Download PDFOpen PDF in browser

Analysis of Gender-Specific Aspects of the Morphology of the Distal Femur

6 pagesPublished: June 13, 2017


In total knee arthroplasty (TKA) the implant design is one key factor for a proper functional restoration of the diseased knee. Therefore, detailed knowledge on the shape (morphology) is essential to guide the design process. In literature, the morphology has been extensively studied revealing differences, e.g. between ethnicity and gender. However, it is still unclear in which way gender-specific morphological differences are sexual dimorphism or explained by differences in size.
The aim of this study was to investigate the morphology of the distal femur under gender-specific aspects for a large group of patients. Statistical analysis was used to reveal significant differences and subsequent correlation analysis to normalize the morphology.
A dataset of n=363 segmented distal femoral bone surface reconstructions (229 female, 134 male) were randomly collected from a database of patients which underwent TKA. In total, 34 morphological features (distances, angles), quantifying the distal femoral geometry, were determined full automatically. Subsequently, graphs and descriptive statistics were used to check normality and gender-specific differences were analyzed by calculating the 95% confidence intervals for women and men separately. Finally, significant differences were normalized by dividing each feature by appropriate distance measurements and confidence intervals were recalculated.
Looking at the confidence 95% intervals, 6 of 34 features did not show any significant differences between genders. Remarkably, this primarily involves angular (relative) features whereas distance (absolute) measurements were mostly gender dependent. Then, we normalized all distance measurements and radii according to their direction of measurement: Features defined in medial/lateral (ML) direction were divided by the overall ML width and those following the anterior/posterior direction were normalized based on the overall AP length. The results demonstrated that gender- specific differences mostly disappear by using an adequate normalization term.
In conclusion, implant sizes (femoral components) should not be linearly scaled according to one dimension. Instead, ML and AP directions should be regarded separately (non-isotropic scaling). Taking this into consideration, gender-specific differences might be neglected.

Keyphrases: knee, Total knee arthroplasty, Implant Design, statistical analysis, morphology, Patient Specific Implants, gender

In: Klaus Radermacher and Ferdinando Rodriguez Y Baena (editors). CAOS 2017. 17th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery, vol 1, pages 238--243

Download PDFOpen PDF in browser