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Abstract: There are numerous delicate tasks that require skilled workers to perform in onsite 
construction. A key challenge in automating these tasks is developing motor skills in robots trained 
through reinforcement learning (RL), as manipulating irregular and delicate objects like hammers, 
scaffolding, and drills remains difficult. To address this issue, this paper proposes an RL-based approach 
to perform delicate tasks using a robotic arm with grippers. We present a simulation-based policy 
learning framework utilizing the Critic-Actor algorithm in Pybullet to control the robotic arm. In 
experimental trials, the learned policy was used to grasp six different types of construction tools, and 
the results demonstrated the feasibility of training with randomly shaped objects to manipulate the 
construction tools with a reasonable success rate. This method provides a foundation for enhancing the 
manipulative skills of construction robots, potentially reducing labor costs in the industry.  
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1. INTRODUCTION  

The construction industry needs adequate workers to meet the construction demand [1]. However, 
construction tasks purely based on manual labor are time-consuming and inefficient [2,3]. Meanwhile, 
onsite construction is dangerous for workers, and the monotonous physical activities affect their health 
status [4]. Therefore, improving the automation level in construction is critical to this industry in the 
future. To this end, construction robots show huge potential to tackle this urgent issue across a wide 
range of fields, from off-site prefabrication [5] to on-site construction [6]. Although construction robots 
can solve these problems, the technology is not widely used in civil engineering and on-site construction 
due to the complexity of construction scenarios. Currently, most robots utilized in onsite construction 
are preprogrammed [7] or motion-planned [8], which are only suitable under a limited number of 
working conditions [9]. These robots perform poorly in unseen construction environments because it is 
impossible to plan all different possibilities in one program. 

Recent review papers [10] discussing and envisioning robotics in construction synchronously share 
the perspective that the emergence of reinforcement learning (RL) provides a promising avenue. With 
the prospect of machine learning, RL is promising for developing construction robots with adaptability 
and flexibility, which can handle the problems mentioned above. RL can learn a specific policy (from 
observations to actions) for conducting different tasks by interacting with given construction 
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environments through trial and error [11]. 
Next, we explain how RL components operate within a specific context—training a robotic arm 

with an RGB-D camera to perform object pickup tasks. The robot arm is identified as the agent, which 
interacts with its surroundings. The environment encompasses the entire experimental setup, including 
anything that the robot interacts with during its task. Observations consist of visual data collected by 
the RGB-D camera, providing the robot arm with the necessary information to make decisions about its 
actions. Actions refer to the commands sent to the robot arm to control its joints and grippers, dictating 
how the arm moves and interacts with objects in its environment. The reward function is crucial in RL 
as it provides the incentive for the agent to learn [12]. It is used to update the control policy based on 
the actions taken. Crafting an effective reward function is particularly challenging in complex, long-
horizon tasks, which involve multiple steps or subtasks. The control policy dictates the robot arm's 
movements based on the input from visual data. A well-trained policy enables the robot to successfully 
complete tasks like picking up objects. 

In construction, researchers have conducted many attempts to train a robot using RL in various 
fields, such as installation [13], assembly [14], navigation [15] and so on. A more comprehensive 
summary of RL-based robots in construction is provided in recent literature [16]. On the one hand, 
existing RL-based works have concentrated on heavy construction tasks involving equipment such as 
robotic arms, cranes, wheel loaders, and unmanned ground vehicles. There is limited attention in 
delicate work, such as drilling, bolt insertion, and nut tightening, which need to be carried out by either 
humans or light small-scale robots. On the other hand, RL has emerged as a model-free approach that 
enables end-to-end robot grasping by learning through continuous trial-and-error interactions with the 
environment. This allows for self-supervised learning in robotic grasping tasks. However, a major 
challenge in learning-based robot grasping is how to realize the generalization—whether a robot can 
apply the knowledge it has learned in self-supervised settings to new environments and unfamiliar 
objects. While RL has been widely applied in video games and simple simulated robots, its application 
to complex robotic grasping remains limited. For example, successful grasping of new objects in prior 
research required extensive training, such as 580,000 grasp attempts over several weeks [17] or 1 
million grasp attempts in other studies, making the process costly and difficult to replicate [18]. 

