

dt
≈ as(1− y)P (Xl(t) = 1)2

− (as(1− y) + s(1 + y))P (Xl(t) = 1)

+ ys.

(2)

It should be noted that the independence-assumption only holds for very small values of a. The
parameter a is a measure for the strength of the neighbor’s influence, and true independence of
Xl−1 and Xl is only given if there is no such influence.

Stationary states and solution. The stationary states of (2) are given by

x0 :=
1

2
if y = 1,

x1/2 :=
1

2α1

(
(α1 + α2)±

√
(α1 + α2)2 − 4α1α3

)
if y ∈ (0, 1),

where x := P (Xl(t) = 1), α1 := as(1 − y), α2 := s(1 + y), and α3 := ys. It is sufficient to
consider only y ∈ (0, 1] as for y > 1, methylation would be the stronger process and we can
consider P (Xl(t) = 0) for a similar behavior due to 1 = P (Xl(t) = 0) + P (Xl(t) = 1). A
stability analysis reveals that x0 and x2 are stable equilibria, while x1 is unstable.

The master equation (2) can be solved analytically and yields for some initial value
P (Xl(0) = 1) = x0

P (Xl(t) = 1) =
1

2α1

(
√
A tanh

(
−
√
A

2
t+ artanh

(
2α1x0 − (α1 + α2)√

A

))
+ (α1 + α2)

)
(3)

for y ∈ (0, 1) with A := (α1 + α2)
2 − 4α1α3. This solution can be simplified by reducing the

master equation (2) further, i.e. by neglecting the inhomogeneous term ys. The solution of the
resulting equation is given by

P (Xl(t) = 1) ≈ 1(
1
x0

− α1

α1+α2

)
e(α1+α2)t + α1

α1+α2

. (4)

For the case y = 1, no simplification of (2) is necessary to obtain a relatively simple expres-
sion:

P (Xl(t) = 1) =
1

2
− 1

2
e−2st + x0e

−2st. (5)

See Appendix A.2 for more details on the solution.
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Model extension to both nearest neighbors. Keeping the previously defined boundary
condition, we once again consider a single CpG site Xl, l ∈ {1, ..., L}. The left neighbor of Xl

is Xl−1, and we analogously define the nearest right neighbor as Xl+1. To extend our model to
also account for the right neighbor, we make the following assumptions:

1. For methylation status Xl−1 ̸= Xl+1 or Xl−1 = Xl = Xl+1, we assume that a change of
the status at site Xl can only occur due to a spontaneous, non-collaborative reaction.

2. For Xl−1 = Xl+1 and Xl−1 ̸= Xl, we assume that a change of the methylation status
at site Xl can occur due to a spontaneous, non-collaborative reaction and additionally,
due to the influence of the left and right neighbors. We assume these two processes to be
independent.

The resulting reaction system is described by

1
k1−→ 0

0
k2−→ 1

0, 1, 0
k̃3−→ 0, 0, 0

1, 0, 1
k̃4−→ 1, 1, 1,

where the two bottom reactions describe the influence of left and right neighbor on the status
of the CpG site in the middle. It is k1 = s, k2 = sy, k̃3 = as, and k̃4 = asy. The parameters
s > 0 and y > 0 are defined the same way as in the previous section. Similar to the previous
model, a ≥ 0 measures the strength of neighboring influence. Note that the parameter a that is
used in this model is not necessarily the same as the parameter a defined in the previous model
because now, we need to consider the influence of two neighbors at the same time. Thus, k̃3
and k̃4 do not necessarily have the same quantitative influence as k3 and k4 from the previous
model.

As earlier, we can derive a master equation for the system:

dP (Xl(t) = 1)

dt
= aysP (Xl−1(t) = 1, Xl(t) = 0, Xl+1(t) = 1)

+ ys

− asP (Xl−1(t) = 0, Xl(t) = 1, Xl+1(t) = 0)

− (s+ ys)P (Xl(t) = 1) ,

which can be simplified by using again the critical independence assumption of Xl−1, Xl, Xl+1:

dP (Xl(t) = 1)

dt
≈ (−as− (s+ ys))P (Xl(t) = 1)

+ (ays+ 2as)P (Xl(t) = 1)2

+ (−ays+ as)P (Xl(t) = 1)3

+ ys.

For details of the derivation, consult Appendix A.3.
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Inheritance. In the following, we incorporate multiple generations into our models. For
this, we use a discrete Wright-Fisher model [15], in which we consider a finite size population
of N individuals (on a single cell level), where each of them carries a genome sequence of
L CpG sites. In particular, we assume that all N individuals are born simultaneously at
time t = 0 and that after one generation, denoted by tgen, all N individuals die and are
replaced by their offspring. Note that the number of individuals throughout generations remains
constant. The methods by which methylations are passed on to the next generation are called
between-sequence reactions. During each generation, each individual experiences changes in its
methylome, e.g. as described by the models above. These reactions are called within-sequence
reactions. In the following, the within-sequence reactions occur according to the model which
only considers the left nearest neighbor. Let Xn,t denote the sequence of individual n at time
t and Xn;t;l denote the methylation status of the l-th site of individual n at time t.

We begin with the simple case assuming no linkage between sites. Consider the end of the
m-th generation and the beginning of the m+1-th generation. For a newborn n in the m+1-th
generation, n ∈ {1, ..., N}, the probability for the CpG site l, l ∈ {1, ..., L}, to be methylated is∑N

n=1 Xn;m·tgen;l

N
.

After the replacement takes place, the offspring undergo the same within-sequence reactions as
before until the end of the generation.

Now we continue with the case of linked inheritance. The main difference of this type of
inheritance to unlinked type is that now the methylation status of a newborn’s CpG site directly
depends on the status of the corresponding sites of two specific individuals from the previous
generation. This means that the methylation pattern of an individual n in generation m+ 1 is
a mixture of the methylation patterns of the parents of individual n. We choose the parents i
and j randomly from generation m (we assume there to be two parents necessary to generate
a new individual; also, we do not differ between male or female) and we add break points in
their sequences Xi,m·tgen , Xj,m·tgen after equidistant numbers of CpG sites, say after each p-th

site (p needs to be a divisor of L). This procedure results in L
p sequence-“snippets” of length

p for each parent. Now there are two possibilities for the sequence Xn,m·tgen of their offspring:
either Xn,m·tgen is an alternating sequence of the parents’ snippets starting with i:

Xn,m·tgen = (Xi;m·tgen;1, ..., Xi;m·tgen;p, Xj;m·tgen;p+1, ..., Xj;m·tgen;2p, Xi;m·tgen;2p+1, ...),

or starting with j:

Xn,m·tgen = (Xj;m·tgen;1, ..., Xj;m·tgen;p, Xi;m·tgen;p+1, ..., Xi;m·tgen;2p, Xj;m·tgen;2p+1, ...).

The whole population of generation m can be replaced with this procedure, and continue as
generation m+ 1, undergoing the same within-sequence reactions as their parents.

3 Simulation

To better analyze our model, we have implemented Gillespie’s algorithm [6] to conduct stochas-
tic simulations. The numerical implementation of the model also bears the advantage that
we do not need to rely on analytical results, which sometimes are only available after strong
simplifications, as it was the case with the solution for the master equation.

We start with the algorithm for one individual within one generation, and a DNA strand with
L CpG sites. In each step of Gillespie’s algorithm, all potential reactions of each individual CpG
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site are identified. The time, after which a reaction occurs, is exponentially distributed with
expected value corresponding to the inverse of the sum of all possible transition rates which
are identified previously. After choosing a time point, a reaction is then randomly selected.
The corresponding CpG site changes its methylation status while all other CpG sites preserve
theirs. This procedure is repeated until a predefined stopping time has been reached. A detailed
implementation using Python [23] of both models described in Section 2 can be found in our
GitHub repository1.

