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Abstract

In modern society, the use of personal data is advancing in many fields. However, such
data utilization also increases the risk of privacy leakage. Therefore, Differential Privacy
(DP) has been proposed as a measure for privacy protection. DP is a privacy-preserving
method used when data collectors release data. However, since DP requires the trust of
the data collector, Local Differential Privacy (LDP) was proposed as a privacy protection
measure that does not rely on third-party trust. LDP assumes that data providers directly
perturb their data, thereby protecting privacy leakage from personal data. LDP is useful
in machine learning for data privacy and model privacy. However, a challenge with LDP
is balancing privacy protection with utility, especially when dealing with high-dimensional
data. To address this, a machine learning framework called SUPM has been proposed
to satisfy LDP. SUPM consists of three phases: dimensional reduction, training, and
testing. In SUPM, before the dimensional reduction phase, users perform attribute domain
reconstruction, transforming all categorical and numerical attributes into ordered discrete
representations with a domain size of L. However, L is predetermined independently of
the actual data characteristics, which can lead to limitations when adapting to diverse
datasets. This study proposes improving SUPM by extending the dimensional reduction
phase to incorporate both dimensional reduction and attribute domain reconstruction.
These enhancements allow for domain size reduction that accounts for the characteristics
of each attribute, thereby improving the accuracy of machine learning. The effectiveness of
the proposed method is validated through experiments on two datasets: Adult and WDBC.

1 Introduction

Data analysis and machine learning(ML) are advancing across many fields, driving a growing
demand for large volumes of data. In particular, the widespread adoption of IoT devices has
led to a rapid increase in the volume of the collected data. However, this expansion also raises
significant concerns about the risk of personal privacy leakage.

To address these concerns, Differential Privacy (DP) [4] has been proposed. In the DP
framework, an aggregator (Agg) perturbs data to protect individual privacy. However, this ap-
proach assumes that Agg is trustworthy. If Agg is compromised, there is a risk of data leakage.
To mitigate this issue, Local Differential Privacy (LDP) [7] has been introduced. Under LDP,
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Users perturb their data directly, thereby ensuring privacy without relying on a trusted Agg.
Applications that guarantee LDP include frequency estimation [5] and mean estimation [6].

Applications of LDP have also expanded into ML. In ML, there are two types of privacy:
data privacy and model privacy. As methods for achieving privacy-preserving machine learning
(PPML), one approach is to aggregate the training data at Agg and apply DP during training
by perturbing the data. Another method is to apply LDP where Users directly perturb their
data and send it to the Agg for training. Using DP protects model privacy but does not protect
data privacy. On the other hand, using LDP ensures both data privacy and model privacy, but
there is the challenge of performance degradation when dealing with high-dimensional data.

SUPM (Scalable Unified Privacy Mechanism) has been proposed as a framework for LDP-
based ML to address this issue. This framework consists of three phases: dimension reduction,
learning, and testing. In SUPM, Users perform attribute domain reconstruction by converting
all categorical and numerical attributes into ordered discrete representations with domain size
L before dimension reduction. This transformation effectively reduces the domain size of each
attribute to L, allowing the noise level to be controlled under a fixed privacy budget. Sub-
sequently, dimension reduction is performed while considering the characteristics of the data.
However, the important parameter L is predetermined independently of the actual data char-
acteristics, which may limit the adaptability of the method to different datasets.

To overcome this limitation, we propose improving SUPM by extending its dimension re-
duction phase to incorporate both dimension reduction and attribute domain reconstruction.
This extension enables the reduction of domain size in a manner that reflects the distributional
characteristics of each attribute, thereby improving ML performance. More specifically, dur-
ing the dimension reduction phase, we collect class labeled frequency data for each attribute,
merge low-frequency values to reconstruct attribute domains, and apply the chi-squared test
(χ2-test) for further aggregation. Furthermore, to evaluate the effectiveness of the proposed
framework, we conducted experiments using two datasets—WDBC and Adult—and applied
Random Forests (RF) for classification. As a result of the experiments, it was confirmed that
the proposed method achieved higher learning accuracy than the conventional SUPM in both
mixed datasets (containing categorical and numerical data) and purely numerical datasets.

