EPiC Series in Computing Sl
omputing

Volume 77, 2021, Pages 80-89
Proceedings of ISCA 30th International Confer-

ence on Software Engineering and Data Engineering E ; EE

Automated Generation of Stand-Alone Source Codes

for Software Libraries

Lucas Machi, Henry L. Carscadden,
Chris J. Kuhlman, Dustin Machi, and S. S. Ravi

University of Virginia, Charlottesville, VA
[1hm4v], [h1lcbv], [cjk8gx], [Am8qgs], [ssrénh]@virginia.edu

Abstract

Networks are pervasive in society: infrastructures (e.g., telephone), commercial sectors
(e.g., banking), and biological and genomic systems can be represented as networks. Con-
sequently, there are software libraries that analyze networks. Containers (e.g., Docker,
Singularity), which hold both runnable codes and their execution environments, are in-
creasingly utilized by analysts to run codes in a platform-independent fashion. Portability
is further enhanced by not only providing software library methods, but also the driver
code (i.e., main() method) for each library method. In this way, a user only has to know
the invocation for the main() method that is in the container. In this work, we describe
an automated approach for generating a main() method for each software library method.
A single intermediate representation (IR) format is used for all library methods, and one
IR instance is populated for one library method by parsing its comments and method
signature. An IR for the main() method is generated from that for the library method.
A source code generator uses the main() method IR and a set of small, hand-generated
source code templates—with variables in the templates that are automatically customized
for a particular library method—to produce the source code main() method. We apply
our approach to two widely used software libraries, SNAP and NetworkX, as examplars,
which combined have over 400 library methods.

Keywords: automated source code generation, software libraries, network science,
cyberinfrastructure

1 Introduction
1.1 Background and Motivation

Networks and graphs are pervasive in society. Humans form friendship networks, follower
networks on social media, and collaboration networks. Interactions among organizations such
as banking, finance, and historic preservation can be characterized as networks. Infrastructures,
such as the land line telephone system, form networks. Geographical features form networks,
such as networks of canals (see [8,9,13]). Consequently, analysts in a range of disciplines use
many of the same network science approaches to understand networks.

F. Harris, R. Wu and A. Redei (eds.), SEDE 2021 (EPiC Series in Computing, vol. 77), pp. 80-89

Auto-Code Generation Machi et. al.

This suggests the need for a cyberinfrastructure (CI) for network science whereby analysts
can share computational codes and data, and all analysts can benefit from using these resources.
A cyberinfrastructure (CI) consists of computing systems, data storage systems, advanced in-
struments and data repositories, and visualization environments, all linked by high speed com-
puter networks to make possible innovation and discoveries not otherwise possible [16, 21].
Currently, there is no general-purpose CI for network science.

A CI for network science called net.science is being constructed; it was initially released
in June 2021. An overview of the net.science system is given in [1]. The system is composed
of the following elements: (7) an infrastructure that manages data and software, and provides
execution environments for software; (i4) common services such as workflow and visualization
services; (#i1) computational codes (which we call tasks) that perform operations on networks
and network-related data; (iv) network and associated data; (v) a web application (web app) for
interacting with net.science through web browser screens; and (vi) an application programming
interface (API) that is used to access net.science resources. (Third-party codes and the web
app use the APIL.)

In this paper, we are concerned with computational codes (i.e., tasks) and their execution
environments within the CI. Such tasks may run serially or in parallel, giving rise to a number of
considerations and requirements. First, the CI runs each code in its own execution environment
in order to isolate it; that is, each code runs within a Singularity container. Second, each code
runs as a separate process and is invoked with command-line arguments (CLAs); net.science
invokes codes based on parameters specified by users. This enables testing of codes inside and
outside of containers, and inside and outside of net.science. Third, this adds to the modularity
of the overall system, where individual codes and collections of codes can be added, updated, or
removed atomically. Fourth, individual codes make reasoning about compositions of operations
more straight-forward. This is useful since many steps must be used inside net.science to invoke
a single task; examples of such steps include setting up a workspace, copying files into it, running
the code, assigning and updating metadata for provenance, and error handling. Fifth, for the
case of multiple hardware systems, if a code is required to run on another remote platform,
the containerization step ensures that the software that must be copied to a destination is
well-defined, and will run on the destination system (with appropriate hardware).