Now consider a cohort of N individuals, each with a sequence of L CpG sites. We distin-
guish between within- and between-sequence reactions. Until the end of one generation, the
N sequences undergo independently of each other within-sequence reactions corresponding to
the process described in the previous paragraph. Further, let im,n, m ∈ {1, ...⌊tend/tgen⌋} and
n ∈ {1, ..., N}, denote the last time point at which a reaction takes place in sequence n, before
the m-th generation ends. In our simulation, we define a Boolean variable, which keeps track
of whether the time point at which a reaction should happen lies still inside the time of one
generation. The first time a time point exceeds the current generation, im,n will be set to the
last time point, at which a reaction occurred.

At the end of generation m, the sequences undergo one between-sequence reaction, either
governed by linked or unlinked inheritance.

4 Results from the simulation

Comparison with the stationary analytical solution. In the following, we consider the
model for only one generation (and one influencing neighbor). We want to compare the long-
term behavior of the simulation to the stable stationary state x2 from the analytical model.
This will provide some information regarding the parameter ranges for which the simplified
master equation is adequate, and if we use small a-values, it should also allow to check whether
the simulation behaves as expected. Hence, this comparison should justify the further use of
the numerical model for the investigation of our hypotheses.

The expected value of P (Xl(t) = 1) from the analytical model – and therefore the value of
x2 – can be approximated using the mean methylation level. It is equal to the average number
of methylated CpG sites per sequence at a certain point in time. From data observations,
the mean methylation level averaged over multiple sequences seems to stabilize after 2000
time units, where the initial sequences are randomly generated with equal probability for 0
and 1. Furthermore, we fix the sequence length to L = 200 CpG sites and the spontaneous
demethylation rate s = 1.47 · 10−3 (taken from [22] as an example for methylation in plants).
For y ∈ {0.1, 0.3, 0.6, 0.9}, and a ∈ {0.1, 0.5, 1, 2, 10}, Fig. 2 shows the mean methylation level
over 30 runs and the corresponding analytically approximated stable stationary state x2. We
conclude that the approximated stable stationary state is more or less able to describe our
expectation even for a = 1. In particular, we observe that x2 and the simulated long-term
behavior coincide well for small a, which can be interpreted as a sign of the adequateness of
the simulation.

As expected, for y = 0.6 and y = 0.9, x2 seems to deviate significantly from the observed
value of P (Xl(t) = 1) in the case of a = 10. However, we have to keep in mind that x2 only
describes the case a ≈ 0.

Next, for the same fixed parameter values and the same ranges for y and a, Fig. 3 shows the
mean methylation level over 30 runs and the corresponding solution (3) of the approximated

1https://github.com/yifanchn/methylation_pattern_modelling_pub.git
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Figure 2: Mean methylation level over 30 runs (solid lines) including the approximated analyti-
cal stable stationary state x2 (dashed lines). Each panel shows the result for a different y-value,
y < 1. Same color means same a-value.

master equation (2). We observe that similarly to what we have seen with the stationary point,
our analytical estimation of P (Xl(t) = 1) is able to capture the observed behavior of the mean
methylation level also for bigger values of a.

Comparisons between the simulated mean methylation level and Equations (4) and (5) were
performed as well and can be found in Appendix A.4, together with a proposal for a general
fitting function. In conclusion, the simulation and the analytical results agree as expected,
allowing us to continue our investigations with the simulation.

Cluster Size Evolution. As mentioned before, clusters are agglomerations of CpG sites
with the same methylation status that are not interrupted by sites of a different status. By
our definition of the term, even single CpG sites can be called clusters: they form clusters of
length 1. For instance, consider the sequence of L = 5 CpG sites given by (0, 1, 1, 1, 0). This
sequence features two clusters: one demethylated cluster of length 2 (coming from the periodic
boundary condition that links the last site of the sequence to the first) and one methylated
cluster of length 3. We refer to the length of a cluster also as “cluster size”, to avoid confusion
with the length of the sequence L.

The stochastic nature of Gillespie’s algorithm leads to considerable fluctuations not only in
the number of (de-)methylated CpG sites from time step to time step, but obviously also to
oscillations in average cluster size. Therefore, we will observe the mean evolution of several
sequences’ clusters, similar as we handled the comparisons above.

In the following, we investigate how the different models (only spontaneous reactions, one
neighbor, two neighbors) influence the mean cluster size and especially whether larger clusters
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Figure 3: Mean methylation level over 30 runs (solid lines) including the exact solution (dashed
lines) for the approximation of the methylation level obtained in Equation (3) for different
y < 1.

appear in case of the models that include nearest-neighbor interactions. A model that only
features spontaneous changes in methylation status is obtained by setting a = 0 in the one-
neighbor model.

To enhance statistical significance in the later tests, we consider more and longer simulations
than earlier. In particular: N = 100 sequences of length L = 200, each over a running time
until tend = 5000. The spontaneous demethylation rate is again chosen as s = 1.47 · 10−3, and
we investigate three different pairings of parameters (note that the values for a are only valid
for the two nearest-neighbor models since a = 0 in case of the purely spontaneous model):

• a = 1, y = 1: the neighboring interactions are relatively low and no status is preferred

• a = 1, y = 0.5: the neighboring interactions are relatively low and demethylation is
preferred

• a = 1, y = 2: the neighboring interactions are relatively low and methylation is preferred

a = 1 is chosen for the two models that include nearest neighbor interactions since it is the
lowest possible value of a where the influence of neighboring interactions is noticeable in the
sense that we understand them (i.e. the effect of the neighbors’ influence is at least as large as
the effect of spontaneous reactions). We assume that if we find significant differences in mean
cluster size for a value of a as small as 1, this implies significant differences for a > 1. For
comparability, we start every run of the simulation with the same initial sequence. This initial
sequence is a random combination of zeros and ones drawn from a uniform distribution.

The Figures 4, 5 and 6 show how over time the mean cluster sizes asymptotically approach
equilibrium values that differ for each model and parameter combination (please note that the
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Figure 4: Cluster size evolution for y = 0.5 over 100 runs. From left to right: only spontaneous
reactions, model including the influence of one neighbor, model including the influence of both
neighbors. (red: methylated clusters, orange: demethylated clusters)
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Figure 5: Cluster size evolution for y = 1.

vertical axes have different scaling; the mean values are indicated in the legends for orientation).
To validate these differences statistically, we test the final distributions of the cluster sizes first
for normality, and then conduct ANOVAs and two-sample t-tests or – if the lack of normal
distribution requires it – Wilcoxon rank-sum tests. For details on the statistical tests consult
Appendix A.5.

The tests lead to two results: firstly, the differences in mean cluster size between the purely
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Figure 6: Cluster size evolution for y = 2.
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spontaneous model and each of the nearest-neighbor models are significant for all parameter
values. Secondly, the differences in mean cluster size between the model with one neighbor
as influence and the one with both neighbors are generally not significant, with one exception
for the the mean demethylated cluster size in the case of y = 1: here, the p-value 0.0441 lies
slightly below the chosen significance level of α = 0.05.

Although the differences between the two models that include neighboring interactions over-
all cannot be considered significant, we were able to show that both, the model considering only
the left nearest neighbor and the model considering both nearest neighbors, have a statistical
impact on the cluster sizes. A glance at Fig. 7 – which shows the mean cluster sizes after
100 runs per parameter combination and is a summary/extension of the Figs. 4, 5 and 6 –
also tells us that this impact leads in mean to larger clusters for the models that consider the
influence of one or two neighbors, regardless of the choice of y. A linear regression analysis
reveals that mean demethylated cluster size decays with y following the power law, while the
mean methylated cluster size grows exponentially with y.
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Figure 7: Mean cluster sizes for various values of the parameter y, namely y ∈ {0.1, 0.5, 1, 2, 10}.
Note that the horizontal axis is log-scaled and the clusters in case of the neighborhood-influenced
models have such similar sizes that their curves overlap.