To address this challenge, this paper introduces a simulation-based policy learning framework 
utilizing the Critic-Actor algorithm. By training for just 12 hours with randomly shaped objects, this 
approach achieves a 50-60% grasp success rate on a test set on unseen construction tools. Moreover, 
the on-policy DRL algorithm Proximal Policy Optimization (PPO) is employed, which offers stable and 
efficient training by iteratively updating the actor network with a small number of samples over multiple 
training rounds. This method addresses the issues of step-size selection and variance in traditional policy 
gradient algorithms. 

The key contributions of this paper are: 
1. We propose a model-free robotic grasping approach based on an on-policy reinforcement 

learning (RL) algorithm that enables generalization within a shorter training time, without 
requiring prior knowledge of target objects or large amounts of experience data. 

2. In the experiment, six types of construction tools were used as objects for robotic manipulation, 
including a hammer, pipe, drill, and others. 

3. The experimental results demonstrate that our approach successfully trains the robotic hand 
to grasp construction tools, achieving success rates of approximately 50-60%. 

This article is organized as follows: we proposed a simulation-based policy learning framework 
utilizing the Critic-Actor algorithm in Section.2. The experiment settings using robot arms to grasp 
construction tools are detailed in Section 3. Experiment results and conclusion are in Section 4 and 5.  
 
2. METHOD  
2.1 Reinforcement learning algorithms 

Reinforcement learning (RL) is a novel computational approach. Different from other 
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computational approaches [19], the agent (Construction robot with gripper) in RL learns by directly 
interacting with its environment, without the need of supervision or prior knowledge of the 
environment. The RL process is the formal framework of a Markov decision process (MDP). which 
can be defined by a quadruplet  during the interaction between agents and the 
environment. During interaction at each episode, the agent based on its specific policy function 

 which generates an action . The action next acts on the environment in the state , 
then the environment represents as a next state . The interaction result can be assessed by the 
reward (see Fig. 1). Normally, the agent considers a finite-horizon, which means 
agent explores finite steps  at each episode. The final goal of the agent is to understand the task 
and learn an optimal policy  to maximize the discounted cumulative returns  ,which 
is expressed by: 

  (1) 

Where ,  is the discount factor. 

In this paper, an actor-critic algorithm is introduced, which combines two different networks. 
The actor network is responsible for actions  through a specific policy function . The 
critic network generates the estimation of the value function  or the action value function 

 to evaluate the actor network.  
Firstly, the critic network will be updated by minimizing the time difference error (TD-error). 

The action value function  estimated by the critic network can be given by: 
 
  (2) 

Which  represents the long-term accumulated return given a specific action choice  at each 
state . 
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Fig. 1 Interaction between agent and environment in reinforcement learning 
The state-value function  can be expressed by: 

 
  (3) 

Unlike the action value function, the value function does not take the action into account and only 
considers the state. 

Furthermore, the loss function for the critic network is defined by: 
 
  (4) 

Where , .  is the transition probability distribution. 
The critic network updates parameters of  to decrease  so that the real return by take 
the  approaches the expected return to take the action . 

Secondly, the actor network is trained by a strategic gradient method, in which  is updated 
according to the ascending direction of the gradient to maximize the critic output: 

  (5) 

Where represents the parameters of the Actor network,  is the probability of taking 
action in state , and  is provided by the Critic network. The update rule indicates that 
the parameters of the Actor network are updated in the direction of increasing the output of the 
Critic network, meaning that the Actor is learning to take actions that the Critic network will lead 
to higher rewards. 
 
2.2 Model structure 
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The actor-critic structure utilized in this paper is shown in Fig. 2. A common feature-network 
is shared by both actor and critic networks to extract the input  features, where  is an RGB 
image of size . To be more specific, the actor network generates continuous actions 
represented by Cartesian displacements , where  represent the -axis offset, 

-axis offset, respectively.  denotes the orientation of the gripper, which rotates along the 
local coordinate system’s z-axis. 