Technical Challenges: One challenge is due to the sizes of software libraries that are in-
tegrated into net.science. SNAP [14] and NetworkX [10] libraries are well-known and highly
used, which makes them prime candidates for inclusion in the CI. SNAP has some 151 network
methods and NetworkX has more than 270. In net.science, each of these operations must be
a stand-alone code. A primary challenge is how to accomplish this goal—incorporating these
400-plus methods into the CI—in an automated fashion. Given the effort needed to tackle the
first challenge, we also want to devise a solution whose artifacts can be used for other purposes.

1.2 Contributions

1. An approach for automatically generating stand-alone codes for the methods of a
software library. Because each method of a software library must be a stand-alone executable
code in net.science, each library method requires a main() method, with appropriate CLAs,
that is invoked from the command line and that, in turn, calls a particular library function. A
conceptual view is provided in Figure 1. A user selects a method to execute, and the CI stages
data and invokes the appropriate main () method. The approach is programming language (PL)
agnostic (the implementation is not PL agnostic).

The inputs and outputs for a library method often are in volatile memory. When these
methods are used in isolation within a stand-alone code, the contents of in-memory input

81

Auto-Code Generation Machi et. al.

user net.science cyberinfrastructure
NetworkX codes SNAP codes
User specifies
analysis to |:> NetworkX main() NetworkX::computeCon SNAP main() SNAP::computeConnect
perform method for CCC nectedComponents() method for CCC edComponents()

Figure 1: Conceptual view of packaging library methods. Each library method (in white within the
CI box) has a corresponding main() method (in gray in the CI box), resulting in a stand-alone code.
Here, the software library method computes the connected components of a graph. There are 151 and
270 methods in SNAP and NetworkX, respectively.

variables must be read from file(s) and the contents of in-memory output variables must be
written to file(s). Thus, the arguments for the main() method are often different from those
for the library method itself (e.g., different in number and types). For example, an input to a
library method to compute the degree distribution of a graph will be an object that contains the
graph, in-memory. The main() method, however, must take as arguments the name of the file
that contains the graph data, the type (i.e., format) of the graph in file (e.g., edge list, adjacency
list), and the directionality of edges (i.e., directed or undirected). The main () method must also
know the input/output argument types in a library method’s signature, because this dictates
which method variables, if any, are inputs (and therefore may be read from file), are outputs
(and therefore may be written to file), and are both inputs and outputs (and therefore may
be read from and written to files). Our example is graph libraries, but the approach is more
general, and extensible; e.g., see Section 3.5 on extensibility.

2. A software system that implements the approach for network structural analy-
sis libraries. Our Python-based software system uses two steps to auto-generate the main()
method’s source code for each library method. In the first step, the source code and/or com-
ments files are parsed to produce intermediate representations (IRs) of the library method and
of the required main() method’s source code. This parser can vary for different software li-
braries, and we confront this situation in our work. (Additional explanation regarding this is
provided in Item 3 below.) In the second step, the source code for the main () method is gener-
ated by a source code generator (SCG), from the IRs. Other inputs are software library-specific
datatypes, and source code templates that are customizable by the SCG for the particular infor-
mation within the IRs. The tailored templates of (Python) source code snippets are composed
by the SCG to construct the main() method. The SCG is PL and software library agnostic;
these dependencies are contained in the code templates and datatypes. This two-step process
is wrapped in a for loop to iterate over all the methods in a software library.