Methylation Site Frequency Spectrum. Similar in calculation to the site frequency spec-
trum (or allele frequency spectrum), the methylation site frequency spectrum (mSFS) appears
to be a relatively popular tool to see how common (de-)methylations are on certain CpG sites
and how they are distributed on the genome when one has a specific sequence from each sub-
ject [24, 26, 28]. Compared to the cluster size, it is a rather generation-wide summary statistic
and does not provide information about the clusters, but about phenomena such as epigenetic
variation and drift among a population. The mSFS answers the question: how many CpG sites
at the same site Xl are demethylated in exactly 1, exactly 2, exactly 80 of the subjects? On
the horizontal axis of the spectrum, one can find the number of demethylated sites, and the
vertical axis denotes the number of CpG sites at which this number of demethylated sites is
observed among the population.

What we are interested in concerning the mSFS is whether the neighboring interactions have
an influence on its shape. We hypothesize that a model with purely spontaneous processes (a =
0) leads to a more U-shaped mSFS than the models that consider nearest-neighbor interactions.
The U-shape means that in most individuals, the same CpG sites are (de-)methylated, which is a
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sign for low epigenetic variation. In contrast, an A-shaped mSFS is the result of an intermediate
level of methylation in most sites (meaning that for most CpG sites Xl, it is Xl = 0 in about
50% of individuals, and Xl = 1 in the other 50%), and signifies high epigenetic variation.

To see the effects of our choice of parameters in the mSFS within a reasonable number of
generations, the parameters need to be chosen more extremely than in the previous section
(e.g. s very small, a very large to witness nearest-neighbor interactions). The inheritance of
methylation happens without linkage. We consider the following choice of parameters (they
were determined experimentally): each generation comprises N = 100 individuals, the ob-
served sequences have length L = 2000, running time per individual ends at tend = 100, the
spontaneous demethylation rate is s = 10−8 and a is set to 0 for the model that considers only
spontaneous reactions, whereas we choose a = 103 for the two models that consider nearest-
neighbor influences. As we want to study the effect of different models on a selection-free
methylome evolution, we choose y = 1. We start from an initial population with randomly
chosen sequences (zeros and ones drawn from a uniform distribution), so that the mSFS in
generation 0 is A-shaped.
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Figure 8: mSFS for various models after 50 generations. From left to right: only spontaneous
reactions, model including the influence of one neighbor, model including the influence of both
neighbors. Note that the vertical axis ranges differ, as this is a qualitative comparison.

After 50 generations, we obtain the spectra that are shown in Fig. 8. All observed mSFS
appear more or less symmetrical, which is a consequence of y = 1. Choosing y in a way that
makes demethylation or methylation the more favoured state leads to an mSFS that is skewed
to the right or left, respectively, which has been observed for all models.

While the mSFS for the model that considers purely spontaneous reactions exposes a clear
U-shape, the situation looks completely different for the two models featuring neighborhood
interactions: the one-neighbor model leads to a wide A-shaped model, the one considering two
neighbors yields a narrower A-shape. The latter is an example for extreme epigenetic variation,
but also the former is a sign for eclectic methylation patterns among the population. This con-
firms our hypothesis, or at least shows that with the same rate for spontaneous demethylations
we can provoke large differences in the shape of the mSFS depending on whether none, one, or
two neighboring CpG sites have an influence on the methylome evolution.

5 Conclusion

It is well-known that mathematical models can help to describe, quantify and even predict real-
ity. Our current study is a simplified model which is sufficient to capture essential mechanisms

63



Approaches for DNA Methylation Pattern Modeling Chen, Hofmann, Riess, Singh, Majumder and John

of DNA methylation patterns in reality. However, there is room for improvements, which of
course requires a lot more attention to the details which we discuss below:

• The methylation pattern constructed in our model represents only one strand of DNA,
neglecting cases where at a specific site one strand is methylated and the other one
not. Considering such cases could result in a difference in the impact of neighboring
interactions. On this note, we also ignored that the DNA is not just a double-stranded
line, but due to its double-helix structure it is also curved and twisted. This case also
suggests that even quantifying the number of influencing neighbors is a challenge.

• Assuming that there are only nearest-neighbor interactions excludes the possibility of
interaction with other sites in the same region or in other domains of the DNA. Second-,
third-, or n-closest CpG sites could also have an influence [14].

• We do not account for the distance between CpG sites and assume that the nearest-
neighbor interactions are the same for all neighboring sites. Consequently, the change
rates employed in our model represent a very simplified version of the changes that occur
in nature which have been observed to be distance-dependent [1, 14].

• In our model extension to two neighbors, we assume that neighboring interactions only
occur when both nearest-neighbors have the same methylation status. Hence, we ignore
possible, potentially weaker, one-sided neighboring interactions when Xl−1 ̸= Xl+1.

• In the derivation of the master equations, we made the assumption that the CpG sites
change their methylation status independently of each other, which of course contradicts
the very basic assumptions of this work. For further work with the analytical formulation
of the model, a simplification without this requirement should be used. However, we
were still able to make statements about our hypotheses without relying too much on the
analytical results as we used the stochastic simulations for these investigations.

• Regarding the analysis of the stochastic model, the parameters we used are mainly selected
as results of experiments with the simulations, with the exception of the demethylation
rate which was taken from a publication on methylation in thale cress. We speculate there
is a potentially less biased way to determine them.

• In our methylation site frequency spectrum analysis, we used inheritance without linkage
to model the inheritance process of methylation. Inheritance with at least a certain
amount of linkage would be a more realistic approach.

The simplifications made during the analytical and numerical estimations were necessary at
first to understand our model and its challenges. Our investigations serve as proof of principle,
and the application of our results to specific plants or vertebrates lies beyond the scope of
this work. Possible further steps should focus on refining the analytical model as well as the
simulation, and/or on validating the current model and possible alternatives with real-world
data to find out which simplifications affect the models’ performance the most. Comparisons
like this require single-cell data sets that contain DNA methylome information at different time
points, in the best case over the cell’s entire lifetime.

Furthermore, we aim to conduct an analytical study concerning the birth-death process in
the future and compute a master equation that describes birth-death processes with linkage.
Then, we require an analysis of cluster size evolution depending on the kind of inheritance
employed. In Appendix A.6, we discuss whether inheritance with linkage is a more appropriate
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way to model inheritance of epigenetic information, particularly given the importance of cluster
size in our research. We propose to study this question further. Based on the findings concerning
this topic (see appendix), the hypothesis: “There is a difference in mean cluster size evolution
between inheritance with and without linkage” can be rejected, but further statistical tests
would be necessary to ensure this.

As described in Section 4 the differences in cluster size between our two proposed models
cannot be considered significant for the values chosen for the parameter a (the measure for the
strength of the neighboring interactions). On the one hand, this could indicate that the chosen
a is not sufficiently large and on the other hand, it could be necessary to further extend this
model to include the cases where Xl−1(t) ̸= Xl+1(t), but a single site, for example Xl−1, still
influences the methylation status of its right neighbor. Under these assumptions, we would
additionally introduce rates that account for these changes since these interactions would not
be as strong as in the case where Xl−1(t) = Xl+1(t). Lastly, further analyses are needed in
order to determine whether this new model could be significantly different from the others. For
a formal model description of this alternative we refer to Appendix A.7.

This work is an example of how scientific computing in the form of stochastic simulations
and statistics can support model analysis in cases where analytical models cannot be handled
explicitly. The comparison of the long-term behavior and the curve fitting ensured that the
simulation and the analytical model agree for the parameter regime on which an approximate
solution of the analytical model could be obtained (i.e. a ≪ 1), which served as a basis for
the assumption that the simulation would be adequate for other parameter values as well. The
subsequent statistical analysis provided reliability to the simulation results.