 
Fig. 2 Actor-critic architecture 

2.3 Proximal Policy Optimization 
PPO [20] is a widely used algorithm in the field of RL. It aims to optimize policy gradients 

in a more stable and efficient way than traditional policy gradient algorithms [21] by introducing 
a clipped objective function and a trust region. The core concept of PPO is to limit the amplitude 
of policy updates in each iteration using the probability ratio between the current policy and the 
old policy to avoid significant fluctuations in performance. This probability ratio is implemented 
through a clipping function, which is usually set to a small value, such as 0.1 or 0.2, to ensure the 
similarity between the new and old policies. The objective function of PPO can be expressed as:  
  (6) 

  (7) 

  (8) 

where  represents the ratio between the probability of action  given state  under the 

different policies (new and old one).  denotes an estimate of the advantage, calculated using 
generalized advantage estimation, which can be calculated by Eq.(8).  represents the hyper-
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parameter usually set as 0.2. Here, the expectation  indicates the empirical average over a finite 
batch of samples, in an algorithm that alternates between sampling and optimization.  
 
3. EXPERIMENTS 
3.1 Experimental environment 

The experimental environment was created using PyBullet [22], a real-time physics engine suitable 
for simulating robotic tasks. To be more specific, The Kuka-Diverse-Object-Env contains 8 different 
functions, which is designed for reinforcement learning experiments in object manipulation (see Fig. 
3). It allows the robot to interact with randomly placed objects in both discrete and continuous action 
spaces. The environment includes customizable parameters for object placement, camera angles, and 
collision detection. Each episode terminates when the robot either attempts a grasp or exceeds the 
maximum step count.  

There is a dataset including 900 various objects in Pybullet, which is used as training dataset (see 
Fig. 3). Each grasping system randomly places 5 different objects in a box for a 7-axis Kuka robot arm 
to grasp. 3D models of typical construction tools (e.g., hammer, drill, scaffolding) were loaded into the 
environment. In this study, we built a small dataset of construction tools with around 20. These 
models firstly were converted into URDF files, which allowed the definition of physical properties such 
as mass, friction, and dimensions. Furthermore, in order to characterize the common properties of 
the construction tools, they were divided into six shape-based categories (see Fig. 4). Then, we 
select one object in each type as the test object, as shown in Fig. 4.  

  
Table 1 Different types of construction tools 

Shape-based category Construction tools dataset 

Rod Shape Hammer, Wrench, Crowbar 

Cylindrical Shape Flashlight, Paint Roller, Pipe 

Flat Shape 

Clamp Shape 

Brush, Scraper, Scissors 

Clamp, Pliers, Needlenose Pliers 

Slender Shape Scaffolding pin, Rebar, Screwdriver 

Drill Shape Hammer, Wrench, Crowba 
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Fig. 3 Experimental environment (Left), Random object dataset (Right) 
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Fig. 4 Selected 6 types of test objects 

 

3.2 Algorithm setting 
The algorithm is based on Python 3.10 and Torch 2.4.1 and runs on Ubuntu 22.04 Linux system. 

Challenges with reward functions include sparse reward functions [12], which provide a reward only 
when a subtask is completed. While easy to define, they often result in limited guidance for policy 
updates, requiring a large amount of interaction data and leading to numerous failures. Continuous 
reward functions offer feedback for every action. This model adopts the sparse reward to decrease 
exploring time. When grasping an object in one episode, the  is 1, otherwise it is 0. Table 2 
shows the hyper-parameters used by PPO. The training took place in the PyBullet simulation, where a 
robotic arm was assigned the task of grasping various objects. Each season consisted of approximately 
2,800 steps, corresponding to about 140 episodes, with each episode having a maximum of 20 steps. At 
the beginning of each episode, the robotic arm was randomly positioned, and the tools were randomly 
placed within the workspace. The agent learned to adjust its movements and grip based on feedback 
from the environment. In the resulting graph, the score represents the average of all episode scores 
within a season. 