3. Case studies for NetworkX and SNAP. Stand-alone codes for 151 SNAP methods and
270 NetworkX method have been generated using this approach. These methods are of two
types: structural analysis codes to generate characteristics of a graph, and graph generators.
There are differences between these two libraries, even though both have Python interfaces.
Snap.py is the Python-wrapped library that encloses SNAP, a C++ library. Therefore, Version
5 of Snap.py has input, output, and in-out arguments in method signatures, in addition to return
arguments. NetworkX, by comparison, is more “Pythonic” in design and hence arguments in
method signatures are of signature type input only, and outputs are return variables. Both
libraries were selected for inclusion into net.science because they are well-known and have large
user bases. They are also complementary: NetworkX has more methods and SNAP can handle
very large networks. Finally, source code commenting is done differently in the two libraries,
so this forced us to have multiple related parsing approaches.

82

Auto-Code Generation Machi et. al.

2 Related Work

Operations on networks: network structural analysis codes. There are several struc-
tural analysis libraries, including: Gunrock [24], a GPU-based graph analysis software system;
graph-tool [18]; NetworKit [20], an OpenMP-based graph structural analysis library; igraph [7],
a Python-wrapped C++ implementation of many methods in NetworkX and advanced network
plotting; NetworkX [10], a Python-based system; PEGASUS [11], a Hadoop-based implementa-
tion; and SNAP [14], a C++ implementation with multithreading, along with Snap.py, which
is a Python wrapper around SNAP. We have selected initially the methods in NetworkX and
SNAP libraries for the reasons specified in Section 1.2.

Automated source code generation. The term automated source code generation is broad.
This can include generating source code from scratch (e.g., [4,6]), or from pseudo-code [30],
code completion for smaller snippets of code [3], and error correcting of code [27]. Earlier on,
research was on how to generate source code in an automated fashion from design patterns [4]
and unified modeling language (UML) diagrams [12,19]. Currently, there is much activity in
using artificial intelligence (AI) approaches (e.g., neural networks) for automated code genera-
tion [2,25], and combined natural language processing and AI methods [3,15,17,22,23,28,29].
Overviews of various approaches are discussed in [6,26]. The references cited above fall into
two categories: earlier works that are now more straight-forward, and new approaches that are
quite sophisticated and are difficult to apply to large problems. Our approach lies between
these two extremes.

3 System Description

3.1 Overview

The problem considered in our work and our solution approach are outlined below.
Given: A commented software library whose methods compute properties of graphs.

Required: A set of stand-alone codes (i.e., main() methods) that are invoked from the command
line, one code per library method, where inputs such as graphs are read from files and outputs
are written to files.

Solution approach: Figure 2 briefly describes our solution approach; one can think of this as
the activity diagram associated with our approach. Square boxes in blue denote files, either
data or source code. The rounded boxes in black represent (Python) codes that automatically
construct the main() method for each library method. The commented library source code
and/or separate method descriptions, at the left, are input to a parser that constructs IRs of
the library method and of the main () method. The second component, namely the SCG, reads
in the two IRs, along with other inputs, and produces the main() method corresponding to a
library method (at right).

In this work, we focus on software libraries implemented in, or wrapped by, Python code.
The remainder of this section details our approach and implementation.

3.2 Input: A Software Library

The software libraries that we integrate take different approaches to code documentation.
Snap.py Version 5 provides a text file for each library method, separate from library method
source code. These are the files that we parse to generate IRs. Snap.py Version 5 has method
signature types because Snap.py is a wrapper for the underlying C++ implementation, SNAP.
(Newly released Version 6 of Snap.py is more “Pythonic.”) There are rigorous rules for the
structure of code comments that are imposed on developers, enabling automated parsing.

83

Auto-Code Generation Machi et. al.

Inputs Intermediate Outputs Outputs
Software JSON

library intermediate

(e.g., representation
NetworkX, (IpR) for each For each library method, (Python)

SNAP). library method. (Python) source code main() method that:

E:> Text E> E> Source
Parser JSON IR for the Code (1) reads inputs from CL and from file,

Comments for
each method
(entrypoint) of method) code

the library. These comments may be for each library
in the source code files. method.

driver (main() Generator (2) calls the library method, and
(3) writes outputs to file(s).