With the techniques presented in this work, we obtained results in favor of our initial
hypotheses. The findings regarding mean cluster size evolution illustrate a significant difference
between a model that accounts for spontaneous changes and neighboring interactions versus
one that exclusively considers spontaneous, non-collaborative modifications. Furthermore, we
found solid hints supporting that neighboring interaction combined with unlinked inheritance
leads to more epigenetic variation than exclusively spontaneous processes.

Data availability

To allow further research on this topic using the code that was created during this project, it is
made available in a public GitHub repository: https://github.com/yifanchn/methylation_
pattern_modelling_pub.git.
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A Appendix

A.1 Derivation of the master equations (single-neighbor model)

For l ∈ {1, ..., L}, let Xl(t), t ≥ 0, denote the state of the l-th site at time t. The main focus
of this section is to approximate P (Xl(t) = 1) by observing the dynamics of the process at Xl.
Since this behavior is identical for all Xl, and we assume a periodic boundary condition, it
follows that P (Xl(t) = 1) is equal for all l ∈ {1, ..., L}.

For ∆ > 0 but small, let us recall the law of total probability

P (Xl(t) = i) =

1∑
j=0

P (Xl(t) = i|Xl(t−∆) = j)P (Xl(t−∆) = j). (6)

Let A be the event where Xl changes its state due to a neighboring interaction, and let B
denote the event where a spontaneous change occurs and thus, Xl changes its state. Keeping
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in mind that the events A and B are independent of each other, it follows that

P (Xl(t) = 1|Xl(t−∆) = 0)P (Xl(t−∆) = 0)

=P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩A)

+ P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩B)

=P ({Xl(t) = 1} ∩A|Xl−1(t−∆) = 1, Xl(t−∆) = 0)P (Xl−1(t−∆) = 1, Xl(t−∆) = 0)

+ P ({Xl(t) = 1} ∩B|Xl(t−∆) = 0)P (Xl(t−∆) = 0)

=[ays∆+O(∆2)]P (Xl−1(t−∆) = 1, Xl(t−∆) = 0)

+ [ys∆+O(∆2)]P (Xl(t−∆) = 0),

as well as

P (Xl(t) = 0|Xl(t−∆) = 1)P (Xl(t−∆) = 1)

=P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩A)

+ P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩B)

=P ({Xl(t) = 0} ∩A|Xl−1(t−∆) = 0, Xl(t−∆) = 1)P (Xl−1(t−∆) = 0, Xl(t−∆) = 1)

+ P ({Xl(t) = 0} ∩B|Xl(t−∆) = 1)P (Xl(t−∆) = 1)

=[as∆+O(∆2)]P (Xl−1(t−∆) = 0, Xl(t−∆) = 1)

+ [s∆+O(∆2)]P (Xl(t−∆) = 1).

Further, from

P (Xl(t) = 1|Xl(t−∆) = 1) + P (Xl(t) = 0|Xl(t−∆) = 1) = 1

we obtain

P (Xl(t) = 1|Xl(t−∆) = 1)P (Xl(t−∆) = 1)

=(1− P (Xl(t) = 0|Xl(t−∆) = 1))P (Xl(t−∆) = 1)

=P (Xl(t−∆) = 1)− P (Xl(t) = 0|Xl(t−∆) = 1)P (Xl(t−∆) = 1) .

(7)

Therefore, using (6), it follows that

P (Xl(t) = 1) =[ays∆+O(∆2)]P (Xl−1(t−∆) = 1, Xl(t−∆) = 0)

+ [ys∆+O(∆2)]P (Xl(t−∆) = 0)

+ P (Xl(t−∆) = 1)

− [as∆+O(∆2)]P (Xl−1(t−∆) = 0, Xl(t−∆) = 1)

− [s∆+O(∆2)]P (Xl(t−∆) = 1).

(8)

Since P (Xl(t) = 0) + P (Xl(t) = 1) = 1, by subtracting P (Xl(t −∆) = 1) from both sides of
Equation (8), dividing both sides of (8) by ∆, and lastly letting ∆ → 0, it follows

dP (Xl(t) = 1)

dt
=aysP (Xl−1(t) = 1, Xl(t) = 0)

+ ys

− asP (Xl−1(t) = 0, Xl(t) = 1)

− (s+ ys)P (Xl(t) = 1).

(9)
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Let us further analyze (9) and we begin by finding an approximation for the probabilities
P (Xl−1(t) = 1, Xl(t) = 0) and P (Xl−1(t) = 0, Xl(t) = 1). We set

P (Xl−1(t) = 1, Xl(t) = 0) ≈ P (Xl−1(t) = 1)P (Xl(t) = 0)

= P (Xl(t) = 1)− P (Xl(t) = 1)2,

analogously

P (Xl−1(t) = 0, Xl(t) = 1) ≈ P (Xl−1(t) = 0)P (Xl(t) = 1)

= P (Xl(t) = 1)− P (Xl(t) = 1)2,

since P (Xl(t) = 1) + P (Xl(t) = 0) = 1, and P (Xl−1(t) = 1) = P (Xl(t) = 1) by the con-
struction of our model. Note that these simplifications are better suited for scenarios where no
neighboring interactions occur or are very weak, i.e. a = 0 or a ≈ 0, since we are assuming
independence of Xl−1 and Xl. Inserting these approximations in Equation (9), we obtain

dP (Xl(t) = 1)

dt
≈+ as(1− y)P (Xl(t) = 1)2

− (as(1− y) + s(1 + y))P (Xl(t) = 1)

+ ys =: f(x),

(2)

where x := P (Xl(t) = 1).
To compute the stationary states of (2), we first note that it suffices to consider only

y ∈ (0, 1] as for y > 1, methylation would be the stronger process and we can simply consider
P (Xl(t) = 0) for a similar behavior due to 1 = P (Xl(t) = 0) + P (Xl(t) = 1).
For y = 1,

dP (Xl(t) = 1)

dt
≈+ as(1− y)P (Xl(t) = 1)2

− (as(1− y) + s(1 + y))P (Xl(t) = 1)

+ ys

=− 2sP (Xl(t) = 1) + s =: g(x).

Setting that last result to zero and solving for P (Xl(t) = 1) yields P (Xl(t) = 1) = 1
2 . Further,

dg

dx
= −2s < 0

since s > 0. Thus, we conclude that P (Xl(t) = 1) = 1
2 is a stable stationary state. This result

reinforces how we expect the probability measure P (Xl(t) = 1) to behave for t → ∞ for the
case where no selection is present in the model, i.e. y = 1.
Now, let y < 1. Setting (2) to zero and solving it for x yields

x1/2 =
1

2α1

(
(α1 + α2)±

√
(α1 + α2)2 − 4α1α3

)
,

where α1 = as(1− y), α2 = s(1 + y), and α3 = ys. Further,

(α1 + α2)
2 − 4α1α3 =α2

1 ++2α1α2 + α2
2 − 4α1α3

=α1(α1 + 2α2 − 4α3) + α2
2

>0,
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since

α1 + 2α2 − 4α3 =2s(1 + y)− 4sy + as(1− y)

=2s− 2sy + as(1− y)

>0

as y < 1. Consequently, x1/2 ≥ 0 holds, as all parameter values are positive.

To check the stability of the stationary states, we use the linearisation of the function f(x).
With

f ′(x) =
df

dx
= 2α1x− (α1 + α2),

it holds that

f ′(x1) = +
√
(α1 + α2)2 − 4α1α3 > 0

and thus, x1 is unstable. Whereas

f ′(x2) = −
√
(α1 + α2)2 − 4α1α3 < 0

holds and thus, x2 is stable.

A.2 Solution of the master equations (single-neighbor model)

Solution of (2). For a sufficiently small, we can assume that the sites Xl and Xl−1 are
independent. Thus, for a sufficiently small,

dP (Xl(t) = 1)

dt
≈as(1− y)P (Xl(t) = 1)2

− (as(1− y) + s(1− y))P (Xl(t) = 1)

+ ys.