The remainder of this paper is organized as follows. Section II explains the necessary back-
ground knowledge pertinent to this study. Section III reviews related works. Section IV presents
our proposed method. Section V evaluates the proposed method and performs comparative ex-
periments with existing methods, followed by a discussion on the performance of the proposed
method. Finally, Section VI concludes the study.

2 Preliminary

In this section, we introduce LDP, specific privacy mechanisms such as Randomized Response
(RR) and Optimal Unary Encoding (OUE), and the χ2-statistic. The notation used in this
paper is summarized in Table 1.

2.1 Local differential privacy (LDP)

In the local differential privacy model [7], each of n records has data Xi = [xi,1, · · · , xi,m−1,Ci].
Each data record contains m − 1 attributes A1, · · · , Am−1 and a class label Ci. In this case,
Users sends M(Xi) through a randomized mechanism M to Agg.

Definition 1. A privacy mechanism M satisfies ϵ-local differential privacy(ϵ-LDP) when M
satisfies the following probabilitiy for all possible input data x1, x2 and all possible output y
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Table 1: List of Notation and Their Meanings

Notation Meaning
ϵ-LDP, ϵ ϵ-local differential privacy, privacy budget
Agg, Users, n Aggregator, data providers, total number of users
X, Xi Record set; i-th user’s record: Xi = [xi,1, · · · , xi,m−1,Ci]
xi,j , Ci j-th attribute and class label of user i
A, Aj , Ωj, |Ωj|, Aj [k] Attribute set, j-th attributes, domain, its size, k-th element in

Aj

C, |C|, cℓ Class label set, its size, and ℓ-th class label
bi,j , bi,j [k] Binary vector of xi,j and its k-th bit
x′i,j , b

′
i,j , b

′
i,j [k] Perturbed versions of xi,j , bi,j , and bi,j [k]

d, Ñ() Dimension (number of selected attributes), estimated frequency
L, Lini, Lopt Domain sizes: specified, initial, and optimal
WAj [k], LowAj[k], ChiAj[k] k-th element of Aj after WA, LFM, and ChiMerge, respectively

results
Pr[M(x1) = y] ≤ exp(ϵ) · Pr[M(x2) = y]

Theorem 1 ( [8]). Let {Mi} be a sequence of privacy mechanisms, each satisfying ϵi-LDP.
Then, the composed mechanism M(D) satisfies (

∑
i ϵi)-LDP.

Randomized Response (RR) [6] is a randomized mechanism that satisfies LDP for discrete-
valued inputs. Let xi,j be the input and x′i,j be the perturbed output, where the domain
of attribute Aj is denoted by Ωj. The mechanism is represented as x′i,j ← RR(ϵ, xi,j,Ωj) and
proceeds as follows

Pr(x′i,j) =

{
exp(ϵ)

|Ωj|−1+exp(ϵ) , if x′i,j = xi,j ,
1

|Ωj|−1+exp(ϵ) , if x′i,j ̸= xi,j .

Optimized Unary Encoding (OUE) [10] is a frequency estimation mechanism that satisfies
LDP. Suppose there are n users, each holding an attribute value xi,j . The OUE mechanism,
denoted as b′i,j ← OUE(ϵ, xi,j,Ωj), consists of two processes: Encoding and Perturbation,
and proceeds as follows.

• Encoding: If xi,j = Aj [k], the encoding function outputs a unary vector of length |Ωj|
with the k-th bit set to 1:

Encode(xi,j) = [0, . . . , 0, 1︸︷︷︸
k-th

, 0, . . . , 0].

• Perturbation: Each bit of the encoded vector is independently flipped with the following
probabilities:

Pr(b′i,j [k] = 1) =

{
p = 1

2 if bi,j [k] = 1,

q = 1
eϵ+1 if bi,j [k] = 0.

Agg collects all perturbed vectors and estimates the frequency of value Aj [k] using the
following formula:

ÑOUE(Aj [k]) =

∑n
i=1 1{b′i,j [k]=1} − n · q

p− q
.