Figure 2: Overall automated approach for building a stand-alone code for a (structural analysis)
library method.

NetworkX has comments in the code base, and we parse/interpret these files in a different
way. NetworkX is a more organic, community-driven code base, and as such, its commenting
of library methods varies more across methods. Consequently, it is difficult to automate the
process of parsing content and generating IRs directly from comments in the code. The method
signature, for example, cannot be used by itself because variable types are required and inference
of these is often not possible; Section 3.3 below lists the required parameters.

3.3 Text Parser

A text parser parses a file that describes a library method. For Snap.py, this individual file
has a well-defined format and parsing is automated; the outputs are IRs for the library method
and the main() method. For NetworkX, the parsing process is more elaborate, as follows. A
human reads a library method’s source code comments, and then manually enters values into a
file that is an abbreviated IR. A software tool then converts the contents of this abbreviated file
into a library method IR. The parser used for Snap.py is then used to build the main () method
IR from the library method IR. This process for NetworkX is much faster than inspecting the
NetworkX source code and manually producing both IRs.

The general structure of the two parser codes is the same for NetworkX and Snap.py,
but specific commands (e.g., regular expression syntax) are specific to a library. The parsing
operations cover the following pieces of information: library method’s name; the method’s
textual description; library method’s signature from which we obtain all method arguments and
return values; for each library method argument, the variable type and the method signature
type (i.e., input, output, or in-out); and for each return value, the variable type.

3.4 Intermediate Representation

The parser generates instances of IRs in JSON format. Figure 3 provides an IR for the main ()
method for the Snap.py method GetKCoreEdges(). This listing is given in two-column format.
The keys in the JSON object are given in alphabetical order. Starting at the upper left,
internal variables that are in the library method’s signature, but do not appear as command
line arguments in the main () method, are provided first. Second, information about the return
variable for the library method is listed. Third, the library method’s name is given. Fourth,
the six method signature variables—the CLAs—for the main() method are enumerated in the
figure (these start towards the bottom of the left column and continue on the top of the right
column of Figure 3). Lastly, a summary of the number of different types of arguments is given,
along with the parser version number.

84

Auto-Code Generation

"date": "23jan2020",
"internalVariablesInDriver": [
{
"argumentLongDescription": "A vector of
(order, number of edges of the given order) pairs.",

"argumentShortDescription": ", a vector of (int, int) pairs",
"argumentTypelnMethodSignature": "output",
"argumentVariableName": "CoreldSzV",
"argumentVariableType": "TIntPrv",
"defaultArgumentValue": "--"

"argumentLongDescription": "A Snap.py graph or a network.",

"argumentShortDescription":
"argumentTypelnMethodSignature": "
"argumentVariableName": "Graph",

"argumentVariableType": "graph",
"defaultArgumentValue": "--"
}
1
"isThereALibraryReturnType": true,
"isThereAReturnType": false,
"libraryMethodReturnTypeVariable": {
"returnType": "int
"returnTypeDescription": "The number of cores."
b
"methodName": "GetKCoreEdges",
"methodReturnTypeVariable": {
"returnType": "None",
"returnTypeDescription": "--"

input",

b
"methodSignatureVariables": [

{

"argumentLongDescription": "name of graph file
containing graph to operate on.",

"argumentShortDescription": "--",
"argumentTypelnMethodSignature": "input",
"argumentVariableName": "inputFile_Graph",
"argumentVariableType": "str_infileName",
"defaultArgumentValue": "--"

b

{
"argumentLongDescription": "graph type is Snap type,

so one of: PNGraph, PUNGraph, PNEANet.",

"argumentShortDescription": "--",
"argumentTypelnMethodSignature": "input",
"argumentVariableName": "graphType",
"argumentVariableType": "str",
"defaultArgumentValue": "--"

b

}

Machi et. al.