(2)

Since we assume that P (Xl(0) = 1) = 1
2 , we have a differential equation of the following form:

dx

dt
= α1x

2 − (α1 + α2)x+ α3, f(0) =
1

2
,

for x = P (Xl(t) = 1), α1 = as(1 − y), α2 = s(1 + y), and α3 = ys. Additionally, we set
A := (α1 + α2)

2 − 4α1α2.

Let us consider the case where y < 1. As a ≥ 0 and s > 0, A > 0 holds due to

(α1 + α2)
2 − 4α1α3 =α2

1 ++2α1α2 + α2
2 − 4α1α3

=α1(α1 + 2α2 − 4α3) + α2
2

>0,

since

α1 + 2α2 − 4α3 =2s(1 + y)− 4sy + as(1− y)

=2s− 2sy + as(1− y)

>0
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as y < 1. Separation of variables yields

x∫
x0

1

α1s2 − (α1 + α2)s+ α3
ds =

∫ t

0

ds

⇐⇒ − 2√
A
artanh

(
2α1x− (α1 + α2)√

A

)
+

2√
A
artanh

(
2α1x0 − (α1 + α2)√

A

)
= t.

(10)

We computed this result using A > 0 and (21.7.1.2) from [2].
Furthermore, (10) is equivalent to

artanh

(
2α1x− (α1 + α2)√

A

)
= −

√
A

2
t+ artanh

(
2α1x0 − (α1 + α2)√

A

)
⇐⇒ 2α1x− (α1 + α2)√

A
= tanh

(
−
√
A

2
t+ artanh

(
2α1x0 − (α1 + α2)√

A

))
,

which is equivalent to

x(t) =
1

2α1

(
√
A tanh

(
−
√
A

2
t+ artanh

(
2α1x0 − (α1 + α2)√

A

))
+ (α1 + α2)

)
,

which yields a solution of (2), for a sufficiently small and y < 1.
Now we consider the case where y = 1, and consequently α1 = 0, α2 = 2s and α3 = s. In

this case,
dx

dt
= −2sx+ s.

Multiplying both side of the previous equation by e2st, we obtain

e2st
dx

dt
+ 2sxe2st = se2st

⇐⇒ d

dt

(
xe2st

)
= se2st

⇐⇒
∫ t

0

d

dz

(
xe2sz

)
dz =

∫ t

0

se2szdz

⇐⇒ x(t)e2st − x0 =
1

2
e2st − 1

2
,

which implies

x(t) =
1

2
− 1

2
e−2st + x0e

−2st.

Solution of (2) without inhomogeneous term. If we consider the case where y < 1, (3)
(the exact solution of (2)) is hard to analyze at first glance. Therefore, we further simplify
Equation (2) by leaving out the inhomogeneous part (ys) of the equation. Note that this is
applicable for y and s sufficiently small. Additionally, for a sufficiently small, it follows that

dP (Xl(t) = 1)

dt
≈+ as(1− y)P (Xl(t) = 1)2

− (as(1− y) + s(1 + y))P (Xl(t) = 1).
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Using f(t) := P (Xl(t) = 1), we have a differential equation of the following form:

df(t)

dt
= −(α1 + α2)f(t) + α1f(t)

2, f(0) = x0 ̸= 0.

To solve this differential equation, we first set

g(t) =
1

f(t)
,

and obtain

dg(t)

dt
= − 1

f(t)2
d

dt
f(t)

= (α1 + α2)
1

f(t)
− α1

= (α1 + α2)g(t)− α1,

(11)

with g(0) = 1
f(0) .

We first solve the differential equation for the function g(t). Let us multiply both sides of
(11) by e−(α1+α2)t:

e−(α1+α2)t
dg(t)

dt
= e−(α1+α2)t(α1 + α2)g(t)− e−(α1+α2)tα1

⇐⇒ e−(α1+α2)t
dg(t)

dt
− e−(α1+α2)t(α1 + α2)g(t) = −e−(α1+α2)tα1

=⇒ d

dt

(
e−(α1+α2)tg(t)

)
= −e−(α1+α2)tα1.

Thus,

t∫
0

d

ds

(
e−(α1+α2)sg(s)

)
ds =

t∫
0

−e−(α1+α2)sα1 ds

=⇒ e−(α1+α2)tg(t)− g(0) =
α1

α1 + α2
e−(α1+α2)t − α1

α1 + α2

=⇒ g(t) = e(α1+α2)tg(0) +
α1

α1 + α2
− α1

α1 + α2
e(α1+α2)t.

Inserting g(0) = 1
f(0) and solving for f(t) we obtain the solution:

f(t) =
1(

1
x0

− α1

α1+α2

)
e(α1+α2)t + α1

α1+α2

,

for x0 = f(0) = P (Xl(0) = 1).

A.3 Derivation of the master equations (both-neighbors model)

In this section, we once again consider a single site Xl, for l ∈ L, where Xl(t) denotes the
state of this site at time t ≥ 0, and concentrate on approximating P (Xl(t) = 1) by observing
the dynamics of the process at Xl(t). As before, we let A be the event where Xl changes its
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value due to a neighboring interaction, and let B denote the event where a spontaneous change
occurs and thus Xl changes its value, and assume A and B to be independent of each other.

We first compute P (Xl(t) = 1|Xl(t−∆) = 0)P (Xl(t−∆) = 0):

P (Xl(t) = 1|Xl(t−∆) = 0)P (Xl(t−∆) = 0)

=P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩A) + P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩B)

=P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩ {Xl−1(t−∆) = 1, Xl+1(t−∆) = 1} ∩A)

+ P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩B)

=P ({Xl(t) = 1} ∩A|Xl−1(t−∆) = 1, Xl(t−∆) = 0, Xl+1(t−∆) = 1)

× P (Xl−1(t−∆) = 1, Xl(t−∆) = 0, Xl+1(t−∆) = 1)

+ P ({Xl(t) = 1} ∩B|Xl(t−∆) = 0)P (Xl(t−∆) = 0)

=
(
ays∆+O(∆2)

)
P (Xl−1(t−∆) = 1, Xl(t−∆) = 0, Xl+1(t−∆) = 1)

+
(
ys∆+O(∆2)

)
P (Xl(t−∆) = 0) .

Now, we compute P (Xl(t) = 0|Xl(t−∆) = 1)P (Xl(t−∆) = 1):

P (Xl(t) = 0|Xl(t−∆) = 1)P (Xl(t−∆) = 1)

=P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩A) + P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩B)

=P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩ {Xl−1(t−∆) = 0} ∩ {Xl+1(t−∆) = 0} ∩A)

+ P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩B)

=P ({Xl(t) = 0} ∩A|Xl−1(t−∆) = 0, Xl(t−∆) = 1, Xl+1(t−∆) = 0)

× P (Xl−1(t−∆) = 0, Xl(t−∆) = 1, Xl+1(t−∆) = 0)

+ P ({Xl(t) = 0} ∩B|Xl(t−∆) = 1)P (Xl(t−∆) = 1)

=
(
as∆+O(∆2)

)
P (Xl−1(t−∆) = 0, Xl(t−∆) = 1, Xl+1(t−∆) = 0)

+
(
s∆+O(∆2)

)
P (Xl(t−∆) = 1) .

Once again, using the law of total probability (6), and Equation (7) as well as the two results
above, we obtain

P (Xl(t) = 1) =
(
ays∆+O(∆2)

)
P (Xl−1(t−∆) = 1, Xl(t−∆) = 0, Xl+1(t−∆) = 1)

+
(
ys∆+O(∆2)

)
P (Xl(t−∆) = 0)

+ P (Xl(t−∆) = 1)

−
(
as∆+O(∆2)

)
P (Xl−1(t−∆) = 0, Xl(t−∆) = 1, Xl+1(t−∆) = 0)

−
(
s∆+O(∆2)

)
P (Xl(t−∆) = 1) .