 
Table 2 Hyper-parameters used for PPO 
Parameters Value 

Discount factor  0.993 
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Learning rate  0.0004 
Clip factor in PPO  0.07 

Discount factor in GAE  0.95 
Trajectory length  2800 

Training epochs 10 
Batch size 128 

 
3. RESULTS 

The RL model was initially trained on a set of 900 randomly shaped objects, none of which 
were construction tools, over a short training period of approximately 12 hours. Following this, the 
model was tested in 100 trials to grasp unseen construction tools in order to evaluate its 
generalization capabilities. Here, if the construction tools can be lifted the position 0.2 m higher 
than the table, we assume the case is a successful grasping. The success ratios for each category of 
tools were assessed to determine the model's performance across these diverse types. The 
corresponding results for each category are shown in Figures 5–10. 
 

                

  
Fig. 5 The performance of RL model for hammer. 
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Fig. 6 The performance of RL model for pipe. 

                  
Fig. 7 The performance of RL model for scissors. 

                  
Fig. 8 The performance of RL model for clamp. 

 

Teaching Robot End Effectors to Grasp Construction Tools Yu, Yu and Pan

494



               
Fig. 9 The performance of RL model for rebar. 

                
Fig. 10 The performance of RL model for drill. 

 
Overall, as the number of test trials increased, the success ratios tended to converge towards 

specific values, which can be used to characterize the performance of the trained model. Notably, 
the model demonstrated the highest success rate for rebar grasping, achieving around a 65% 
success ratio, followed by pipe grasping as the second highest. The relatively high success rate for 
these two types of tools can likely be attributed to their cylindrical shape, which aligns well with 
the two-fingered gripper and lacks protruding features that might obstruct the grasping process. 
Although these construction tools are irregular, the gripper can exert sufficient frictional force to 
secure a grasp. 

In contrast, the success rates for hammer and drill grasping were around 35%, lower than 
those for scissors (approximately 57%) and clamp (55%). The primary reason for the lower 
performance in grasping hammers and drills is the limited number of available grasping points for 
the gripper, as observed in failed trials. The RL model struggled to effectively learn how to grasp 
tools with fewer accessible grasping points. Nevertheless, these results provide valuable insights 
into the model’s generalization capability and its potential to accurately grasp construction tools 
based on their shape characteristics. 

 
4. CONCLUSIONS 

The results from the RL model's testing across various construction tools highlight both its 
potential and the challenges involved in grasping irregular objects. While the model demonstrated a 
reasonable ability to generalize when grasping cylindrical objects like rebar and pipes, achieving 
success rates of 65% and slightly lower for pipes, it struggled with tools that have fewer or more 
complex grasping points, such as hammers and drills, which resulted in a lower success rate around 
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35%. Tools like scissors and clamps showed intermediate performance, with success rates of 57% and 
55%, respectively. These findings suggest that the model's performance is closely linked to the 
geometric properties of the objects, with simple, cylindrical shapes being easier for the gripper to handle. 
The challenges in grasping tools with more complex shapes highlight the limitations of the current 
model in handling tools with fewer accessible grasping points or irregular designs. 

From the perspective of RL, several promising avenues for improvement and future research can 
be considered. One potential enhancement involves integrating a self-attention mechanism into the RL 
framework by adding new layers to the model architecture. This would allow the model to better focus 
on relevant features during the learning process and improve its ability to handle complex grasping 
tasks. Additionally, by changing the input from a single camera to four camera images, the model can 
gain a more comprehensive view of the environment, reducing the limitations imposed by a restricted 
field of view and improving overall grasping performance. Another promising approach involves 
leveraging imitation learning to obtain a pretrained model, which can accelerate the training process. 
By using datasets generated from videos of construction tool grasping tasks and virtual reality (VR) 
environments, the model could learn from human demonstrations in tasks where real-world data is 
scarce or unavailable. This combination of self-attention mechanisms, multi-camera inputs, and 
imitation learning could significantly enhance the model's generalization ability and robustness, paving 
the way for more reliable and efficient robotic systems in real-world construction environments.  
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