"argumentLongDescription": "col index in graphName
for the src (source) node of the edge (src, des).",

"argumentShortDescription": "--",

"argumentTypelnMethodSignature":

"argumentVariableName": "srcCol",
nt"
f

"argumentVariableType":

"defaultArgumentValue":

input”,

"argumentLongDescription": "col index in graphName
for the des (destination) node of the edge (src, des).",

"argumentShortDescription": "--",
"argumentTypelnMethodSignature": "input",
"argumentVariableName": "desCol",

"argumentVariableType": "int",

"defaultArgumentValue":

"argumentLongDescription": "output file name for variable CoreldSzV",
"argumentShortDescription": "for an output argument",
"argumentTypelnMethodSignature": "input",
"argumentVariableName": "outputFile_CoreldSzV",
"argumentVariableType": "str_outfileName",

"defaultArgumentValue": "--"

"argumentLongDescription": "output file name for variable
libraryMethodReturnTypeVariable",
"argumentShortDescription": "for a *library method* return argument",

"argumentTypelnMethodSignature": "input",

"argumentVariableName": "outputFile_libraryMethodReturnTypeVariable",
str_outfileName",

"argumentVariableType":
"defaultArgumentValue":

}

1

"methodTextDescription": "Returns the number of edges in each core of

order K (where K=0, 1, ...). Stores pairs (K, number of edges) in *CoreldSzV*.",

"numberOfMethodSignatureArguments": 6,
"numberOfMethodSignaturelnOutArguments": 0,
"numberOfMethodSignaturelnputArguments": 6,
"numberOfMethodSignatureOutputArguments": 0,
"versionNumber": "0.00"

Figure 3: Intermediate representation (IR) for the main() method that calls the GetKCoreEdges()
method within Snap.py. The JSON file contents are split over two columns. A few of the lines in the

file have hard returns in them, for visualizing in this figure.

Each CLA for the main() method has a name; long and short descriptions; a variable type
(e.g., int, str, float, TIntPrV) that is either a primitive type of the PL, a data structure, or a
class; a method signature type (input, output, or in-out); and a default value (“~” means no
value). Some arguments are straight-forward. For example, the “argumentVariableName” of
“desCol” in the right column of Figure 3 is the column index in the graph file that contains a
node ID (the destination node ID, des) for each edge that is represented as the node pair (src,
des). This index is an int and its signature type is input.

Other arguments are more involved. For example, the next “argumentVariableName” is
“outputFile_CoreldSzV.” In our system, outputFile is a keyword, and it specifies that the vari-
able name is associated with an output file. Furthermore, the suffix, here “CoreldSzV,” denotes
the variable name whose contents are written to this output file. This suffix will be a variable

85

Auto-Code Generation Machi et. al.

name or a return type that appears elsewhere in this IR. In this case, “argumentVariableName”
of “CoreldSzV” appears near the beginning of this listing, as an internal variable. Its argument
type, in turn, is “TIntPrV” and this is a datatype that is linked to particular types of tem-
plates. Templates are described in Section 3.5 below, but we note here that type “TIntPrv”
dictates the contents of file “outputFile_CoreldSzV.” Finally, the “argmentVariableType” for
variable “outputFile_CoreldSzV” is “str_outfileName.” This also contains multiple pieces of
information. First, the variable type is string (“str”), and second, it is for an output filename
(“outfileName”).