(12)

Since P (Xl(t) = 0)+P (Xl(t) = 1) = 1, subtracting P (Xl(t−∆) = 1) from both sides of (12),
dividing both sides by ∆ and letting it go to zero, we obtain the following differential equation

dP (Xl(t) = 1)

dt
=aysP (Xl−1(t) = 1, Xl(t) = 0, Xl+1(t) = 1)

+ ys

− asP (Xl−1(t) = 0, Xl(t) = 1, Xl+1(t) = 0)

− (s+ ys)P (Xl(t) = 1) .

(13)

As it was the case with the single-neighbor-model, this analytical result also corresponds to our
understanding of how P (Xl(t) = 1) should change in time, but now considering both the left
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and right nearest-neighbors. As a consequence of how we extended our model, there are now
stronger assumptions for neighboring interactions to occur, namely both neighbors must have
the same methylation status.

Before solving (13) it is important to find an approximation for the probabilities P (Xl(t) =
0, Xl−1(t) = 1, Xl+1(t) = 1) and P (Xl(t) = 1, Xl−1(t) = 0, Xl+1(t) = 0). Let us assume

P (Xl−1(t) = 1, Xl(t) = 0, Xl+1(t) = 1)

≈P (Xl−1(t) = 1)P (Xl(t) = 0)P (Xl+1(t) = 1)

=P (Xl(t) = 1)2 − P (Xl(t) = 1)3,

and

P (Xl−1(t) = 0, Xl(t) = 1, Xl+1(t) = 0)

≈P (Xl−1(t) = 0)P (Xl(t) = 1)P (Xl+1(t) = 0)

=P (Xl(t) = 1)3 − 2P (Xl(t) = 1)2 + P (Xl(t) = 1),

since P (Xl(t) = 1) + P (Xl(t) = 0) = 1, and P (Xl−1(t) = 1) = P (Xl(t) = 1) = P (Xl+1(t) = 1)
by construction of the model. Note, once again, that these simplifications are better suited
for the cases where there is no neighboring interaction or almost no neighboring interaction,
i.e. a = 0 or a ≈ 0, since we assume independence of Xl − 1, Xl, Xl + 1. Inserting these
approximations in (13), we obtain

dP (Xl(t) = 1)

dt
≈ (−as− (s+ ys))P (Xl(t) = 1)

+ (ays+ 2as)P (Xl(t) = 1)2

+ (−ays+ as)P (Xl(t) = 1)3

+ ys

=: f(x),

(14)

for x = P (Xl(t) = 1). Thus, we have

f(x) = β3x
3 + β2x

2 + β1x+ β4,

for β1 = −as− (s+ ys), β2 = ays+ 2as, β3 = −ays+ as, and β4 = ys.
As done in the single-neighbor-model, we can compute the roots of the function f(x) and

potentially analyze the stability of the stationary points, given they are in [0, 1] and, thus
meaningful to us. Additionally, if we further simplify (14) we can also potentially find an
approximation of P (Xl(t) = 1) that we can compare with the results of our simulation.

A.4 Further comparisons between the simulation and the analytical
results

Comparison with the Equations (4) and (5). Note that we once again only consider
the left-neighbor model. For y ∈ {0.1, 0.3, 0.6, 0.9}, a ∈ {0.1, 0.5, 1, 2, 10}, and the usual s =
1.47 · 10−3, Fig. 9 shows the observed mean methylation level over 30 simulated runs as well as
the approximated solution obtained in Equation (4). Note that for Equation (4), we assumed
y and s to be small and thus, omitted the term ys. In fact, we can indeed observe that the
approximation works better for small values of the parameter y. In particular, as for t → ∞,
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Figure 9: Mean methylation level over 30 runs including the approximated solution for the
methylation level obtained in Equation (4) (red).

Approximation (4) tends to 0, thus (4) is more suitable in describing the short-term behavior
of the underlying process. For small values of y, this can also be observed in Fig. 9.

Further, for the case where y = 1 (i.e. methylation and demethlation are equally likely)
and the same s, Fig. 10 shows the mean methylation level over 30 runs and the corresponding
solution (5) of the approximated master equation (2) for a ∈ {0.1, 0.5, 1, 2, 10}. We conclude
that our analytical solution is able to more or less describe the mean methylation level, even
for a = 10.

Figure 10: Mean methylation level over 30 runs including the exact solution for the approxi-
mation of the methylation level obtained in Equation (5) for y = 1 (red).

Fit with a General Function. Besides the analytical approaches, we also try to compute
the average long-term stationary state of our model computationally and to fit a function to our
simulated data, which describes the dynamics of the mean methylation level. In particular, our
goal is to formulate a general function, which can describe the mean behavior of the process,
dependent on the parameters a, s, and y. This will play a major role in understanding the
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impact of stronger neighboring interactions (a big) on the joint distribution of two neighboring
sites. Especially since our current analytical results are all based on the assumption of a being
small, i.e. independence between neighboring sites. Similar as above, we perform multiple runs
and compute the average methylation level over these runs. From data observation, we propose
a function of the form

fb,β,c(t) := b · (1− e−βt) + ce−βt (15)

to fit our data using the curve fit function from the SciPy Python library [25], which uses non-
linear least squares. Results for s = 1.47 ·10−3, y ∈ {0.1, 0.3, 0.6, 0.9}, and a ∈ {0.1, 0.5, 1, 2, 10}
are shown in Fig. 11. Note that c describes the initial methylation level while b describes the
long term mean methylation level.

Figure 11: Averaged methylation level over 30 sequences and the fitted function (green). The
parameter a varies from left to right in order {0.1, 0.5, 1, 2, 10} and y varies from top to bottom
in order {0.1, 0.3, 0.6, 0.9}. Note that the scaling of the y-axis is not the same for all plots.

Without analysis of the residuals, it is clear at first sight that the function described
in (15) performs better for larger a-values than (3). This highlights again the impact of our
independence-assumption.

A.5 Statistical tests for the cluster size

To validate the differences in mean cluster size for the three model formulations statistically,
we need to start by answering the question: is the random variable Da,y that stands for “mean
demethylated cluster size of a single sequence after a run of the simulation with parameter values
a and y” nearly normally distributed (and analogously for the methylated clusters)? The answer
to this question is interesting because it tells us whether we can perform other statistical tests,
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such as t-tests and ANOVAs. There are multiple possibilities to test for normal distribution.
We start by using the D’Agostino-Pearson Omnibus test, which evaluates the skewness (a
measure of symmetry to the mean) and kurtosis (“heaviness” of the tails) of the samples and
compares them to those of a corresponding Gaussian distribution [3]. To use this test, we define
a null-hypothesis of the form

H0 : Da,y ∼ N (µ, σ2),

where µ and σ2 are the corresponding mean and variance, respectively. This first test will
serve as a filter telling us which models and parameter combinations need to be inspected more
closely: for this purpose, we impede passing the test by choosing a strict significance level. The
error which we would like to avoid is the type II error (false negative), meaning that we do
not want to falsely conclude that the mean (de-)methylated cluster size is normally distributed.
Hence, we set the significance level to α = 0.1 (H0 is rejected if p < α).

The results of the test for normal distribution yield the following p-values in case of demethy-
lated clusters only: the model with a = 0 returns p = 0.8506 (y = 0.5), p = 0.3018 (y = 1),
and p = 0.3472 (y = 2). For the model which only considers the influence of one neighbor
we have p = 0.7868 (a = 1, y = 1), p = 0.0674 (a = 1, y = 0.5), and p = 0.8394 (a = 1,
y = 2). The model including the influence of both neighbors yields the following p-values:
p = 0.5959 (a = 1, y = 1), p = 0.1242 (a = 1, y = 0.5), and p = 0.3879 (a = 1, y = 2). Hence,
H0 must be rejected on the basis of the given samples in the cases of y = 0.5 and y = 2 for
the one-neighbor-model. For the purely spontaneous model, the two-neighbor-model and the
remaining parameter combination of the one-neighbor-model, H0 can be accepted according to
the test with the given samples.