Here, the indicator function 1{b′i,j [k]=1} returns 1 if b′i,j [k] = 1, and 0 otherwise. This estima-

tion process is denoted ÑOUE(Aj [k])← EstimationOUE({b′i,j}ni=1Ωj).
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2.2 χ2-statistic

The χ2-test is for the test of independence of two events. The χ2-statistic is calculated as
follows.

Jχ2(C,Aj) =

|C|∑
ℓ=1

|Ωj|∑
k=1

(no(cℓ,Aj[k])− ne(cℓ,Aj[k]))
2

ne(cℓ,Aj[k])

no(cℓ) =
∑
k

no(cℓ,Aj[k]), no(Aj[k]) =
∑
cℓ

no(cℓ,Aj[k]), ne(cℓ,Aj[k]) =
no(cℓ) · no(Aj[k])

n

Aj and C are considered dependent if the test statistic exceeds the threshold:

Jχ2(C,Aj) > χ2(α,Φ)

where α is the significance level and Φ is the degrees of freedom.

3 Related works

This section reviews related work, focusing on two LDP-based frameworks: LDP-FS for dimen-
sionality reduction and SUPM for ML.

3.1 LDP-FS framework

LDP-FS [3] is a framework that performs dimension reduction that satisfies LDP. LDP-FS con-
sists of two phases: frequency estimation and dimension reduction, which are called LDP-FS-FE
(LDP-FS Feature Estimation) and LDP-FS-DR (LDP-FS Dimension Reduction), respectively,
which are denoted in Algorithms 1, 2, and 3. In LDP-FS-FE, frequency estimation for the
combinations of class labels and attribute values is performed using OUE. In LDP-FS-DR,
dimension reduction is performed based on information gain or χ2 statistic for each attribute
from the frequency distribution. This study adopts the χ2 statistic.

Algorithm 1 LDP-FS-FEUser [3]

Require: privacy budget ϵ, set of attribute
domains {Ωj}m−1

j=1 , set of class labels C, i-
th user record Xi = [xi,1, · · · , xi,m−1,Ci]

Ensure: perturbed data {b′i,j}m−1
j=1

1: for xi,j ∈ Xi do
2: b′i,j ← OUE(ϵ/(m− 1), [xi,j,Ci],Ωj × C)
3: end for
4: return {b′i,1, · · · , b′i,m−1}

Algorithm 2 LDP-FS-FEAgg [3]

Require: perturbed data {b′i,j}ni=1, domain
Ωj of attribute Aj , set of class labels C

Ensure: estimated frequency {Ñ(Aj [k])}(ℓ,k)

1: Ñ(cℓ,Aj[k])
← EstimationOUE({b′i,j}ni=1,Ωj × C)

2: return {Ñ(cℓ,Aj[k])}(ℓ,k)

3.2 SUPM

Scalable Unified Privacy Mechanism (SUPM) [9] is a privacy-preserving framework in which
each data record is directly perturbed by Users. The authors also proposed a privacy mecha-
nism suitable for ML, called WALDP, which is used in SUPM. In PPML that perturbs data,
the number of attributes (referred to as dimensions) and the domain size of each attribute
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Algorithm 3 LDP-FS-DR [3]

Require: dimension d, set of estimated frequency {Ñ(cℓ,Aj[k])}j,(ℓ,k)
Ensure: d-attribute Aj1 , · · · ,Ajd
1: n← number of users
2: for Aj ∈ A do

3: Jχ2(C,Aj)←
∑|C|

ℓ=1

∑|Ωj|
j=1

(no(cℓ,Aj[k])−ne(cℓ,Aj[k]))
2

ne(cℓ,Aj[k])

4: end for
5: {j1, · · · , jd} ← argmaxd(Jχ2(C,A1), · · · , Jχ2(C,Am))
6: return d-attribute Aj1 , · · · ,Ajd

affect utility as well as privacy. Specifically, according to Theorem 1, if each attribute is as-
signed a privacy budget ϵ, then m attributes collectively consume a total privacy budget of
ϵ ·m. Additionally, since WALDP uses RR, the domain size of each attribute impacts the util-
ity. Therefore, SUPM consists of three phases: dimension reduction (PPDR), model training
(PPTR), and testing (PPTEST). In PPDR, the attributes to be used and their domain sizes are
determined while preserving privacy.