3.5 Source Code Generator

Per Figure 2, the source code generator (SCG) constructs a library main() method from an IR.
Before addressing the SCG, we describe the approach for generating the source code for the
main() method. Figure 4 provides the conceptual view. On the left, there is a Python main()
method source code file, which we call a skeleton because initially the file merely contains a
name (text string) for each of the sections depicted, that in totality, constitute the main()
method. Each text string is to be overwritten by one or more template files (shown in the
second part of the figure, from the left).

main() method: sections of skeleton Customizable variables within templates Groups of templates per section Datatypes within system
re=—===—=-
-Comments ## Write results to file. 1 ! Datatype Instantiate Input Output
-main method try: | ! i
-begin timer fhout = open(OUTPUT_FILE_NAME, "w") | 1 T\ntPrV,TIntPrV.dat,l\fone,da(,Tpalrs-op.dat
-parse command line args 1 TFItV,TFItV.dat, TFItV-ip.dat,TFItV-op.dat
-print command line args for item in ARGUMENT_VARIABLE_NAME: ! 1 TintSet, TIS.dat,TIS-ip.dat,TIS-op.dat
-instantiate in-, out-, - fhout.write(str(item.GetVal1()) +"," + - ! 1 - graph,None.dal,graph—\p.dfil,graphropdat
and in-out objects str(item.Getval2()) + "\n") g ol | TFIVFIVTFVFV. dat TEVFV-ip. dat, TFVFV-op.dat
-read in-objects data from file | | 1 1
-call method fhout.close() \ ! |
-output results to file(s) except: | ! 1
-end timer print(" Error in writing output for variable -- 1 1
-invoke ARGUMENT_VARIABLE_NAME -- of method - L _I 1
- METHOD_SIGNATURE - to file.") T !
exit(1) 1 !
______]

Figure 4: Templating approach for building main() method source code from IRs. The SCG orches-
trates the work right-to-left.

A template file may contain keywords that need to be overwritten for a particular library
method. For example, there may be a keyword ARGUMENT_VARIABLE_NAME that is over-
written with the name of a particular variable from the IR. Variables are shown in bold blue
in Figure 4. This particular template shows how the data associated with a particular type
are written to file. The methods “GetVall” and “GetVal2” are methods associated with a
particular Snap.py class. Thus, templates are PL-dependent and may also be software library
dependent because a library may have particular classes and methods that must be used in a
main() method.

In the third graphic from the left, groups of templates are provided; there is one group for
each heading in the skeleton. Groups are shown within blue dashed boxes. So, before a partic-
ular template is specialized, that template must be selected from the group that corresponds
to the heading of interest in the skeleton. This decision is based on the contents of the main ()
method IR, and the SCG may select multiple templates from a group (e.g., if there are multiple
output files).

There is a datatypes file at the right in Figure 4 that contains an extensible listing of
datatypes (including data structures and class names) in the system. For example, datatype
TIntPrV is a datatype in the Snap.py library, and is shown in Figure 3, first column, tenth
line. For each datatype, the datatypes file in Figure 4 contains three filenames, each of which
contains source code: (i) the template filename containing code for instantiating an object of

86

Auto-Code Generation Machi et. al.

this datatype; (i7) the template filename containing code for populating an instantiated object
of this datatype (when the method signature type is input or in-out), which involves reading
data from a file; and (ii7) the template filename containing code for writing the contents of this
variable to an output file when an object of this datatype is of method signature type output
or in-out, or is a return type. The datatypes may be inputs in selecting the correct templates
from a group.

It is evident now that the ultimate Python source code main() method file is a composi-
tion of template source code files. This design is a compromise between having flexibility in
constructing (or composing) a main() method, and having too much flexibility that demands
that the SCG has to build the main() method line-by-line with all of the error-prone syntax
specifications that this entails.

Furthermore, when new datatypes are introduced, new templates are added, and the SCG
source code is not altered. This extensibility is important because with large software libraries
like NetworkX, it would be onerous to understand all methods and all of their requirements
before designing the SCG. With our approach, this detailed global view need not be constructed
because the system can be extended as needed.

With the descriptions thus far in this subsection, we can now simply describe the SCG
code. The SCG orchestrates the manipulations of files that are represented in Figure 4, using
the types of IRs identified in Figure 2, in order to produce a software library method’s particular
main() method. Note that SCG is largely PL- and software library-agnostic; and the PL- and
library-specific information is confined to the templates and datatypes file.