For the mean methylated cluster sizes we obtain the following p-values: the spontaneous
model yields p = 0.6428 (y = 0.5), p = 0.8390 (y = 1), and p = 0.3783 (y = 2). For the
one-neighbor model we obtain p = 0.0697 (a = 1, y = 1), p = 0.5877 (a = 1, y = 0.5), and
p = 0.0808 (a = 1, y = 2). Finally, the p-values resulting from the test for the two-neighbor
model are given by p = 0.2224 (a = 1, y = 1), p = 0.7865 (a = 1, y = 0.5), and p = 0.5746
(a = 1, y = 2). Hence, regarding the methylated cluster sizes we have to reject H0 in case of
the one-neighbor model for the parameter choices y = 1, y = 2.

At this point, there are four groups associated with the one-neighbor model which we have
to classify as non-normally distributed: the mean demethylated cluster size for the parameter
sets a = 1, y = 0.5 and a = 1, y = 2, as well as the mean methylated cluster size for the
parameter combinations a = 1, y = 1 and a = 1, y = 2. To find out whether it is possible to
assess the influence of the type of model on the mean cluster sizes using ANOVAs we further
need to examine the data from these groups. According to [7], non-normality is not necessarily
problematic for the performance of an ANOVA as long as the data appears symmetric.

Figure 12 shows the histograms for these groups. It is visible that especially the three his-
tograms on the right expose skewness, which can be quantified (from left to right) as −0.09,
0.13, 0.54 and 0.43. These values are still acceptable to fulfill the criterion of nearly-normal dis-
tribution [7], and we are also able to assume independence of the groups. The third assumption
that is necessary for the performance of an ANOVA is the equality of standard deviations, but
similar to the criterion of normally distributed data similarity is sufficient especially in case of
equal sample sizes. With ANOVAs we can test the following null-hypotheses:

• H0
0 : µ

0
y=1 = µ1

a=1,y=1 = µ2
a=1,y=1

• H1
0 : µ

0
y=0.5 = µ1

a=1,y=0.5 = µ2
a=1,y=0.5
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Figure 12: Distribution of the mean cluster sizes for the parameter combinations that did not
pass the D’Agostino-Pearson Omnibus test. Data from the model that considers the influence
of one neighbor (a = 1 in all cases). From left to right: y = 0.5, y = 2 (demethylated clusters),
y = 1 and y = 2 (methylated clusters). The red line shows the probability density function of a
normally distributed random variable with the same respective mean and standard deviation.

• H2
0 : µ

0
y=2 = µ1

a=1,y=2 = µ2
a=1,y=2

where µ0
y is the true mean of demethylated clusters calculated by the purely spontaneous model,

µ1
a,y is the true mean of the demethylated cluster size for the model considering only one

neighbor, and µ2
a=1,y=1 is the true mean for the two-neighbor-model. The null-hypotheses for

the methylated cluster sizes were chosen analogously. We choose a significance level α that
reduces the probability of a type I error, hence a lower significance level than before: α = 0.05.

For the demethylated cluster sizes we obtain the following results: in the case of y = 0.5,
we have a p-value of p = 4.0010 · 10−148, for y = 1 it is p = 1.5689 · 10−124, and for y = 2 p is
given as p = 3.0848 · 10−82.

The methylated cluster sizes yield these p-values: for y = 0.5: p = 1.7395 · 10−63, for y = 1
we obtain p = 3.4493 · 10−128 and for y = 2 it is p = 1.1959 · 10−176.

These p-values tell us that we can reject each of our null-hypotheses, but they do not reveal
which of the equality-assumptions should be rejected (e. g. in the case of H0

0 it could be
µ0
y=1 ̸= µ1

a=1,y=1 ̸= µ2
a=1,y=1, but also for instance µ0

y=1 = µ1
a=1,y=1 ̸= µ2

a=1,y=1). To further
assess the differences in mean cluster size we continue with pairwise tests. In the cases where
both groups that are tested were accepted as being normally distributed in the D’Agostino-
Pearson Omnibus test we use a two-sample t-test. In the remaining cases, we will use the
Wilcoxon rank-sum test which tests for identical distribution. Identical distribution also means
“same true mean”, and hence the Wilcoxon rank-sum test serves as a good replacement for the
two-sample t-test in the cases where we were unable to accept normal distribution under the
chosen significance level [5].

For all tests the same significance level α = 0.05 is fixed. Table 1 shows the p-values that
were obtained from the pairwise testing.

A.6 Influence of inheritance on the cluster size

We have seen that there are multiple possibilities of how epigenetic information can be inherited.
In the analysis of the simulation we have only considered no linkage between sites, which tears
clusters apart if they are not present in enough individuals of the cohort. But as soon as
there is linkage between sites, clusters can be maintained even if they are only present in single
individuals. An interesting question in this context is whether this effect is large enough to
create a difference in mean cluster size evolution over multiple generations.

To serve as a basis for discussion, we perform a small investigation of the model that
considers the influence of one neighbor. In order to provide a substantial answer to the question,
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y-value Tested pair Type of test p-value

y = 0.5

0 vs. 1
Wilcoxon rank-sum 2.5239e-34 (D)
2-sample t-test 8.4613e-52 (M)

0 vs. 2
2-sample t-test 2.1112e-115 (D)
2-sample t-test 1.6751e-46 (M)

1 vs. 2
Wilcoxon rank-sum 0.1426 (D)
2-sample t-test 0.5814 (M)

y = 1

0 vs. 1
2-sample t-test 7.9096e-89 (D)
2-sample t-test 6.7889e-94 (M)

0 vs. 2
2-sample t-test 2.4825e-95 (D)
2-sample t-test 9.4430e-92 (M)

1 vs. 2
2-sample t-test 0.0441 (D)

Wilcoxon rank-sum 0.9357 (M)

y = 2

0 vs. 1
Wilcoxon rank-sum 8.1107e-34 (D)
Wilcoxon rank-sum 2.5239e-34 (M)

0 vs. 2
2-sample t-test 1.6152e-63 (D)
2-sample t-test 3.3653e-129 (M)

1 vs. 2
Wilcoxon rank-sum 0.8950 (D)
Wilcoxon rank-sum 0.7250 (M)

Table 1: Choice and p-values of the pairwise tests. “M” stands for methylated clusters, “D”
means demethylated clusters. Notation of the models: “0”: only spontaneous reactions, “1”:
influence by one neighbor, “2”: influence by both neighbors.

more statistical analysis would be necessary as well as perhaps also the manipulation of more
parameters than in the following.

Similarly as before we choose the parameter values L = 200, s = 1.47·10−3, a = 1 and tend =
1000 (because Section 4 showed that it takes about 1000 time units to reach the equilibrium
cluster size). Furthermore, we will observe three different y-values: y ∈ {0.5, 1, 2}. As before,
N = 100 individuals (per generation) and 50 generations are simulated, and the initial cohort
is given by random combinations of ones and zeros sampled from a uniform distribution.

In case of the inheritance with linked sites, we assume that each individual has two parents
that are randomly drawn from the previous generation and we add break points for the recom-
bination after each fifth CpG site (case 1) and after each 50th site (case 2). In case 1, many
snippets of the parents’ sequences alternate within quite short distances, whereas in case 2 only
two snippets per parent are passed on to the next generation.

The mean (de-)methylated cluster sizes over the generations are shown in Figs. 13, 14 and
15. Their evolution appears very similar and it looks as if we can answer the initial question
with “no”, but to be sure we would need to perform more analysis, as is done for instance in
Section 4.