Here, we describe the privacy mechanism WALDP used in SUPM for arbitrary input data.
WALDP consists of three functions: DTO, WAT, and RR. First, DTO transforms categorical
data into ordered discrete values. Next, WAT uniformly maps both numerical data and the
output of DTO into L ordered discrete values (WA). In particular, numerical data is discretized
by evenly dividing its range into L intervals. Finally, given a domain size of L, a perturbation
is applied using RR. PPTR is shown in Algorithm 4.

Algorithm 4 Privacy-preserving training (PPTR) [9]

Require: dimension d, data X = {Xi}ni=1, specified domain size L, privacy budget ϵ

Ensure: Training model
1: ϵd+1 ← ϵ/(d+ 1)
2: for Xi ∈ X do
3: [xi,j1, · · · , xi,jd] ← Sample d from [xi,1, · · · , xi,m−1]
4: for xi,j ∈ [xi,j1, · · · , xi,jd] do
5: (yi,j ,WAj [1], · · · ,WAj [L])←WAT(xi,j ,Ωj, L)

6: zi,j ← RR(ϵ, yi,j , {WAj [1], · · · ,WAj [L]})
7: end for
8: zi,d+1 ← RR(ϵd+1,Ci,C)
9: Send d+ 1-tuple perturbed data to Agg.

10: end for
11: Agg collects perturbed data and constructs Training model.
12: return Training model

3.3 Problem of Previous Work

In SUPM, before executing PPDR, attribute domain reconstruction is performed by Users, where
all categorical and numerical attributes are transformed into ordered discrete representations
with a domain size of L. This transformation effectively reduces the domain size to L, where
L allows control over the noise level under the same privacy budget. Subsequently, PPDR is
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executed while taking the data characteristics into account. However, the important parameter
L is predetermined, independently of the actual data characteristics.

In ML, techniques such as attribute domain reconstruction, which implicitly leads to domain
size reduction, are often applied to improve accuracy by considering the nature of the data.
Therefore, PPDR should be enhanced to support attribute domain reconstruction in addition
to dimension reduction.

4 Proposal

This study improves SUPM by extending its PPDRmechanism to perform both dimension reduc-
tion and attribute domain reconstruction. These improvements enable domain size reduction
tailored to the characteristics of each attribute, thereby enhancing ML model accuracy.

4.1 Characteristics of the proposed method

Our framework consists of three phases: Dimension Reduction and Attribute Domain Recon-
struction (DR-ADR), PPTR, and PPTEST. Among them, DR-ADR is newly improved in this
work, while the latter two phases remain the same as in SUPM. Note that PPTR uses WALDP,
while PPTEST employs either WA or WALDP, depending on whether the environment is trusted
or untrusted. In our experiments, only WA is used in PPTEST for simplicity.

We now explain the key idea of extending PPDR in SUPM to DR-ADR. In SUPM, PPDR
performs only dimension reduction on data whose attribute domains have already been recon-
structed and reduced to a fixed size L by Users. This implies that the domain size of each
attribute has already been reduced before perturbation. In contrast, DR-ADR integrates both
attribute domain reconstruction and dimension reduction. As a result, the attribute domains
are insufficiently reduced at the time of perturbation during data collection for DR-ADR. There-
fore, the same randomization mechanism RR used in SUPM is not suitable for DR-ADR, as the
resulting noise level may increase significantly when the attribute domain size becomes large.
However, the exact domain size is typically unknown in advance. To address this challenge, we
adopt OUE, which is well-suited for handling attributes with large and unknown domain sizes.
From the viewpoint of efficient privacy budget utilization, each Users perturbs and transmits
only d randomly selected attributes. Thus, a key contribution of our approach is that DR-ADR
operates effectively on both incomplete and perturbed data.