3.6 Output: main() Method and Validation

The output from the SCG is the library method’s corresponding main() method, shown at the
far right of Figure 2. This approach was validated in three ways: (i) by comparing the contents
of automatically generated main() method source codes against manually constructed ones;
(#4) by comparing outputs from invocations with the automatically generated main () methods
against outputs from manually generated main() methods, and (ii7) by verifying output files
from sufficiently small graphs.

4 Case study

We illustrate the use of the results of our approach for generating main() methods using two
of the methods from each of the NetworkX and Snap.py libraries. These are illustrative of
the 400+ library methods for which we have generated main() methods. One of these library
methods produces the degree distribution while the other produces the k-core distribution for a
network. The degree distribution is the frequency count of the number of (distance-1) neighbors
of nodes in a graph. A k-core is a subgraph of an original graph in which every node has degree
at least k. The k-core distribution is the number of nodes in the k-core (graph), for varying k.
We first generated, for both libraries, all of the stand-alone codes using the approach described
in the paper. We then executed the resulting auto-generated stand-alone codes to obtain the
structural analysis results on several networks; these results are shown in Figure 5. Degree
distributions are provided in Figure 5a and k-core distributions are provided in Figure 5b.
These data tell us many things, e.g., that the astroph and slashdotO811 have scale-free degree
distributions and the VA Beach network has a random graph-like structure. From the numbers
of nodes and edges for each graph that are given in the caption, it is observed that these data
span four orders of magnitude in numbers of nodes and numbers of edges. We have used a great
many of these resulting codes on other networks, for other projects, on networks up to billions
of edges [5].

87

Auto-Code Generation Machi et. al.

105 — $ 200000 —
" astro| -c = 3SLIro|
o 104 = : slatshzztosll § 150000 —sI;sh22t0811
O 103 - m VA Beach — — VA Beach
;'}102 ©100000
a (]
101 n 2 50000
100) Dﬂj{%_ :E5 0
100 10! 10?2 103 104 < 0 100 200 300 400
Number of Nodes k-core
(a) degree distributions (b) k-core distributions

Figure 5: (a) Degree distributions and (b) k-core distributions for four networks. With each
network is listed (n;e), where n is its number of nodes and e is its number of edges: jazz (198;
2,742); astroph (17,903; 196,972); slashdot0811(77360; 469,180); and Virginia Beach (167,722;
3,245,840). The first three networks are undirected; the last is directed. These properties were
produced with the stand-alone codes that were generated using the procedures in this work.

5 Summary, Limitations, and Future Work

We have described an approach for automatically constructing large numbers of stand-alone
codes (i.e., main() methods) from software library methods. These methods are containerized
and incorporated into a cyberinfrastructure called net.science. We have integrated two well-
known and well-used software libraries, NetworkX and SNAP, into net.science. While the
approach is useful for software libraries, modifications are needed to enable more seemless
integration of individual software codes. Also, we are investigating other approaches so that a
single parser would suffice for all codes. In an expanded version, we will provide an example
main() method generated by this approach. We will also provide timing data for developing
these methods by hand, versus using the automated approach.

Acknowledgments: We thank the anonymous reviewers for their helpful feedback. This
work is partially supported by UVA Strategic Investment Fund number SIF160 and NSF grants
0AC-1916805, CMMI-1916670 and IIS-1908530.

References

[1] N. K. Ahmed, R. A. Alo, et al. net.science: A cyberinfrastructure for sustained innovation in
network science and engineering. In Gateway Conference, 2020.

[2] T. Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In EICS,
2018.

[3] M. Brockschmidt, M. Allamanis, A. Gaunt, and O. Polozov. Generative code modeling with
graphs. In ICLR, 2019.

[4] F. Budinsky, M. Finnie, P. Yu, and J. Vlissides. Automatic code generation from design patterns.
IBM Systems Journal, pages 1-25, 1996.