A.7 Extension of the both-neighbors-model

Model formulation. We consider a single CpG site Xl, l ∈ {1, ..., L}. Keeping the usual
periodic boundary condition, we define the nearest right neighbor as Xl+1. Extending our
model to also account for neighboring interactions when Xl−1 ̸= Xl+1, we make the following
assumptions:
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Figure 13: Evolution of the mean cluster sizes over all N = 100 individuals per generation for
y = 0.5. From left to right: inheritance without linkage, inheritance with linkage and snippets
of length 5, inheritance with linkage and snippets of length 50.

Figure 14: Cluster size evolution for y = 1.

1. For Xl−1 = Xl = Xl+1, we assume that a change of the methylation status at site Xl can
only occur due to a spontaneous, non-collaborative reaction.

2. For Xl−1 = Xl+1 and Xl−1 ̸= Xl, we assume that a change of the methylation status at
site Xl can occur due to a spontaneous, non-collaborative reaction and additionally, due
to the influence of the left and right neighbors.

3. For Xl−1 ̸= Xl+1, we assume that a change of the methylation status at site Xl can
occur due to a spontaneous, non-collaborative reaction. Additionally, we assume that the
influences of the left and right neighbors “compete” with each other. Depending on the
value of y, a change in methylation state of Xl occurs but only from a methylated to a
demethylated state for y < 1 or from a demethylated to a methylated state for y > 1.

Figure 15: Cluster size evolution for y = 2.
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For y < 1, the resulting reaction system is described by

1
k1−→ 0

0
k2−→ 1

0, 1, 0
k̃3−→ 0, 0, 0

1, 0, 1
k̃4−→ 1, 1, 1,

0, 1, 1
k̃5−→ 0, 0, 1

1, 1, 0
k̃5−→ 1, 0, 0

where k1 = s, k2 = sy, k̃3 = as, k̃4 = asy, and k̃5 = as− asy. For y < 1, the resulting reaction
system is described by

1
k1−→ 0

0
k2−→ 1

0, 1, 0
k̃3−→ 0, 0, 0

1, 0, 1
k̃4−→ 1, 1, 1,

0, 0, 1
k̃6−→ 0, 1, 1

1, 0, 0
k̃6−→ 1, 1, 0

where k1 = s, k2 = sy, k̃3 = as, k̃4 = asy, and k̃6 = asy − as. The parameters s and y are
defined the same way as Section 2. a measures the strength of neighboring influence in the
same way as in the formulation of the both-neighbors-model.

Master equation. Let y < 1. We consider a single site Xl, for l ∈ L, where Xl(t) denotes
the status of this site at time t ≥ 0. Our goal is to estimate P (Xl(t) = 1) by observing the
dynamics of the process at Xl(t) for the case where y < 1. The case where y > 1 can be
constructed analogously.

As before, we let A be the event where Xl changes its value due to a neighboring interaction,
and let B denote the event where a spontaneous change occurs and thus Xl changes its value.
Assume A and B to be independent of each other.
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We first compute P (Xl(t) = 1|Xl(t−∆) = 0)P (Xl(t−∆) = 0):

P (Xl(t) = 1|Xl(t−∆) = 0)P (Xl(t−∆) = 0)

=P (Xl(t) = 1, Xl(t−∆) = 0)

=P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩A) + P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩B)

=P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩ {Xl−1(t−∆) = 1, Xl+1(t−∆) = 1} ∩A)

+ P ({Xl(t) = 1} ∩ {Xl(t−∆) = 0} ∩B)

=P ({Xl(t) = 1} ∩A|Xl−1(t−∆) = 1, Xl(t−∆) = 0, Xl+1(t−∆) = 1)

× P (Xl−1(t−∆) = 1, Xl(t−∆) = 0, Xl+1(t−∆) = 1)

+ P ({Xl(t) = 1} ∩B|Xl(t−∆) = 0)P (Xl(t−∆) = 0)

=
(
asy∆+O(∆2)

)
P (Xl−1(t−∆) = 1, Xl(t−∆) = 0, Xl+1(t−∆) = 1)

+
(
sy∆+O(∆2)

)
P (Xl(t−∆) = 0) .

Now, we compute P (Xl(t) = 0|Xl(t−∆) = 1):

P (Xl(t) = 0|Xl(t−∆) = 1)P (Xl(t−∆) = 1)

=P (Xl(t) = 0, Xl(t−∆) = 1)

=P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩A) + P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩B)

=P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩ {Xl−1(t−∆) = 0} ∩ {Xl+1(t−∆) = 0} ∩A)

+ P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩ {Xl−1(t−∆) ̸= Xl+1(t−∆)} ∩A)

+ P ({Xl(t) = 0} ∩ {Xl(t−∆) = 1} ∩B)

=P ({Xl(t) = 0} ∩A|Xl−1(t−∆) = 0, Xl(t−∆) = 1, Xl+1(t−∆) = 0)

× P (Xl−1(t−∆) = 0, Xl(t−∆) = 1, Xl+1(t−∆) = 0)

+ P ({Xl(t) = 0} ∩A|Xl(t−∆) = 1, Xl−1(t−∆) ̸= Xl+1(t−∆))

× P ({Xl(t−∆) = 1} ∩ {Xl−1(t−∆) ̸= Xl+1(t−∆)})
+ P ({Xl(t) = 0} ∩B|Xl(t−∆) = 1)P (Xl(t−∆) = 1)

=
(
as∆+O(∆2)

)
P (Xl−1(t−∆) = 0, Xl(t−∆) = 1, Xl+1(t−∆) = 0)

+
(
(as− asy)∆ +O(∆2)

)
P ({Xl(t−∆) = 1} ∩ {Xl−1(t−∆) ̸= Xl+1(t−∆)})

+
(
s∆+O(∆2)

)
P (Xl(t−∆) = 1) .

Thus, using the law of total probability (6) and Equation (7), it follows

P (Xl(t) = 1) =
(
asy∆+O(∆2)

)
P (Xl−1(t−∆) = 1, Xl(t−∆) = 0, Xl+1(t−∆) = 1)

+
(
sy∆+O(∆2)

)
P (Xl(t−∆) = 0)

−
(
as∆+O(∆2)

)
P (Xl−1(t−∆) = 0, Xl(t−∆) = 1, Xl+1(t−∆) = 0)

−
(
(as− asy)∆ +O(∆2)

)
P ({Xl(t−∆) = 1} ∩ {Xl−1(t−∆) ̸= Xl+1(t−∆)})

−
(
s∆+O(∆2)

)
P (Xl(t−∆) = 1)

+ P (Xl(t−∆) = 1) .

Since P (Xl(t) = 0) + P (Xl(t) = 1) = 1, subtracting P (Xl(t−∆) = 1) from both sides of the
previous equation, dividing both sides by ∆ and letting it go to zero, we obtain the following
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differential equation

dP (Xl(t) = 1)

dt
=asyP (Xl(t) = 0, Xl−1(t) = 1, Xl+1(t) = 1)

+ sy

− asP (Xl(t) = 1, Xl−1(t) = 0, Xl+1(t) = 0)

− (as− asy)P ({Xl(t) = 1} ∩ {Xl−1(t) ̸= Xl+1(t)})
− (s+ sy)P (Xl(t) = 1) .

As done previously, we could potentially simplify this expression, compute the stationary points
and check their stability behavior. Additionally, if possible, we could approximate a solution of
the master equation.

We observe that the master equation derived here has an additional term that accounts
for the “weaker” neighboring interactions that can occur when Xl−1 ̸= Xl+1, compared to our
model extension in Section 2.

As a result of the additional interaction, we speculate that this model could create larger
clusters of demethylated sites. Nonetheless, further numerical analyzes are needed in order to
determine whether this new potential model is significantly different to the others.
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