4.2 Attribute Domain Reconstruction and Dimension Reduction

This subsection describes DR-ADR. This method consists of Algorithm 5, which merges low
frequency elements, and Algorithm 7, which performs merging based on the χ2-test (ChiMerge).
For categorical attributes, Algorithm 6 is executed within Algorithm 7.

First, we describe Algorithm 5, which performs Low-Frequency Merge (LFM) for a given
threshold T . Let ΩLFM

j denote the reconstructed domain for attribute Aj . Low-frequency
elements (below threshold T ) are handled as follows: categorical values are grouped together,
while numerical ones are merged with the nearest larger neighbor. Note that the LFM process is
essential not only for improving the accuracy of ML models, but also for mitigating the influence
of noise in low-frequency elements.

Next, Algorithm 6 rearranges the elements of each categorical attribute in descending order
based on the proportion of class label c1 under the two-class setting [c1, c2]. This preprocessing
step is necessary because ChiMerge requires all attributes to be ordered in advance.

Next, we describe Algorithm 7, which performs ChiMerge. Let ΩCM
j denote the reconstructed

domain for attribute Aj . For attributes with an inherent order, a χ2-test is conducted between
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Algorithm 5 Low-Frequency Merge (LFM)

Require: Threshold T , domain Ωj of attribute Aj , estimated frequency {Ñ(cℓ,Aj[k])}
Ensure: Merged domain ΩLFM

j of Aj

1: Ñ(Aj [k]) =
∑|C|

l=1 N(cl,Aj [k])
2: if Aj is numerical then
3: Initialize LowAj ← [], i← 1
4: for k = 1 to |Ωj| do
5: Append Aj [k] to LowAj[i]

6: if Ñ(Aj [k]) ≥ T then
7: i← i+ 1
8: end if
9: end for

10: else
11: Sort Ωj by descending Ñ

12: Let k be the first index where Ñ(Aj [k]) < T

13: LowAj[1:k−1]← Aj[1:k−1], LowAj[k]←
⋃|Ωj|

i=k Aj[i]
14: end if
15: return ΩLFM

j = [LowAj[1], . . . , LowAj[|LowAj|]]

Algorithm 6 Class Aware Categorical Order (CACO)

Require: domain Ωj of categorical attribute Aj , set of estimated frequency {Ñ(cℓ,Aj[k])}(ℓ,k)
Ensure: Ordered domain Ω′

j of Categorical AttributeAj

1: orderd list← Sort Ωj in descending order of the proportion of class label c1.
2: for i = 1, · · · , |Ωj| do
3: Aord

j [i]← orderd list[i]
4: end for
5: return Ω′

j = {Aord
j [1], · · · ,Aord

j [|Ω′
j|]}

adjacent elements and the class label. If the test indicates independence, the adjacent elements
are merged. This process is repeated until all adjacent element pairs are statistically indepen-
dent. If all adjacent element pairs are found to be independent, the merging process continues
in ascending order of χ2-values until the domain size falls below Lopt. Note that by applying a
χ2-test, the domain size can be compressed from the perspective of data utility.

The whole procedure of DR-ADR is given in the below:
Initial Setup

(1) Agg determines the dimension d, the initial domain size Lini, the threshold T and the
optimal domain size Lopt, where both d and Lini are sent to use1.

Useri executes the following steps (1) to (3).

(1) Selects d attributes Ai1, · · · ,Aid randomly. Xi = [xi,i1, · · · , xi,id,Ci].

(2) Execute Algorithm 1, {b′i,i1, · · · , b′i,id}←−LDP-FS-FEUser(ϵ, {Ωj}idj=i1,C, Xi).

(3) Sends b′i,j1, · · · , b′i,jd to Agg.