[5] H. L. Carscadden, L. Machi, A. Kishore, et al. ExecutionManager: A software system to control
execution of third-party software that performs network computations. In WSC, 2021.

[6] J. Cruz-Benito, S. Vishwakarma, F. Martin-Fernandez, and 1. Faro. Automated source code
generation and auto-completion using deep learning: Comparing and discussing current language
model-related approaches. Al 2:1-16, 2021.

[7] G.Csardiand T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems, 2006.

88

Auto-Code Generation Machi et. al.

)

9
[10]
[11]
[12]
[13)
[14]
[15]
[16]
17)

18]
[19]

[20]
21]
[22]
23]
[24]
[25]
126]
[27]
28]
[29]

(30]

J. C. Davis. The Human Story: Our History, From the Stone Age to Today. HarperCollins, New
York, NY, 2004.

G. Grullon, S. Underwood, and J. P. Weston. Comovement and investment banking networks.
Journal of Financial Economics, 113:73-89, 2014.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function
using NetworkX. In SciPy2008, pages 11-15, 2008.

U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system—
implementation and observations. In ICDM, pages 229-238, 2009.

D. Kundu, D. Samanta, and R. Mall. Automatic code generation from unified modelling language
sequence diagrams. IET Software, 7:12-28, 2013.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

J. Leskovec and R. Sosi¢. SNAP: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Ko¢isky, F. Wang, and A. Senior.
Latent predictor networks for code generation. In ACL, pages 599-609, 2016.

Cyberinfrastructure vision for 21st century discovery, 2007. Report by the National Science Foun-
dation Cyberinfrastructure Council.

M. R. Parvez, S. Chakraborty, B. Ray, and K.-W. Chang. Building language models for text with
named entities. In ACL, pages 2373-2383, 2018.

T. P. Peixoto. The graph-tool python library. figshare, 2014.

S. Philippi. Automatic code generation from high-level petri-nets for model driven systems engi-
neering. Journal of Systems and Software, 79:1444-1455, 2006.

C. Staudt, A. Sazonovs, and H. Meyerhenke. Networkit: A tool suite for large-scale complex
network analysis. Network Science, 4(4):508-530, 2014.

C. A. Stewart, S. Simms, B. Plale, M. Link, D. Y. Hancock, and G. C. Fox. What is cyberinfras-
tructure. In ACM SIGUCCS Fuall Conference: Navigation and Discovery, pages 37-44, 2010.

Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang. A grammar-based structural CNN decoder
for code generation. In AAAI pages 7055-7062, 2019.

Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang. Treegen: A tree-based transformer
architecture for code generation. In AAAI pages 8984-8991, 2020.

Y. Wang, Y. Pan, et al. Gunrock: Gpu graph analytics. ACM Trans. Parallel Comput., 4(1),
2017.

B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin. Code generation as a dual task of code summarization.
In NeurIPS, pages 6559—6569, 2019.

D. A. Wheeler, J. D. Birdwell, and F. L. Loaiza. A partial survey on Al technologies applicable
to automated source code generation. Technical report, Institute for Defense Analyses, 2019.

M. Yasunaga and P. Liang. Graph-based, self-supervised program repair from diagnostic feedback.
In ICML, volume 119, pages 10799-10808, 2020.

P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation. In ACL,
pages 440-450, 2017.

P. Yin, C. Zhou, J. He, and G. Neubig. StructVAE: Tree-structured latent variable models for
semi-supervised semantic parsing. In ACL, pages 754-765, 2018.

R. Zhong, M. Stern, and D. Klein. Semantic scaffolds for pseudocode-to-code generation. In ACL,
pages 2283-2295, 2020.

89

http://snap.stanford.edu/data
http://snap.stanford.edu/data

	Introduction
	Background and Motivation
	Contributions

	Related Work
	System Description
	Overview
	Input: A Software Library
	Text Parser
	Intermediate Representation
	Source Code Generator
	Output: main() Method and Validation

	Case study
	Summary, Limitations, and Future Work