1It is recommended to determine T and Lopt based on the estimated frequencies of each attribute.
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Algorithm 7 ChiMerge

Require: Optimized size Lopt, domain Ωj of Aj , estimated frequency {Ñ(cℓ,Aj[k])}
Ensure: Merged domain ΩCM

j of Aj

1: if Aj is categorical then

2: Ωj ← CACO(Ωj, Ñ(cℓ,Aj[m])) (Alg. 6)
3: end if
4: repeat
5: Initialize ChiAj ← [], i← 1
6: for k = 1 to |Ωj| − 1 do
7: if Jχ2(C,Aj [k],Aj [k + 1]) < χ2(α, |C|) then
8: Merge: ChiAj[i]← ChiAj[i] ∪ Aj[k]
9: else

10: ChiAj[i]← ChiAj[i] ∪ Aj[k], then i← i+ 1
11: end if
12: end for
13: Ωj ← [ChiAj[1], . . . ,ChiAj[i]]
14: until No pairs satisfy merge condition
15: ΩCM

j ← Ωj

16: while |ΩCM
j | > Lopt do

17: kmin ← argminJχ2(C,Aj [k],Aj [k + 1])
18: Merge: ChiAj[kmin]← ChiAj[kmin] ∪ ChiAj[kmin + 1]
19: Update ΩCM

j and reindex
20: end while
21: return ΩCM

j = [ChiAj[1], . . . ,ChiAj[|ΩCM
j |]]

Agg executes the following steps after collecting data from Users.

(1) Execute Algorithm 2 to estimate {Ñ(cℓ,Aj[k])}(ℓ,k)←−LDP-FS-FEAgg({b′i,j}ni=1, Ωj, C).

(2) Execute Algorithm 7, ΩLFM
j ←−LFM(T ,Ωj, {Ñ(cℓ,Aj[k])}(ℓ,k)), then execute Algorithm 5,

ΩCM
j ←−CM(Lopt,Ω

LFM
j , {Ñ(cℓ,Aj[k])}(ℓ,k)).

(3) Execute Algorithm 3 to get d attributes
Aj1 , · · · ,Ajd←−LDP-FS-DR(d,Ñ(cℓ,ChiAj[k])}j,(ℓ,k)).

5 Feasibility Evaluation

This section evaluates our expansion of SUPM based on DR-ADR. Experiments are conducted on
Adult [1] andWDBC [2] datasets, representing mixed and numerical datasets, respectively, where
TABLE 2 summarizes the data types, number of records, attributes, and classes for each dataset.
We use RF implemented in the ’scikit-learn’ machine learning library, with all hyperparameters
set to their default values. Evaluation is performed using 10-fold cross-validation, and results

Dataset Data Type #Records #Attr. #Class

Adult Numerical & Categorical 32,560 15 2

WDBC Numerical 569 31 2

Table 2: Dataset summary

172



Privacy-Preserving Attribute Domain Reconstruction Tsujimoto and Miyaji

are averaged over three independent runs, each with a different instance of noise addition
during training. The balanced accuracy metric is used for performance assessment. The initial
parameter settings are as follows: Adult:(d, Lini, T , Lopt) = (7, 30, 0.05 ·#Records, 5), WDBC:
(d, Lini, T , Lopt) = (5, 10, 0.05 ·#Records, 2).

5.1 Evaluation of attribute domain reconstruction

We evaluate the change in domain resulting from domain reconstruction through DR-ADR.
During the evaluation, we vary ϵ used for perturbation per attribute from 0.71 to 2.85, and
analyze how the size of the reconstructed domain changes, particularly in comparison to the
unperturbed baseline. Due to space limitations, the evaluation focuses on three attributes from
the Adult dataset: two numerical attributes, age and capital gain, and one categorical attribute,
occupation. These attributes were also identified as highly influential through dimension re-
duction. Figure 1 illustrates the reconstruction processes for age, capital gain, and occupation
during DR-ADR. Figs. 1.a, 2.a, and 3.a show the initial distribution of each attribute’s elements
labeled by class 1 or 0 before any processing. Figs. 1.b, 2.b, and 3.b show the reconstruction
after LFM. Figs. 1.c, 2.c, and 3.c show the reconstruction after ChiMerge.

These results are presented as heatmaps, where the horizontal axis denotes the elements of
each attribute, and the vertical axis indicates the privacy budget ϵ. Each cell’s color reflects the
reconstructed element to which the original attribute value has been mapped through domain
reconstruction. The color gradient corresponds to the order of the elements of the reconstructed
domain, with the darkest color representing the first and the lightest color representing the last,
up to a maximum of Lopt. The reconstructed elements were determined based on the median
result from 30 domain reconstruction iterations.

(1.a) (1.b) (1.c)

(2.a) (2.b) (2.c)

(3.a) (3.b) (3.c)

Figure 1: Integration results for attributes (1) age, (2) capital gain, and (3) occupation. Each
row shows (a) original, (b) LFM, and (c) ChiMerge, labeled as (1.a)–(3.c).

As shown in Fig. 1.b, when noise is added to the age attribute with ϵ ranging from 0.71
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(a) Adult (b) WDBC

Figure 2: Comparison of balanced accuracy between proposed methods and SUPM

to 2.86, the domain size reduction achieved by LFM is greater than that in the case without
noise. In contrast, for the ChiMerge, the final domain size remains the same as Lopt regardless
of whether noise is added or not. In the case of capital gain, as shown in Fig. 2.b, when
ϵ ≥ 1.43, both LFM and ChiMerge output the same domain size regardless of the presence of
noise. This suggests that, compared to age, a larger ϵ is required for capital gain to achieve a
comparable level of domain reduction. For categorical attributes such as occupation, shown in
Fig. 3.b, adding noise with ϵ ranging from 0.71 to 2.86 results in nearly the same domain size
being output by both LFM and ChiMerge, as in the case without noise.

These results suggest that attributes whose domain sizes fall below Lopt tend to be more
sensitive to noise. Therefore, determining an appropriate value of Lopt for each attribute may
lead to better overall outcomes.

5.2 Evaluation of learning performance

The learning accuracy between the proposed method and SUPM is compared using the Adult
and WDBC datasets. The comparison is made under the condition that the Lopt of the proposed
method and the L in the WA of SUPM are the same. For the Adult and WDBC datasets, we
set Lopt = L = 5, 2, respectively. The graphs plot balanced accuracy on the vertical axis and
ϵ = [5, 7, 12, 15, 17, 20] on the horizontal axis. The blue line represents the training results of
SUPM, while the orange line represents the training results of the proposed method. The black
dashed line represents the training results using the reconstructed elements of the proposed
method without adding any noise.

First, the training results on the Adult dataset are shown in Fig. 2a. It can be observed
that the proposed method achieves better learning accuracy compared to SUPM. While SUPM
reaches an accuracy of 68% at ϵ = 20, the proposed method achieves the same accuracy at
ϵ = 15. This indicates that for mixed datasets, such as the Adult dataset—which contains
both categorical and numerical attributes—reconstructing the attribute domain contributes to
improved ML performance. Next, the training results on the WDBC dataset are shown in
Fig. 2b. It can be observed that the proposed method achieves higher training accuracy than
SUPM when ϵ ≥ 10. While SUPM reaches 85% at ϵ = 20, the proposed method achieves
approximately the same accuracy at ϵ = 10. These results indicate that even for datasets
composed solely of numerical data, such as WDBC, reconstructing the attribute domain can
contribute to improving ML performance.

174



Privacy-Preserving Attribute Domain Reconstruction Tsujimoto and Miyaji

6 Conclusion

In this study, we proposed SUPM based on DR-ADR. Specifically, during the dimension re-
duction process, we collect class labeled frequency data for each attribute, initially merging
low-frequency values and then performing additional merging based on the χ2-test to recon-
struct the attribute domains. In the experiments, we evaluated the reconstruction accuracy
of attribute components that were randomly selected and perturbed. We also compared the
learning performance achieved using the proposed framework to the performance of the conven-
tional SUPM method. The results demonstrate that the proposed method outperforms SUPM
in terms of learning accuracy on both mixed datasets and purely numerical datasets. Further-
more, we performed a visual evaluation of the component reconstruction using heatmaps. As
future work, developing methods for quantitatively evaluating the differences in reconstructed
domains with and without noise will be important. Additionally, although this study focused
on binary classification, extending the proposed method to multi-class classification is an im-
portant direction for future research.
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